
sensors

Article

Robust and Efficient Indoor Localization
Using Sparse Semantic Information from a
Spherical Camera

Irem Uygur 1,*, Renato Miyagusuku 2 , Sarthak Pathak 1 , Alessandro Moro 1,
Atsushi Yamashita 1 and Hajime Asama 1

1 Department of Precision Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656,
Japan; pathak@robot.t.u-tokyo.ac.jp (S.P.); alessandromoro.italy@ritecs.co.jp (A.M.);
yamashita@robot.t.u-tokyo.ac.jp (A.Y.); asama@robot.t.u-tokyo.ac.jp (H.A.)

2 Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya 321-8585,
Tochigi, Japan; miyagusuku@cc.utsunomiya-u.ac.jp

* Correspondence: uygur@robot.t.u-tokyo.ac.jp

Received: 10 May 2020; Accepted: 21 July 2020; Published: 24 July 2020
����������
�������

Abstract: Self-localization enables a system to navigate and interact with its environment. In this
study, we propose a novel sparse semantic self-localization approach for robust and efficient indoor
localization. “Sparse semantic” refers to the detection of sparsely distributed objects such as doors
and windows. We use sparse semantic information to self-localize on a human-readable 2D annotated
map in the sensor model. Thus, compared to previous works using point clouds or other dense and
large data structures, our work uses a small amount of sparse semantic information, which efficiently
reduces uncertainty in real-time localization. Unlike complex 3D constructions, the annotated map
required by our method can be easily prepared by marking the approximate centers of the annotated
objects on a 2D map. Our approach is robust to the partial obstruction of views and geometrical
errors on the map. The localization is performed using low-cost lightweight sensors, an inertial
measurement unit and a spherical camera. We conducted experiments to show the feasibility and
robustness of our approach.

Keywords: semantic localization; indoor localization; crude maps

1. Introduction

Self-localization—i.e., obtaining one’s pose information within a map—is necessary to navigate
and interact with the environment. Localization methods have a wide range of applications,
from monitoring robots to facilitating assistance systems. Thus, depending on the system, these
methods face challenges in terms of factors such as achieving acceptable accuracy and robustness as
well as reducing complexity and sensor costs. The outdoor localization issue is mostly solved using GPS.
However, because GPS is not very effective inside buildings, indoor localization remains a challenge.
In the absence of GPS systems, different information sources are required for indoor localization. Radio
frequency ID (RFID) tags, ultrasonic tags and infrared emitters are potentially viable alternatives;
however, these methods require prior installation and modifications to the infrastructure [1–3].

Another option is to exploit already available infrastructure (without modification). Range finders
and cameras are commonly used with simultaneous localization and mapping (SLAM) and Monte
Carlo localization (MCL) for robotics applications. For systems that require high accuracy, weight
and power requirements—and where these can be afforded—dense range scans provided by expensive
sensors, such as LiDARs, can be an optimal choice. However, for small robots or assistance systems
designed to be carried by people, light and inexpensive sensors need to be selected, at the cost of

Sensors 2020, 20, 4128; doi:10.3390/s20154128 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2471-2187
https://orcid.org/0000-0002-5271-1782
https://orcid.org/0000-0003-1280-069X
http://dx.doi.org/10.3390/s20154128
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/15/4128?type=check_update&version=2

Sensors 2020, 20, 4128 2 of 20

their poor performance. Vision-based systems enable the use of lightweight low-cost cameras for
localization.

Visual SLAM (VSLAM) uses visual information to construct the map of an environment while
simultaneously self-localizing within it. Although pose estimates are globally consistent within the
constructed map, there is no guarantee that the results are globally consistent with the real world due
to various factors such as dynamic environments, drifts, scaling and repeated patterns [4]. Globally
consistent and human-readable 2D floor maps already exist for most indoor environments. Thus,
instead of constructing a map of an indoor environment and confronting possible consistency problems,
an already existing indoor map can be used as the source for prior information for the MCL.

A vision-based MCL (VMCL) uses the information obtained from a camera to relate to an a priori
environment map via multi-modal distributions to localize the user globally [5–7]. To make it easier
and more user-friendly to obtain a geometrically accurate map, some methods use already available
blueprints or 2D floor maps as a base to build their feature or point cloud maps; they extrapolate the 2D
maps to 3D and map the image features. Winterhalter et al. [8] constructed a point cloud from RGB-D
distance measurements to match a 2D floor map, which was extrapolated to a 3D map by adding an
extra dimension for the ceiling height under the Manhattan world assumption. Chu et al. [9] replaced
the RGB-D sensor with a smartphone camera and converted a 2D floor plan into 3D piecewise floor
models to match the constructed point clouds, lines and free space.

However, there are some issues with these methods. Neither point clouds nor feature points are
easy to calculate. Furthermore, creating these maps might be difficult and time-consuming. Moreover,
after the careful initial preparation, these maps need to be updated against changes, which might occur
from the replacement of objects. Such scenarios might require the repetition of the initial preparation
process. Therefore, it should be easy for regular users to prepare and update these maps; moreover,
the localization method should be robust to minor map errors.

Another problem facing this approach is that most buildings consist of ceilings, walls and floors,
which are non-descriptive. Furthermore, vision-based systems might fail in cases in which feature
points cannot be computed due to a blocked view caused by the system facing a wall, corner or an object.
To solve the blocked view problem, cameras with a large field of view (FOV) have been used for indoor
localization using different techniques, such as matching 2D lines extracted from a spherical image
to a line descriptor map under the Manhattan world assumption [10] and matching scale-invariant
feature transform (SIFT) features to a built image database [11]. Although these approaches are highly
accurate and can manage possible view blockages, the amount of computation and storage required
for matching large amounts of 3D point clouds or feature points can be too demanding for a small
mobile or portable system with limited resources. Heavy computation and storage problems are
generally caused by the use of distance measurements and feature points, which need to be obtained in
considerable amounts to represent the environment, as observing a single feature point or a 3D point
provides little additional data regarding localization. Conversely, obtaining semantic information from
a single object, such as desks and doors, provides greater information than feature points and has
become easier with the advent of convolutional neural networks (CNNs). Recent improvements in
computer vision have made it possible to obtain human-level semantic information and are being
incorporated into localization systems. The ability to classify objects creates a non-geometric distinction
in the environment, which decreases entropy, even with a small amount of information. Therefore,
it can be used as input to create efficient localization systems that can resolve the aforementioned
problems. In this study, we refer to object classes as semantic information and sparsely distributed
objects in the environment as sparse semantic information. We propose a sparse semantic localization
method with the following features.

• It is based on the idea that semantic information, even in sparse amounts, provides more
information gain, reduces uncertainty more efficiently than other input formats and can be
used directly in the sensor model for efficient localization.

Sensors 2020, 20, 4128 3 of 20

• It uses a large-FOV camera that is robust to the blocked view problem in indoor environments,
where the users generally move close to objects and walls.

• It uses a minimal human-level data representation such that, given a 2D blueprint of the
environment, users can easily prepare annotated maps by simply marking the approximate
object centers on the blueprint. The localization method is robust to possible geometrical errors
arising from approximations and minor mistakes during map preparation.

We used low-cost sensors to achieve a fast, robust and efficient localization system to obtain
a 2D pose (x, y, θ) on a 2D map. We believe such a method would be particularly suitable for small
systems with limited sources. The system overview is shown in Figure 1. We believe it is important
for our system to be robust to the blocked view problem and geometric map errors. Therefore,
to demonstrate the feasibility and robustness of our system, experiments with different FOVs and
geometric map errors have been conducted in real life. The effect of different object classes on the
localization system—and by extension, our system—has also been evaluated. To assess the robustness
of our system against localization failures, pose errors were manually introduced to evaluate the
system behavior in such cases. The performance of the sensor model in a symmetrical environment
was also evaluated.

2D MAP

SPHERICAL

CAMERA

EQUIRECTANGULAR

IMAGE

ANNOTATED

MAP

IMU

CNN
<Object class, bearing>

.
<Object class, bearing>

.

.

MCL 2D POSE

Figure 1. System overview: The proposed localization system using a 2D annotated map, equirectangular
images from a spherical camera and an inertial measurement unit (IMU) carried by the user to
self-localize. Images are processed using a convolutional neural network (CNN) to obtain the object
class and bearing angle to the object center tuple for each object.

2. Related Works

Traditionally, robotic tasks, such as localization and navigation, are performed using geometric
data with geometric maps and feature points with feature maps. Besides these traditional
representations, interactive systems for human–robot cooperation tasks and assistant systems also
need to have the conceptual information of the environment, such as object classes, to be able to
interact with humans and the human world.

Because geometric or feature point maps cannot provide conceptual knowledge regarding
the environment, localization and mapping systems have begun to incorporate a semantic map
in addition to the geometric or feature map [12]. VSLAM methods have begun to use semantic
information with feature points or geometric maps to achieve loop closure [13], map sparsification and
traceability [14] and bundle adjustment [15]; they also have begun to filter outliers to correctly map
dynamic environments [16]. Although these mapping methods can be effective, combining geometric
information or feature points and semantic information requires extra map registration and calibration.
Furthermore, VSLAM methods generally lack global consistency and tend to drift.

Different localization systems with globally consistent prior maps have also started utilizing
semantic information. Atanasov et al. [17] focused on the data association problem and incorporated
semantic observations into the metric optimization via a set-based Bayes filter. Gawel et al. [18]
developed a localization method under different viewpoints through graph extraction from semantic
input and graph matching using graph descriptors. The MCL approaches also have begun to use

Sensors 2020, 20, 4128 4 of 20

semantic information, not only as a single landmark to localize around but also as a sensor model
input. A system with an RGB-D camera was localized in a changing warehouse environment by
combining the beam model using distance and bearing angle measurements and an a priori correlation
table for objects [19]. The measurements were matched to an annotated grid map. Another work
achieved a memory-efficient semantic localization of a car by matching semantic observations to a
semantic feature map, in which each point had a 3D position and an object class, and the effectiveness
of the semantic features and that of the SIFT features for localization were compared. Although the
semantic map occupies three times less space than the SIFT map, the authors still used a very dense
map for matching. Pöschmann et al. [20] converted an annotated 2D floor map into a 3D point cloud
to synthesize images for pixel-wise comparison to real-world panoramic images for localization.
Although the researchers aimed at localization, which they achieved using building structure classes,
their method suffered from a high computational cost and failure concerning the furniture object
classes. Mendez et al. [21] combined beam and likelihood models for semantic localization using an
RGB-D camera, a 2D annotated floor map and a trained CNN performing pixel-wise segmentation
on RGB images. For the likelihood model, a Look-Up Table (LUT) similar to the Chamfer distance
was prepared for each object class. The authors expressed a preference for the combination of beam
and likelihood models because of the smoothness provided by the gradient between the cells in the
likelihood model and avoided possible measurement errors arising from ray casting such as incorrect
measurements of an open door.

Similar to these previous works, we believe in the definition power of semantics and the
effectiveness of working with smaller amounts of semantic information, instead of large point clouds
or feature points, to achieve a localization system with computation and storage. We also believe
in more direct solutions for smaller systems that might lack resources. Instead of using distance
measurements, LUTs or the combination of likelihood and beam models, we propose the use of only a
relative bearing angle to detect the object center and the object class names as sensor inputs; we also
propose that each object class should be treated as a different sensor with different weights for indoor
localization. Unlike many vision-based methods that require a certain overlap between consecutive
frames to match feature points or dense scan methods, our sensor model requires only an approximate
estimate of object centers and object labels. Therefore, it is not dependent on an object’s appearance for
the localization process. The relative bearing angles are calculated from the user to the centers of the
detected object’s bounding boxes. The bounding boxes and the object class names are obtained using
a CNN that detects semantic bounding boxes to achieve real-time results. Because of the use of the
relative bearing angles, we can say that the distribution of the detected object labels from different
classes is used for localization. Although this method might seem similar to the methods using the
relative bearing angle to localize around unique landmarks with known positions [22,23], we did
not attempt to localize around any unique landmark. As a matter of fact, we did not have unique
landmarks or data associations; we had objects from the same or different classes in the environment
whose object class detection and bearing angles to the centers were used as the sensor input for the
localization algorithm. In place of feature descriptors or dense scans, we relied on the distinction
power of the sparse semantic information. Our method required a 2D annotated map, which is a 2D
floor map with annotated objects. For each annotated object, the object class name and object center
location are provided on the map. This human-readable map can be easily prepared by a person who
can simply approximate the object centers’ locations by marking points on a 2D floor map. Because our
method only operates using a small amount of information in an indoor environment, a large FOV
is crucial for robustness against blocked views. Therefore, we used a spherical camera with a 360◦

FOV. Depending on their size and use, the numbers of objects in the environment varied. Furthermore,
the detection performance varied for all the object classes. Therefore, we evaluated our method on
different object groups. To achieve a small, portable, low-cost system, we conducted our experiments
with a person carrying a 360◦ FOV camera and an IMU.

Sensors 2020, 20, 4128 5 of 20

3. Sparse Semantic Localization

3.1. Approach

In this study, the problem of sequentially finding the 2D pose of the user on a 2D annotated
floor map using sparse semantic information to achieve an efficient and robust indoor localization is
addressed. The system overview is shown in Figure 1. The 2D annotated floor map was prepared in
advance. Members of the predetermined object classes (such as windows and doors) were annotated
on the 2D map without a unique ID. For each annotated object, only the 2D pose of the object center
(x, y) and object class name were provided. The map did not convey any information on the physical
appearances of the objects. The system consisted of a camera with a 360◦ FOV and an IMU. As the
user walked, the camera was used to obtain sparse semantic information from the user’s perspective
through a trained CNN. The large FOV was used to obtain information from all directions. The sparse
semantic information and IMU readings were sent to the sparse semantic localization system to update
the user’s pose. In the following few sections, we will explain these steps.

3.2. Sparse Semantic Information

The semantic information must first be obtained from images before it can be used to perform
localization. We only require the object class and relative bearing angle from the user’s perspective
to the object center for each detected object. Because we did not perform image matching and only
required the information listed above, we decided that pixel-wise segmentation and labeling were
unnecessary for our system and thus opted to use a faster solution. YOLOv2 [24] is a real-time CNN
that predicts the bounding boxes and probabilities for each image region, whereas Tiny YOLOv2 is
a smaller model for constrained environments. Because our environment consists of predetermined
objects, Tiny YOLOv2 was ideal for the object detection task. The user carried a spherical camera
with 360◦ FOV to obtain as much information about the environment as possible. The dual fish-eye
images obtained from the spherical camera were converted into equirectangular images to make it
more convenient to train a CNN and calculate the bearing angles to the object centers. Despite the
distortions caused by the spherical camera, the CNN was trained using our equirectangular images
dataset. The object classes chosen for our system were tables, boards, chairs, windows and doors.
The CNN provided the object class and bounding box of each detected object. The relative bearing
angles were calculated based on the bounding box centers.

A representative image can be seen in Figure 2. If the center of the equirectangular image was
the point faced by the user, the bearing angle to an object’s bounding box center was calculated by
first converting the bounding box center pixel number into degrees, dividing the column number of
the bounding box center by the image width and multiplying it by 360. Because the left top point of
the image was the zero-degree point, to shift it to the image center, which was the zero point for the
user, 180◦ was added to the pixels that were on the left side of the centerline of the equirectangular
image. If α was the bearing angle to the center of the object from the reference point faced by the user,
the width was the column number of an equirectangular image, and px was the column number of the
pixel at the center of a bounding box. Then, α was calculated as

α =

{
(px/w)× 360 + 180, if px < w/2

(px/w)× 360− 180, otherwise
(1)

Sensors 2020, 20, 4128 6 of 20

Figure 2. Example for visual input: The camera is held by the user. The middle of the equirectangular
image is considered to be zero. The sample predetermined object class “door” has a detection result in
the bounding box.

3.3. Localization

3.3.1. Sensor Model

The MCL [25] approach was used for localization. MCL—a recursive Bayes filter for estimating
the pose of a user in motion—senses the environment. The Bayes filters estimate the state of a dynamic
system from the sensor measurements while assuming the Markov property of the environment.
The current state’s probability distribution depends only on the previous state. Different sensors,
such as LiDARs, range finders, or cameras, can be used for the MCL. Robots with range finders
generally compare range and bearing angle information to a pre-built distance map. Each particle
in the MCL represents a pose hypothesis and has a weight. The sum of the particles’ weights is one.
As the user moves around and senses the environment, the particles or the pose hypothesis that do not
correlate with the observations are eliminated.

The MCL has three stages: prediction, updating and resampling. MCL, without any prior
information on the pose, generally starts with the uniform distribution of particles. Odometry
information is used in the prediction step to propagate the particles. The prediction step is followed by
an update step, where the propagated particles’ weights are updated proportionally to determine their
degree of correlation with the current observations. Because localization is assumed to be a dynamic
Bayesian network, only the latest sensor measurement and odometry is used. Finally, at the resampling
stage, the particles are resampled based on their weights. Less likely particles are replaced by more
likely ones, and the particles converge toward the user’s location.

In our method, the MCL required an annotated 2D map M that stored the Cartesian coordinates
(x, y) of annotated objects from the different predetermined object classes c, state(x, y, θ) of the user
s, odometry information u and the sensor update Z. The map M was defined as M = {xn, yn, cn}N

n=1,
where N was the number of objects in the map. The sensor measurements Z consisted of the detected
object class c and bearing angle α to the center of the object. The measurement update Z was defined
as Z = {(ck, αk)}K

k=1, where K was the number of objects in each sensor reading.
In the prediction step, all the particles from P(st−1|zt−1, ut−1) were propagated using a motion

model. Afterwards, in the update step, each particle weight was updated according to how well the
current observations matched the map made by a sensor model P(zt|st, M). Finally, a resampling
method was used based on posteriors P(st|zt, ut). The posterior is calculated as follows:

P(st|Zt, ut, M) = P(Zt|st, M)P(st|ut, st−1)P(st−1|Zt−1, ut−1, M) (2)

Sensors 2020, 20, 4128 7 of 20

Generally, measurements are assumed to be conditionally independent of each other given their
location; thus, the product of the likelihood is applied as follows:

P({z1, z2, . . . , zk}|s, M) =
K

∏
k=1

P({z}i,k|s, M) (3)

However, with this approach, the generated posterior distributions often result in overconfident
estimations [26]. In this study, we assumed that there was a dependence within the object classes and
independence across object classes. The sensor model included the class type of the observed object
and the bearing angle to the center of the object on a 2D plane. Objects belonging to the same class
were grouped as Oi = {Zk : ck = ci ∀k}, where C was the number of object classes. The measurement
probabilities were weighted by P(z|s, M)1/size(Oi), the inverse of the number of objects of the same
class present, to prevent the objects present in a larger number from dominating. Our model could be
considered a variant of the general Product of Experts (PoE) proposed in [26], where the total sum of
weights equals the number of classes and the weights for each class are fixed. In our case, it is applied
within the same object class.

If zp and zq were two objects from the same class, we can represent P(zp, zq|s) as P(zp|s)P(zq|zp, s)
or P(zq|s)P(zp|zq, s). Their multiplication would lead to

P(zp, zq|s)2 = P(zp|s)P(zq|s)P(zq|zp, s)P(zp|zq, s) (4)

Based on the assumption of the complete dependence of these two measurements, this equation
would result in

P(zp, zq|s) = P(zp|s)1/2P(zq|s)1/2 (5)

for two measurements, p and q, of the same class. If we generalize this to the K objects at a reading,
we would obtain

P({Oi}|s, M) =
K

∏
k=1

P({O}i,k|s, M)1/k (6)

Applying the PoE model can solve the overconfidence issue by smoothing the joint likelihood.
The assumption of dependency can cause underconfidence. However, in practice, underconfidence
may yield better results than overconfidence. The particle weights were updated based on the
maximum likelihood correspondence [27]. Because the objects in the map and in the sensor data were
not uniquely identified, for each piece of observation data, the most likely map objects were selected
to be true. Introducing semantic information provided distinctions among the objects, especially if the
number of elements in an object class was low. The observations were matched as follows:

P(zk|s, M) = max(P(zk|s, Mn)∀Mn ∈ M|Mn
c = zk

c) (7)

3.3.2. Motion

In the prediction step of MCL, odometry information is required. Robots generally estimate
their motion using various devices such as wheel encoders. To estimate the odometry for people,
the IMU and visual odometry are among the feasible solutions. In our method, the camera carried
by the user was a spherical camera. Although visual odometry methods have been developed for
spherical cameras, they are limited compared to those employed for monocular cameras. Furthermore,
they seem to have the tendency to lose the estimated visual features in plain environments dominated
by white walls [28,29]. The motion of the user can also be calculated using an inexpensive and
lightweight IMU. However, it is almost impossible to use the IMU data alone, because they suffer
from noise, accumulating error and drift. To cope with these problems, a low-pass filter was coupled
with a median filter to reduce the noise of the accelerometer. To reduce the error of the yaw angle,
a complementary filter was used to integrate the accelerometer and gyroscope data [30].

Sensors 2020, 20, 4128 8 of 20

4. Experiments

4.1. Environment

The environment we chose for the room-level experiment was a classroom with a board, tables,
chairs, windows, pictures and a door. A 2D annotated map was required for our method. This map was
prepared before the experiment using ArUco markers to represent the objects and ArUco SLAM. ArUco
markers are binary square fiducial markers for fast and straightforward camera pose estimation [31].
Each object and room corner was assigned a marker with a unique ID. The marker arrangement can
be seen in Figure 3a. In the last experiment, two rooms with the same object classes and a corridor
were used. The experimental setting can be seen in Figure 4. The annotated map was created manually
without any sensor measurement.

(a) Environment 1 (b) User
with the rig

Figure 3. Room-Level Experiment Setting. (a) Experiment environment with ArUco markers. ArUco
markers are placed on objects to annotate the 2D map. Extra markers are put on the floor to ensure
continuity during marker capture for map creation. (b) User with experiment equipment, including
a rig to hold the sensors required to capture sensor data for the experiment and ground truth for
validation. The rig consists of a Ricoh Theta V camera, Sparkfun Razor inertial measurement unit
(IMU) for system input and a Hokuyo range finder to construct the ground truth.

4.2. Ground Truth

The use of motion trackers is one of the possible methods to obtain the ground truth. However,
they constrain the user’s motion in further experiments. Therefore, we preferred to use a Hokuyo
range finder with a cartographer [32]. The user carried the range finder during the experiment.
The cartographer used the IMU, which was carried by the walking user for motion information. Then,
the trajectory was extracted for use as the ground truth. According to [33], in which trajectories in an
indoor office environment were compared, the cartographer had an error rate of up to 0.017± 0.021 m,
which is a sufficient level of accuracy for our task.

4.3. Sensors

For the vision module, a Ricoh Theta V camera was used to record images. It was used with a
Tiny YOLOv2 trained on our equirectangular images for six object classes (door, window, table, laptop,
chair, and board). For motion, Sparkfun 9DOF Razor IMU M0-SEN-14001 was used. The IMU was set
up to face the same direction as the user. The camera was also placed such as to ensure the center of an
equirectangular image was where the user faced. To obtain the ground truth, a rig was used to connect

Sensors 2020, 20, 4128 9 of 20

those three sensors (IMU and camera for the sensor model, and range finder for the ground truth) to
the same frame. The rig is shown in Figure 3b.

4.4. Experimental Setting

We conducted different experiments to evaluate our sensor model both in a simulation and the
real world. The experiments in the Unity simulation are detailed in our previous work [34]. In this
section, we will focus on our experiments in the real world.

The room-level experiment’s 2D annotated map was created using ArUco markers and
mapping [31]. The object information was obtained from the videos of the Ricoh Theta V camera
carried by the user during the experiment. These images were first converted to equirectangular
images offline. The objects of the predetermined object classes were detected in real-time using a
Tiny YOLOv2 node. After the objects were detected, their bearing angles to the object centers were
calculated. Then, the class name and bearing angle information were sent to the MCL node for
localization. The IMU data were filtered before they were sent to the MCL. The experiments were
conducted using 500 particles that were initialized randomly. The ground truth for the user trajectory
was collected during the experiment. The ground truth trajectory points were matched with the
poses that were calculated according to the timestamps of the IMU. The trajectory was surrounded
by different types of objects. The length of the trajectory was 30.5 m. The semantic information in
the experiment environment consisted of one door, four windows, one board, five tables, ten chairs,
four laptops and several frames on the wall. All the objects, excluding the frames and laptops, were
included in the 2D annotated map. For each experiment type, the compared perception models were
run 30 times in parallel. The average result is shown in the tables and figures. In all tables, the result
shown is the root mean squared error (RMSE) calculation after convergence.

In the experiments, a human—instead of a robot—was localized. The user walked in the
environment at different speeds. The change in the speed affected the drift of the IMU data and
caused motion blur in some images, especially at the corners. For the majority of the time, the user
walked between objects and a wall while facing another room wall or a corner, resulting in a partially
blocked view. Although a camera with a 360◦ FOV was used in the experiments, it should be noted that
a part of the image was consistently blocked by the user. Approximately 60◦ (between 180◦ and 240◦)
was blocked by the user at each frame. Therefore, the results from the experiments using a perception
model with a 360◦ FOV were from a lower FOV. As mentioned earlier, the localization system was
evaluated according to its constraints. We conducted two types of experiments. First, to evaluate the
robustness to the partial view obstruction caused by the user walking close to the walls and large
objects in an indoor environment, experiments with 120◦, 180◦ and 360◦ FOVs were compared for
a trajectory with which the user walked close to the wall and objects. To evaluate the robustness of
all the sensor models to map errors, their performance was evaluated using annotated maps with
a different range of annotation errors. Second, to evaluate the effect and significance of the object
class groups, which varied in terms of number and detection performance, perception models using
different object groups were evaluated. In the third experiment, the system behavior on the same
trajectory was evaluated in the presence of sensor error. In the last experiment, the performance of the
system was evaluated for two similar rooms and a corridor. The experiment setting can be seen in
Figure 4. In this experiment, chairs were not included in the annotations, and the 2D map annotations
were made manually without ArUco markers or any measurement.

Sensors 2020, 20, 4128 10 of 20

(a) Room 1 (b) Room 2

(c) Corridor

Figure 4. Symmetrical environment experiment setting. (a) Starting room, (b) final room, (c) connecting
corridor.

4.5. Results

4.5.1. Robustness to Crude Maps and Partial View Blockages

The FOVs of the perception models used in the experiment were 120◦, 180◦ and 360◦. They were
calculated by taking the middle of the image as the zero points and positioning half of the desired FOV
on the right and left sides of the images. The object classes used by the sensor model were the door,
board, window, table and chair. Noise was added to the annotated objects on the 2D annotated map
with standard deviations of σ = 0.0, σ = 0.1, σ = 0.3, σ = 0.5, σ = 0.7 and σ = 1.0 on the x and y-axis.
In Figure 5, the trajectories and RMSE of the sensor models with a 120◦ FOV, 180◦ FOV and 360◦ FOV
are shown, respectively. In Figure 5a,c,e, the location of the object centers in the office (tables, windows,
door, etc.) are indicated using markers in different colors. Table 1 shows the total localization error
after the convergence point at timestep 50.

Table 1. Localization error: Sensor models with different FOVs (120◦, 180◦, 360◦) and different object
groups (W: windows, D: door, B: board, All: window, door, board, tables and chairs).

Localization Error

Map Noise 120◦ FOV 180◦ FOV 360◦ FOV

σ Error [m] Error [rad] Error [m] Error [rad] Error [m] Error [rad]

0 0.62 ± 0.22 0.24 ± 0.22 0.49 ± 0.20 0.23 ± 0.23 0.36 ± 0.15 0.21 ± 0.24

0.1 0.67 ± 0.23 0.24 ± 0.22 0.47 ± 0.17 0.23 ± 0.22 0.38 ± 0.14 0.21 ± 0.24

0.3 0.72 ± 0.22 0.25 ± 0.22 0.52 ± 0.17 0.23 ± 0.23 0.45 ± 0.13 0.21 ± 0.23

0.5 0.87 ± 0.18 0.28 ± 0.20 0.66 ± 0.14 0.26 ± 0.22 0.67 ± 0.12 0.24 ± 0.21

0.7 1.05 ± 0.17 0.32 ± 0.19 0.83 ± 0.13 0.28 ± 0.19 0.74 ± 0.12 0.26 ± 0.21

1 1.32 ± 0.14 0.36 ± 0.18 1.09 ± 0.14 0.33 ± 0.18 1.21 ± 0.18 0.27 ± 0.21

As can be seen from Table 1, the worst performance was yielded by the perception model with
a 120◦ FOV with 0.62± 0.22 m and 0.24± 0.22 rad errors, whereas the perception model with a 360◦

FOV had the best performance among the perception models, with 0.36± 0.15 m and 0.21± 0.24 rad

Sensors 2020, 20, 4128 11 of 20

errors. As the FOV increased, the accuracy improved. The FOV also affected the convergence speed.
A larger FOV corresponded to faster convergence. As expected, walking towards corners and turning
were challenging for the localization system. Although a large FOV made the system robust to the
blocked view problem, the sensor model with a 120◦ FOV was affected, as is visible in Figure 5a.
Adding generated noise with the given standard deviations increased the error, but the localization
mostly proved to be robust to noise and approximations. Overall, the sensor model with a 360◦ FOV
had smoother trajectories compared to the other sensor models.

(a) 120◦ field of view (FOV)
Trajectory

(b) 120◦ FOV Error

(c) 180◦ FOV Trajectory (d) 180◦ FOV Error

(e) 360◦ FOV Trajectory (f) 360◦ FOV Error

Figure 5. Trajectories and errors of sensor models with a 120◦, 180◦ and 360◦ FOV. Figures (a,c,e) show
the generated trajectory on maps with a noise of σ = 0 (blue), σ = 0.1(green), σ = 0.3 (red), σ = 0.5
(turquoise), σ = 0.7 (magenta) and σ = 1 (yellow). The ground truth is shown in black. Figures (b,d,f)
show the localization errors of corresponding trajectories.

Sensors 2020, 20, 4128 12 of 20

4.5.2. Robustness to Different Object Classes

To evaluate the effect of different object classes in the environment, we performed experiments
with perception models using different classes of detected objects in sensor updates. All the perception
models used a 360◦ FOV. In this experiment, the annotated map was noise-free. The first sensor
model used only the window and door; the second model only considered the window (W), door (D),
and board (B); and the third considered the table (T) in addition to the objects used in the second model.
The fourth sensor model used the door, window, board, table and chair (C) object classes. These sensor
models are represented with blue, green, red and turquoise, respectively, in Figure 6. The ground
truth is shown in black. The average trajectories of the perception models are shown in Figure 6a.
The objects in the environment are indicated with markers. The RMSE of the perception models is
presented in Figure 6b, from the initialization time and in Table 2 after timestep 50. As shown in Table 2,
the sensor models using the largest number of object classes yielded better results, with 0.38± 0.16 m
and 0.21± 0.25, whereas the one that used the window and door classes yielded the worst result,
with 0.68± 0.30 m and 0.24± 0.29 rad errors. Unlike the chair class, including the board and tables
improved the result significantly.

(a) Trajectory (b) Error

(c) Trajectory (d) Error

Figure 6. Trajectories and errors of sensor models using different object classes. Sensor models
used different combinations of W (window), D (door), B (board), T (table) and C (chair) object
classes. Subfigures (a,b) show the trajectory and errors of the sensor model using different object
class combinations, respectively. Subfigures (c,d) show the trajectory and errors corresponding to the
sensor model using the ground truth for object detections.

To better assess the effect of each object class, we conducted an experiment in which, instead
of Tiny YOLov2 detections, the bearing angles to the object centers were calculated from the ground
truth positions obtained using the cartographer to obtain the true locations of the annotated objects

Sensors 2020, 20, 4128 13 of 20

on the annotated map. Additional data associations, such as object matching and observation IDs,
were not considered. The trajectories and errors are presented in Figure 6c,d. As shown in Table 2,
the sensor model that used the window and door classes yielded the worst result, with 0.40± 0.18
m and 0.04± 0.08 rad errors; the best results were yielded by the sensor model that considered the
window, door, board and table object classes, with 0.21± 0.14 m and 0.03± 0.07 rad errors. As in the
previous experiment, including the chair did not affect the result significantly.

Table 2. Localization error of perception models using different object classes: W: windows, D: door, B:
board, All: window, door, board, tables and chairs.

Localization Error of Different Object Classes

Perception Models W+D W+D+B W+D+B+T W+D+B+T+C

Error (Tiny YOLO) [m] 0.68 ± 0.30 0.50 ± 0.19 0.38 ± 0.16 0.37 ± 0.15

Error (Tiny YOLO) [rad] 0.24 ± 0.29 0.21 ± 0.25 0.21 ± 0.25 0.21 ± 0.25

Error (Annotations) [m] 0.40 ± 0.18 0.26 ± 0.16 0.21 ± 0.14 0.22 ± 0.15

Error (Annotations) [rad] 0.04 ± 0.08 0.04 ± 0.08 0.03 ± 0.07 0.04 ± 0.07

4.5.3. Relocalization

To evaluate the system behavior in the presence of sensor errors, we conducted an experiment in
which the system was introduced to a sudden jump in its position. Three positions on the trajectory
was selected. At each position—3 m, 5 m or 7 m—errors were manually introduced to a different
particle filter separately, meaning that the recovery at each position at different range of error could
be observed. The localization errors, shown in Table 3, were calculated when the system converged
(at 200 s for the first and the second jump position, and after 220 s for the third jump position).

Table 3. Localization error: Sensor model errors that had a jump in their position at three different
timesteps in three different ranges.

Localization Error After Jump in Position

1st Position 2nd Position 3rd Position

Range Error [m] Error [rad] Error [m] Error [rad] Error [m] Error [rad]

3 m 0.37 ± 0.14 0.12 ± 0.11 0.38 ± 0.14 0.12 ± 0.11 0.39 ± 0.13 0.12 ± 0.11

5 m 0.36 ± 0.14 0.12 ± 0.11 0.43 ± 0.13 0.12 ± 0.11 0.56 ± 0.14 0.12 ± 0.10

7 m 0.37 ± 0.13 0.12 ± 0.11 0.41 ± 0.13 0.12 ± 0.11 0.53 ± 0.17 0.13 ± 0.10

The first localization error was introduced at a location at which the system had a good view
of the room. After the jumps in the position, the particles were still close to the objects; therefore,
the system managed to recover. The trajectories and errors for this case are shown in Figure 7a,b.

The second localization error was introduced at a location close to a room border. When
introducing localization errors at 5 m and 7 m, the particles ended up being far behind the objects.
In this experiment, we assumed this situation was a recovery case in a large room, where the objects are
on the far left and concentrated on a single side. The trajectories and errors for this case are shown in
Figure 7c,d. Although relocalization took longer than in the previous case, the system still converged
to the correct trajectory. However, it should be noted that the system waited for half of the time
between timesteps 100 and 150. Therefore, this situation affected the correction speed. The system
could relocate itself on the trajectory with the same performance after a 3 m jump; however, the error
increased for the cases of 5 m and 7 m. The errors in these cases increased to 0.43 ± 0.13 m with
0.12 ± 0.11 rad, and 0.41 ± 0.13 m with 0.12 ± 0.10 rad on average, respectively.

Sensors 2020, 20, 4128 14 of 20

The third localization error was also introduced at a location close to a border. Therefore, it also
experienced the same challenges as the second experiment. In addition, the door was blocked by the
user, and the board could not be reliably detected due to the user’s proximity to it. The trajectories and
errors for these cases are shown in Figure 7e,f. After the 3 m jump, the average localization error was
0.39 ± 0.13 m with 0.12 ± 0.11 rad, whereas the error increased to 0.56 ± 0.14 m with 0.12 ± 0.10 rad
after the 5 m jump, and 0.53 ± 0.17 m 0.13 ± 0.10 rad after the 7 m jump.

(a) Trajectory (b) Error

(c) Trajectory (d) Error

(e) Trajectory (f) Error

Figure 7. Sensor error: jump. Sensor models were exposed to 3 m, 5 m and 7 m jumps at three different
timesteps. Subfigures (a,b) belong to the first jump. Subfigures (c,d) show the second jump. Subfigures
(e,f) show the third jump.

4.5.4. Symmetric Rooms

An experiment with two similar rooms and a corridor was conducted to evaluate the performance
of our approach in a large scenario. The object classes used in this experiment were the window, door,

Sensors 2020, 20, 4128 15 of 20

board and table. Both rooms had objects from the board, door, window and table classes; the corridor
had only objects from the door class. Doors were located on both sides of the corridor, with one at
the end. As the subject walked in the corridor, the lowests number of objects visible to the camera
was three. In this experiment, annotations were made without measurement or ArUco markers
but by marking down the approximate object centers on the 2D map by looking at the photos of the
environment. The object distribution was similar in both rooms, except that one room had an extra
door and the other had two extra tables. Random global initialization was used to start the system.
The particles were compared to the annotated objects that were at a maximum of 6 meters distance
from them. If no window, table or board objects were detected, it was assumed that the system was
located in the corridor. The biggest challenge in this experiment was whether the system identified the
correct room. When the object weights were set as the inverse of the total number of objects in either
room, the sensor model often confused the starting room. Considering the almost exact distributions
of the two halves of the environment, except for two tables and a door, this situation was expected.
To solve this, we prioritized the table class by setting its weight to 1, and that of the other object classes
as the inverse of its instances in one of the rooms. Using these weights for all 30 runs, the sensor
model correctly converged to the correct starting room. The trajectory is shown in Figure 8a, and errors
are shown in Figure 8b. The trajectory in Figure 8a was drawn once the system converged, and the
errors in Figure 8b are shown from the start. In Table 4, the root-mean-square error (RSME) is given.
The average error was 0.38± 0.17 m and 0.17± 0.13 rad. This experiment emphasized the importance
of learning the object class weights based on the environment.

Table 4. Localization error: symmetric rooms.

Localization Error: Symmetric Rooms

Sensor Model 360◦ FOV with W+D+B+T

Error [m] 0.38 ± 0.17

Error [rad] 0.17 ± 0.13

(a) 360◦ FOV Trajectory (b) 360◦ FOV Error

Figure 8. Trajectory and error for experiment in two rooms and corridor. Figure (a) shows the generated
trajectory after convergence. (b) shows the error from initialization time. The ground truth is shown
in black.

4.5.5. Efficiency

Although our method required a 2D floor map, in the update step of the localization method,
the observations were compared using annotated objects represented only by their object centers
(x, y) and object class names. During the localization process, the amount of information used at
the update step was approximately 29 times smaller in our model than the range information when
other methods, such as cartography, were used. The input to our sensor model was measured to

Sensors 2020, 20, 4128 16 of 20

be approximately 301 bytes, whereas the range readings were 8742 bytes per scan. On a machine
equipped with an Intel Core i7-8700 CPU (3.20 GHz × 12) and a Geforce GTX 1070 GPU, the Tiny
YOLOv2 node took 0.0117 s and the MCL node took 0.0165s. The performance of the MCL mostly
depended on the particle number. We did not expect a great change in its performance in a lower
system. However, the performance of the Tiny YOLOv2 is subject to the GPU power; therefore,
we believe the bottleneck of our approach is the Tiny YOLOv2. Our system cannot be categorized as
a system with limited resources. For this category, the Nvidia Jetson Nano is an ideal and popular
option. Tiny YOLOv3 is a comparable CNN to Tiny YOLOv2 and has a frame rate of 25 fps on Jetson
Nano according to the Jetson Nano benchmark (Jetson Nano: Deep Learning Inference Benchmarks,
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks). Thus, we believe
that it should be possible to obtain a reasonable result using a smaller system.

5. Discussion and Conclusions

In this paper, we presented a straightforward and efficient localization system that uses a small
amount of sensor input to localize the user on a 2D map; the system is robust to a partial blockage
of view and does not require highly accurate maps. Partially blocked views are a common problem
in vision-based methods for localization indoors, because rooms mostly consist of white walls and
corners, which are textureless. Therefore, a camera pointing at them cannot retrieve much information.
A solution is to use a spherical camera, which can capture data from all directions. Therefore, even when
the user walks beside one wall while facing another wall, the camera can capture useful information
from the non-blocked sides. Robustness against errors in maps is a highly desirable characteristic,
as it lowers the burden during map creation. If the localization method can work on approximately
accurate maps, then regular users can create and update maps by hand, without sensors or complicated
procedures. To evaluate the robustness of the proposed sensor model against partial blockage of views
and map noise, we compared its performance using different FOVs for self-localization on a map with
varying noise levels. Our experiments showed that a large FOV was crucial for accuracy, convergence
speed and robustness against blocked views and map noise.

Our method is effective for with different object classes, which have different effects on the
localization result, depending on their different shapes, numbers and sizes. To evaluate the impact
of different object classes, sensor models using different object classes were compared in two tests.
The first test detected objects using Tiny YOLOv2. Therefore, the detection errors for each class also
played a role in the outputs. The second test replaced Tiny YOLOv2 with the annotations from the 2D
map directly. Thus, they were not affected by the Tiny YOLOv2 errors. The object classes considered
by the sensor models ranged from only a few classes, such as windows and doors, to all object classes.
Other than the effect of the different classes, these experiments showed that a significant portion of the
localization errors was caused by detection errors. Here, we include our observations for the different
object classes.

Doors are an essential part of any building. Except in corridors, they do not exist in large numbers,
which reduces the entropy in poses when they are observed. However, as most rooms in a building
have doors in similar locations, they are not effective at reducing uncertainty in larger experiments.
In the first two experiments, between 160–190 s, when the user was walking in front of the board,
the door was blocked by the user, which affected the system and created peaks in the trajectory error,
as shown in Figure 6a, which also shows the trajectory when only the door and window classes were
used. Other than in this case, the doors were visible during a large part of the trajectory and remained
sufficiently large to be detected, even when the user walked far away from the doors. Therefore,
we concluded that the door was a very reliable class that could have a large effect on the localization
performance. Furthermore, in the corridor, the doors were the only visible objects, making them
essential. Owing to the large FOV, although the corridor was not very wide, at least three doors were
visible at all times, enabling localization.

https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks

Sensors 2020, 20, 4128 17 of 20

Similar to the door class, the window class is part of the construction of the building. Therefore,
it is a common object and an important class. In our experiment, the windows were located on the same
wall, with a small distance between them. They all had light-gray blinds. Therefore, they were not very
easy to detect in equirectangular images. As previously mentioned, during the second experiment,
there was a noticeable increase in the localization error for the models using only the window and door
classes between 160–190s. During this time, the door was blocked by the user, making the windows the
only detected objects. As can be seen, the windows alone were not sufficient to keep the localization
errors minimal.

The board class is generally large, and boards are found in small numbers, especially in classroom
environments. Therefore, this class was easy to detect and match most of the time and very useful for
efficiently reducing uncertainty. However, the board in the environment was wide, and when the user
walked in front of it between 150–190s, the system suffered from bounding box jitter due to the partial
detection in equirectangular images. The error is visible in Figure 6b for the sensor model using the
window, door and object classes. Unlike the door class, the board class was only reliable from a certain
distance. Despite this problem, its inclusion in the second experiment increased accuracy significantly.

In our experiment environment, there were many tables compared to the numbers of objects in
other classes. Because they were sufficiently large, they were detected most of the time; however,
they were not detected as reliably as the previously mentioned object classes. Because they existed in a
large number in a symmetrical environment, there was also a data association problem, which became
more difficult to handle with incorrect detection. At some locations, two tables had the appearance of
a single object. The table class was also more affected by motion blur compared to the other object
classes. This situation probably occurred due to the similar color of the tables and the ground in
our experiment environment and the difficulty of distinguishing individual tables. In the second
experiment, including the table class increased the accuracy significantly for the sensor model using
the Tiny YOLOv2 detections. The previously mentioned bounding box jitter of the board, mismatch of
the windows and partial blockage of the door problems were mostly compensated by the inclusion of
the table class. In the third experiment, giving more weight to the tables broke the symmetry for the
system. Unlike doors, windows, and boards, which are distributed more symmetrically, table locations
varied more. We believe that, along with the window class, if we can correctly estimate when and
where detection was more likely to fail, the addition of this class can increase the system performance
considerably. However, this is left for future work.

There were many chairs in the experiment setting. Owing to their small size and position behind
tables, they were more difficult to detect compared to the previously mentioned object classes. In many
frames, they were misclassified as laptops or were not detected at all. The accuracy of our system was
not improved by this class. We did not examine any relations between the object classes. However,
the table and chair classes are closely related; they often almost always coexist. We leave it for future
work to define these relations to take advantage of this class.

A localization system is prone to sensor failures in general. To test the robustness of our method
against localization errors, we conducted a small experiment to see how well the system could recover
from a sudden localization error. We selected three positions on our map and introduced 3 m, 5 m
and 7 m localization errors at each position to see how well the system could recover from these.
The results showed that, in the presence of surrounding objects, the system could successfully recover
from these errors. However, it was more difficult to fully recover from large errors as the particles
were pushed to a place in which the objects were concentrated on a single side.

To understand the system behavior, the previous experiments were conducted at the room level.
However, we believe our system could also be of use in larger environments. Localization in a large
environment introduces new challenges. The biggest challenge is to break symmetries and identify the
correct room. If there is an object class which uniquely exists in a particular room, identification would
be easy; however, in most buildings, rooms are almost identical and consist of the same object classes.
In such a case, identification is nontrivial. To assess our system’s performance in such environments,

Sensors 2020, 20, 4128 18 of 20

we conducted an experiment on two almost identical rooms connected by a corridor. Furthermore,
to validate our claim that our system did not require highly accurate annotated maps, we used a
map that was annotated manually. There were very few differences between both rooms: one had
two extra tables, and the other had one extra door. Setting the initial weights of the classes based on
the number of object class members in each room often caused the system to misidentify the room.
However, giving more weight to the classes that broke the symmetry in the environment enabled the
system to identify the correct room. This shows the importance of learning weights according to the
characteristics of the environment as a whole, rather than of individual rooms. Learning the adequate
weights in this context is left for future work.

In addition to setting the object class relations and learning weights, more object classes, such as
walls and corners, could be included to ensure sensor measurements in all indoor environments. One of
our aims was to create a human-friendly localization system. Therefore, our localization algorithm
works with a 2D annotated map, which can be obtained by marking approximate object centers on a
blueprint by any person. MCL for human-friendly maps has been researched on a hand-drawn map
in [21,35]. Unlike these methods, we only assumed human involvement in marking object centers on
an already available 2D map and measured the performance in the real world by increasing the map
noise for annotated objects systematically.

In this work, a robust and efficient sparse semantic indoor localization method using a
human-readable map was achieved. Our approach relied on the distinction power of semantic
information and used sparse semantic information for efficient indoor localization. It was proven to be
robust to partial view blockage and maps with noise through experiments conducted using lightweight
and low-cost sensors. Users can easily prepare the required annotated map using human-level
information. Thus, we believe this localization system is particularly suitable for small indoor systems
with limited resources.

Author Contributions: For research articles with several authors, conceptualization, I.U., R.M., S.P., A.M., A.Y.,
H.A.; methodology, R.M., I.U., S.P.; software, I.U.; experiments, I.U., R.M., S.P., writing—review and editing, A.Y.,
R.M., S.P., I.U.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MCL Monte Carlo Localization
IMU Inertial Measurement Unit
FOV Field of View

References

1. López-de Ipiña, D.; Lorido, T.; López, U. Indoor Navigation and Product Recognition for Blind People
Assisted Shopping. In International Workshop on Ambient Assisted Living; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 33–40.

2. Wang, J.; Takahashi, Y. Indoor Mobile Robot Self-Localization Based on a Low-Cost Light System with a
Novel Emitter Arrangement. ROBOMECH J. 2018, 5, 17. [CrossRef]

3. Yayan, U.; Yucel, H.; Yazici, A. A Low Cost Ultrasonic Based Positioning System for the Indoor Navigation
of Mobile Robots. J. Intell. Robot. Syst. 2015, 78, 541–552. [CrossRef]

4. Chen, Y.; Zhou, Y.; Lv, Q.; Deveerasetty, K.K. A Review of V-SLAM*. In Proceedings of the 2018 IEEE
International Conference on Information and Automation (ICIA), Wuyishan, China, 11–13 August 2018;
pp. 603–608.

http://dx.doi.org/10.1186/s40648-018-0114-x
http://dx.doi.org/10.1007/s10846-014-0060-7

Sensors 2020, 20, 4128 19 of 20

5. Gil, A.; Reinoso, Ó.; Vicente, A.; Fernández, C.; Payá, L. Monte Carlo Localization Using SIFT Features.
In Pattern Recognition and Image Analysis; Marques, J.S., Pérez de la Blanca, N., Pina, P., Eds.; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 623–630.

6. Menegatti, E.; Pretto, A.; Pagello, E. A New Omnidirectional Vision Sensor for Monte-Carlo Localization.
In Robot Soccer World Cup; Springer: Berlin/Heidelberg, Germany, 2004; pp. 97–109.

7. Gross, H.; Koenig, A.; Boehme, H.; Schroeter, C. Vision-based Monte Carlo Self-Localization for a Mobile
Service Robot Acting as Shopping Assistant in a Home Store. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002;
Volume 1, pp. 256–262.

8. Winterhalter, W.; Fleckenstein, F.; Steder, B.; Spinello, L.; Burgard, W. Accurate Indoor Localization for
RGB-D Smartphones and Tablets Given 2D Floor Plans. In Proceedings of the 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015;
pp. 3138–3143. [CrossRef]

9. Chu, H.; Ki Kim, D.; Chen, T. You Are Here: Mimicking the Human Thinking Process in Reading Floor-Plans.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 2210–2218.

10. Goto, T.; Pathak, S.; Ji, Y.; Fujii, H.; Yamashita, A.; Asama, H. Line-Based Global Localization of a Spherical
Camera in Manhattan Worlds. In Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2296–2303.

11. Andreasson, H.; Treptow, A.; Duckett, T. Localization for Mobile Robots Using Panoramic Vision, Local
Features and Particle Filter. In Proceedings of the IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 18–22 April 2005; pp. 3348–3353.

12. Nüchter, A.; Hertzberg, J. Towards Semantic Maps for Mobile Robots. Robot. Auton. Syst. 2008, 56, 915–926.
[CrossRef]

13. Salas-Moreno, R.F.; Newcombe, R.A.; Strasdat, H.; Kelly, P.H.; Davison, A.J. Slam++: Simultaneous
Localisation and Mapping at the Level of Objects. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1352–1359.

14. Schneider, T.; Dymczyk, M.; Fehr, M.; Egger, K.; Lynen, S.; Gilitschenski, I.; Siegwart, R. Maplab: An Open
Framework for Research in Visual-Inertial Mapping and Localization. IEEE Robot. Autom. Lett. 2018, 3,
1418–1425. [CrossRef]

15. Fioraio, N.; Di Stefano, L. Joint Detection, Tracking and Mapping by Semantic Bundle Adjustment.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA,
23–28 June 2013; pp. 1538–1545.

16. Yu, C.; Liu, Z.; Liu, X.J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual Slam Towards
Dynamic Environments. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1168–1174.

17. Atanasov, N.; Zhu, M.; Daniilidis, K.; Pappas, G.J. Semantic Localization Via the Matrix Permanent.
In Proceedings of the Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014; Volume 2.

18. Gawel, A.; Del Don, C.; Siegwart, R.; Nieto, J.; Cadena, C. X-View: Graph-Based Semantic Multi-View
Localization. IEEE Robot. Autom. Lett. 2018, 3, 1687–1694. [CrossRef]

19. Himstedt, M.; Maehle, E. Semantic Monte-Carlo Localization in Changing Environments Using RGB-D
Cameras. In Proceedings of the 2017 European Conference on Mobile Robots (ECMR), Paris, France,
6–8 September 2017; pp. 1–8. [CrossRef]

20. Pöschmann, J.; Neubert, P.; Schubert, S.; Protzel, P. Synthesized Semantic Views for Mobile Robot Localization.
In Proceedings of the 2017 European Conference on Mobile Robots (ECMR), Paris, France, 6–8 September
2017; pp. 1–6. [CrossRef]

21. Mendez, O.; Hadfield, S.; Pugeault, N.; Bowden, R. SeDAR: Reading Floorplans Like a Human—Using Deep
Learning to Enable Human-Inspired Localisation. Int. J. Comput. Vis. 2020, 128, 1286–1310. [CrossRef]

22. Jüngel, M.; Risler, M. Self-localization Using Odometry and Horizontal Bearings to Landmarks.
In RoboCup 2007: Robot Soccer World Cup XI; Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 393–400.

http://dx.doi.org/10.1109/IROS.2015.7353811
http://dx.doi.org/10.1016/j.robot.2008.08.001
http://dx.doi.org/10.1109/LRA.2018.2800113
http://dx.doi.org/10.1109/LRA.2018.2801879
http://dx.doi.org/10.1109/ECMR.2017.8098711
http://dx.doi.org/10.1109/ECMR.2017.8098662
http://dx.doi.org/10.1007/s11263-019-01239-4

Sensors 2020, 20, 4128 20 of 20

23. Stroupe, A.W.; Balch, T. Collaborative Probabilistic Constraint-based Landmark Localization. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland,
30 September–4 October 2002; Volume 1, pp. 447–453. [CrossRef]

24. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

25. Dellaert, F.; Fox, D.; Burgard, W.; Thrun, S. Monte Carlo Localization for Mobile Robots. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), Detroit, MI, USA, USA, 10–15 May
1999; Volume 2, pp. 1322–1328.

26. Miyagusuku, R.; Yamashita, A.; Asama, H. Data Information Fusion From Multiple Access Points for
WiFi-Based Self-localization. IEEE Robot. Autom. Lett. 2019, 4, 269–276. [CrossRef]

27. Miyagusuku, R.; Yamashita, A.; Asama, H. Improving Gaussian Processes Based Mapping of Wireless
Signals Using Path Loss Models. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, South Korea, 9–14 October 2016; pp. 4610–4615.

28. He, M.; Zhu, C.; Huang, Q.; Ren, B.; Liu, J. A Review of Monocular Visual Odometry. Vis. Comput. 2020, 36,
1053–1065. [CrossRef]

29. Yang, N.; Wang, R.; Gao, X.; Cremers, D. Challenges in Monocular Visual Odometry: Photometric Calibration,
Motion Bias, and Rolling Shutter Effect. IEEE Robot. Autom. Lett. 2018, 3, 2878–2885. [CrossRef]

30. Valenti, R.G.; Dryanovski, I.; Xiao, J. Keeping a Good Attitude: A Quaternion-based Orientation Filter for
IMUs and MARGs. Sensors 2015, 15, 19302–19330. [CrossRef] [PubMed]

31. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.; Marín-Jiménez, M. Automatic Generation and
Detection of Highly Reliable Fiducial Markers Under Occlusion. Pattern Recognit. 2014, 47, 2280–2292.
[CrossRef]

32. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-Time Loop Closure in 2D LIDAR SLAM. In Proceedings of
the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21
May 2016; pp. 1271–1278.

33. Filipenko, M.; Afanasyev, I. Comparison of Various Slam systems for Mobile Robot in an Indoor Environment.
In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27
September 2018; pp. 400–407.

34. Uygur, I.; Miyagusuku, R.; Pathak, S.; Moro, A.; Yamashita, A.; Asama, H. A Framework for Bearing-Only
Sparse Semantic Self-Localization for Visually Impaired People. In Proceedings of the 2019 IEEE/SICE
International Symposium on System Integration (SII), Paris, France, 14–16 January 2019; pp. 319–324.

35. Behzadian, B.; Agarwal, P.; Burgard, W.; Tipaldi, G.D. Monte Carlo Localization in Hand-Drawn Maps.
In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 4291–4296. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/IRDS.2002.1041431
http://dx.doi.org/10.1109/LRA.2018.2885583
http://dx.doi.org/10.1007/s00371-019-01714-6
http://dx.doi.org/10.1109/LRA.2018.2846813
http://dx.doi.org/10.3390/s150819302
http://www.ncbi.nlm.nih.gov/pubmed/26258778
http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/10.1109/IROS.2015.7353985
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Sparse Semantic Localization
	Approach
	Sparse Semantic Information
	Localization
	Sensor Model
	Motion

	Experiments
	Environment
	Ground Truth
	Sensors
	Experimental Setting
	Results
	Robustness to Crude Maps and Partial View Blockages
	Robustness to Different Object Classes
	Relocalization
	Symmetric Rooms
	Efficiency

	Discussion and Conclusions
	References

