
sensors

Article

A Deep Learning Ensemble for Network Anomaly
and Cyber-Attack Detection

Vibekananda Dutta * , Michał Choraś, Marek Pawlicki and Rafał Kozik

Institute of Telecommunications and Computer Science, UTP University of Science and Technology, Kaliskiego 7,
85-976 Bydgoszcz, Poland; chorasm@utp.edu.pl (M.C.); marek.pawlicki@utp.edu.pl (M.P.);
rafal.kozik@utp.edu.pl (R.K.)
* Correspondence: dutta.vibekananda@utp.edu.pl

Received: 21 July 2020; Accepted: 13 August 2020; Published: 15 August 2020
����������
�������

Abstract: Currently, expert systems and applied machine learning algorithms are widely used
to automate network intrusion detection. In critical infrastructure applications of communication
technologies, the interaction among various industrial control systems and the Internet environment
intrinsic to the IoT technology makes them susceptible to cyber-attacks. Given the existence of the
enormous network traffic in critical Cyber-Physical Systems (CPSs), traditional methods of machine
learning implemented in network anomaly detection are inefficient. Therefore, recently developed
machine learning techniques, with the emphasis on deep learning, are finding their successful
implementations in the detection and classification of anomalies at both the network and host levels.
This paper presents an ensemble method that leverages deep models such as the Deep Neural
Network (DNN) and Long Short-Term Memory (LSTM) and a meta-classifier (i.e., logistic regression)
following the principle of stacked generalization. To enhance the capabilities of the proposed
approach, the method utilizes a two-step process for the apprehension of network anomalies. In the
first stage, data pre-processing, a Deep Sparse AutoEncoder (DSAE) is employed for the feature
engineering problem. In the second phase, a stacking ensemble learning approach is utilized for
classification. The efficiency of the method disclosed in this work is tested on heterogeneous datasets,
including data gathered in the IoT environment, namely IoT-23, LITNET-2020, and NetML-2020.
The results of the evaluation of the proposed approach are discussed. Statistical significance is tested
and compared to the state-of-the-art approaches in network anomaly detection.

Keywords: anomaly detection; cyber-attacks; data pre-processing; deep learning; feature engineering;
machine learning; network intrusion

1. Introduction

Critical structures such as Internet Industrial Control Systems (ICS) and Sensitive Industrial Plants
and Sites (SIPS) need to be functional and operate reliably even when subjected to unforeseen threats
or external attacks. A number of systems are dedicated to mitigating the cascading impact resulting
from the failure of or an attack on critical infrastructure. Those systems, however, can be the subject of
a cyber-attack [1].

The attack surface of SIPS is wide and must be protected in both cyber and physical spaces.
It comprises the SIPS data management, control, and communication layers. The main goal of a
malicious user is to get access to one of these layers to steal or tamper with sensitive data. This is
doable physically, remotely, or through a combined vector of attack. On the transmission side, SIPS
are exposed to cyber-attacks. The likely targets of the cyber-attacks are remotely controlled devices
(e.g., switches, transformer taps, valves). Their hijacking could potentially damage several physical
assets and cause widespread losses. A likely target that the malicious user can attack is the server

Sensors 2020, 20, 4583; doi:10.3390/s20164583 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9640-4725
http://www.mdpi.com/1424-8220/20/16/4583?type=check_update&version=1
http://dx.doi.org/10.3390/s20164583
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 4583 2 of 20

machines where sensitive data are stored. Finally, the attacker could modify critical measurements
reported to the operator for controlling or monitoring the infrastructure units.

Opposing malicious software [2] that could be launched against one of the attack surface layers
constitutes one of the most significant cybersecurity demands. Malicious software in computer
programs frequently stays passive during the scanning of infected infrastructures and assets. Some
infected systems have the ability to connect with other infected machines to establish a botnet, allowing
cybercriminals a range of transgressions, including DDoS attacks, spam, ransomware, and subtle data
theft. The rapid development of novel technologies, like cloud computing, the Internet of Things
(IoT), and NB-IoT, comes with new vulnerabilities, and they dangerously increase the lack of trust
concerning cybersecurity, which many end-users already exhibit [3].

Network intrusion detection methods have progressed from mechanisms relying on port
inspection to techniques making full use of machine learning. The common port-based approaches
have become outdated since current applications mostly rely on dynamic port allocation rather than
on registered port numbers. The increase in the volume of encrypted traffic causes the payload-based
approaches to be unsuccessful. This leads the cybersecurity specialists in the direction of utilizing
machine learning and network flow features. Recent advancements in machine learning methods for
network anomaly detection have been warmly welcomed [4]. Due to the heterogeneous and diverse
nature of cloud environments, machine learning provides the answers to the challenges induced due
to the existence of virtualized environments with their wide range of application workloads [5].

Some of the contemporary solutions use a correlation engine with the Kafka architecture that
performs effective anomaly-based intrusion detection for streaming data in the application layer.
This kind of system adopts the lambda architecture featuring the scalable data processing framework
named Apache Kafka, which facilitates an engine that processes Big Data workloads. The key aspects
of this kind of design enable a distributed computing system that integrates multiple machine learning
and deep learning models. This particular example also facilitates an application module that offers
different intrusion detection tools and a visualization module for the end-users.

1.1. Motivation and Objectives

Intrusion Detection Systems (IDSs), working as remote components or as part of a larger Intrusion
Detection Network (IDN), are designed to facilitate attack detection capabilities to protect a network.
This paper considers the problem of network anomalies, providing a machine learning-based anomaly
detector and optimal solutions to make the detection tools resilient.

The objective is to improve the classification effectiveness of intrusion detection systems and
networks operating in adversarial settings by developing an ensemble method facilitated by stacked
generalization techniques to analyze the outliers. Diverse anomaly detection methods may cause
different results on the same data. Thus, the task of offering a suitable technique for a specific domain is
rather challenging. The stacked generalization approach is utilized to enhance model performance [6].
The scope of this work covers the following objectives:

• Selection of the latest network traffic datasets featuring labeled network flows and corresponding
features to evaluate the proposed approach;

• developing a suitable model that integrates the key features in the feature engineering phase
to facilitate the design architectures that resist, at least to some extent, certain types of
deliberate attempts to evade detection or, more generally, subvert the protection offered by
the proposed method;

• the design of the deep models integrated by the stacked generalization method, which is generated
by a group of selected models (designated by the ensemble) followed by a meta-classifier that
learns the best way of facilitating the synergy of a group of models.

Sensors 2020, 20, 4583 3 of 20

1.2. Contributions and Organization

In this work, the problem of an efficient anomaly-based network intrusion detection method is
discussed. It involves a careful examination of recent benchmark datasets, IoT-23, LITNET-2020, and
NetML-2020, with promising accuracy and minimal computational complexity. The work contained in
this text aims at providing an efficient anomaly detection mechanism meeting the following description:

• featuring flow-level analysis utilizing novel methods of aggregation and class balancing using the
Synthetic Minority Over-sampling Technique (SMOTE) followed by the Edited Nearest Neighbors
(ENN) approach to enhance the performance of the classification efficiency via extracting only
significant features with the capability of coping with network data on a large scale;

• developing and applying a dimensionality reduction approach such as a Deep Sparse
AutoEncoder (DSAE) for minimizing the size of the input feature vector to the classifier in
order to reduce the computational complexity;

• a stacked ensemble approach using different Level-0 models (such as DNN, LSTM) and a
Level-1 model (Logistic regression) is offered, and its performance is evaluated on three
benchmark datasets;

• the disclosed set of techniques is thoroughly evaluated through a series of experiments to illustrate
the extent of the improvements in the detection rate in the chosen datasets in comparison to several
state-of-the-art techniques.

The paper discusses this contribution in detail. In Section 2, the related works are reviewed.
Section 3 gives an introduction about the anomaly-based intrusion detection platform, its data
pre-processing approach, feature engineering techniques, and the proposed methodology of the stacked
ensemble machine learning approach. Section 4 introduces the recently built IoT-23, LITNET-2020, and
NetML-2020 flow-based datasets and their characteristics. Section 5 discusses the experimental results.
Finally, in Section 6, conclusions are drawn, and the scope of future research is elaborated.

2. Related Work

The significance of the subject and the focus on network traffic analytics brought multiple
recently-published studies. In this section, various works on the use of machine learning to detect
anomalies in computer networks are investigated.

2.1. Deep Learning

When it comes to machine learning techniques, it is especially important to take note of deep
learning and Deep Neural Networks (DNN). With the emergence of high-computational GPUs,
these have revolutionized artificial intelligence and many areas of engineering and computer science.
It should be expected that it will be similar in the area of cybersecurity. Although the techniques
utilizing DNNs in IDS are still in their early stages, there are several examples of their usage in
cybersecurity. In their work, Jihyun et al. [7] utilized Long Short-Term Memory (LSTM) networks and
used the KDDCup ’99 dataset. The applied LSTM-RNN achieved 96.93% accuracy and a recall
of 98.88% [8]. Abolhasanzadeh [9] used a deep autoencoder as an attack detector in Big Data.
The conducted experiment on the NSL-KDD test set was applied to achieve the bottleneck features in
dimensionality reduction as part of intrusion detection. It was concluded that the achieved accuracy
was promising for real-world intrusion detection [8]. In [10], Fiore pondered the utilization of a
Restricted Boltzmann Machine (RBM). The network would be fit for anomaly detection by allowing
it to learn on a real-world dataset collected from 24 h of workstation traffic [8]. Alom et al. [11]
offered the Deep Belief Network’s (DBN) abilities to perform intrusion detection through a series
of experiments. The authors trained the DBN on NSL-KDD data to distinguish unforeseen attacks.
Further development of hardware resources and computing capabilities of GPU cards makes DNN
methods an interesting alternative to existing traditional methods, and they can be seen as a panacea
to overcoming the challenges, which are faced by institutions responsible for CIP.

Sensors 2020, 20, 4583 4 of 20

2.2. Ensemble Learning and Stacked Generalization

The literature on machine learning proposes multiple approaches regarding ensemble designing.
Ensemble learning is an approach that builds on top of a collection of models. The method very
often performs better than any of those models could on their own. This learning paradigm found its
applications in both supervised learning and in unsupervised approaches [12]. An ensemble design
involving the Level-0 and Level-1 model demonstrates superior outcomes by consolidating different
individual models. Govindarajan et al. [13] introduced a hybrid model comparing individual models
in a classification task. The authors of this work indicated that building an ensemble improves the
accuracy of the model tremendously in a task involving both normal and abnormal traces from a mail
application. Hansen et al. [14] found in their research that for an ensemble model to be more accurate
as compared to the individual models, (a) every single model has to perform better than random
guessing, and (b) singular models need to have output uncorrelated with one another (the ensemble
has to be manifold).

Another form of increasing the performance of machine learning models can be achieved by
stacking them. In this approach, also known as stacking generalization, the prediction outcomes of the
models are combined using a meta-classifier [15]. Stacked Generalization (SG) was initially introduced
by Wolpert [16]. Following the three-step formula, stacking is accomplished when: (a) the creation
of models is accomplished by utilizing at least two different learning methods; (b) the outputs of
the models contribute to the creation of a novel dataset in conjunction with the original hold-out set;
(c) this novel dataset is used to create an all-encompassing model taking into account the preceding
outputs [17]. Cerqueira et al. [18] investigated a method similar to stacking, where several models, e.g.,
LOFand hierarchical agglomerative clustering, provide the prediction outcomes, which are appended
to the original dataset. In [19], Karthick et al. merged the hidden Markov and naive Bayesian models in
order to facilitate flexible intrusion detection. The research suggested that this stacked generalization
provides satisfactory results.

The literature review suggests that flow-based data methods in network intrusion detection are
winning the attention of researchers. There is always a high demand for novel cybersecurity datasets,
and the question of an ideal set of network flow features still remains open.

3. Proposed Methodology

The most significant objective of this research is to obtain a reliable classification of outliers by
using a stacked ensemble method. In the following section, a general synopsis of the framework is
offered. Then, the data pre-processing, feature engineering, and classifier modeling steps are discussed
in detail.

3.1. General Overview

This section presents an overview of the proposed deep-stacked ensemble approach applied in
anomaly detection on network traffic data. The detailed architectural diagram is depicted in Figure 1.

The individual phases of the proposed framework are (1) dataset selection, (2) data preprocessing
integration by feature engineering, data balancing, and dimensionality reduction using a deep sparse
autoencoder followed by (3) data output, (4) data splitting, and (5) classification into “normal/anomaly”
using a stacked ensemble approach unified by deep models and a meta learner (i.e., logistic regression).
The detailed descriptions of those steps are provided in Sections 3.2–3.5, respectively.

Sensors 2020, 20, 4583 5 of 20

Dataset
Data

Preprocecssing
Deep Sparce
Autoencoder

LSTM

DNN

Stacked
Model

Meta-Learner

ATTACK

DETECTION

Model

Model

Figure 1. The scheme of the proposed anomaly detection mechanism.

3.2. Data Pre-Processing

Fairly frequently, the methods of data collection produce attributes that are either duplicated or
superfluous for network data obtained via analysis of network traffic [20]. Clearing the insignificant
and unnecessary information is a step to produce a more robust representation, which supplies better
applicable inputs to the classifier [21]. The preprocessing steps of our approach are provided below.

3.2.1. Feature Selection

NetFlow datasets often include non-identical feature attributes that are categorized as flow, basic,
content, time, additionally generated, and labeled features, respectively. However, the information
gathered from packet captures also provides a variety of irrelevant or redundant details. Removing
unnecessary information offers better, unbiased detection. In addition to the above pre-processing,
the selected datasets (i.e., IoT-23, LITNET-2020, NetML-2020) contain a certain amount of unusable
values. Feature imputation was performed to replace the infinities with max values. For missing
records, the feature means were used.

3.2.2. Feature Normalization

The continuous values in the network traffic datasets have a variety of magnitudes. This causes
problems for a variety of classifiers. Thus, scaling is performed as a means of normalizing the attributes,
squeezing the values to the range of 0 to 1. Therefore, the features are scaled according to Equation (1):

x̄m,n =
xm,n

maxn(xm,n)
, ∀m=1,..., f , ∀n=1,...,i, (1)

where x̄m,n represents the scaled feature, maxn(xm,n) is the maximum value of the data in the m-th
feature, i is the number of samples in both the training and testing data, and f is the number of features
from the feature selection process.

3.3. Data Balancing

In situations where the learning dataset has an imbalance in class distribution, machine learning
algorithms may experience problems. In imbalanced data learning, under-sampling the majority
class is a conventional plan of operation. Oversampling techniques followed by undersampling
can be used to balance the datasets. We used two established approaches, namely the Synthetic

Sensors 2020, 20, 4583 6 of 20

Minority Over-sampling Technique (SMOTE) and Edited Nearest Neighbors (ENN), to balance the
IoT-23, LITNET-2020, and NetML-2020 datasets [22,23]. Recently, hybrid approaches have become
popular [24]. Methods like SMOTE+ENN, among other, have often been utilized for alleviating the
issue of class imbalance to boost the efficiency of the classifier.

The capability of the selected method, in which the training datasets were cleaned or reduced,
is illustrated in Sections 3.2.1 and 3.2.2. The count of samples in each class in the pre-processed
dataset is subjected to the balancing procedure. Following [24], the SMOTE + ENN approach for class
balancing is presented in Algorithm 1.

Algorithm 1 SMOTE+ENN.

Input: Training dataset tr;
Output: tr′

Initialization:
1: tr′ = DB (tr)

End
DB (tr):

2: trnew = SMOTE (tr) // Over-sampling the training set
3: trtmp = ENN (trnew) //Remove noise sample
4: return trtmp

After applying the SMOTE+ENN method to enhance the pre-processed data (see Section 3.2),
the artificially balanced dataset is utilized as a training set for the neural network learning process. It
is worthwhile to mention that the term tr represents (Xtr, ytr).

3.4. Feature Dimensionality Reduction

The DSAE learning algorithm is employed for dimensionality reduction. The autoencoder can
learn the latent representation of features in a reduced space in an unsupervised setting. The DSAE
builds on the concept of an autoencoder adding the sparse penalty term, which hinders feature
learning to achieve a concise representation of the input vector [25,26]. Furthermore, an autoencoder
using non-linear activation functions and multiple layers possesses the ability to obtain non-linear
relationships, unlike Principal Component Analysis (PCA). It is also more efficient, in terms of model
parameters, to train several layers of an autoencoder rather than train one huge transformation
with PCA.

Following [25], the input vector x defines sets of NetFlow data x = {x1, x2,, xn}, which are
later reconstructed into an N ×M dataset; therefore, x(i) ∈ RM. These NetFlow data are used as an
input matrix X initially condensed to a lower dimension that is expressed by a set of one or more
hidden layers h = {h1, h2, ..., hn}. The hidden representation of h̄ is then depicted as the output
x̄ = {x̄1, x̄2,, x̄n}, respectively.

Let us consider k as the token node parameter in the nodes of layer l, and j is the counter parameter
in the preceding layer l − 1. Therefore, the outcome of the neurons in a computational layer h can be
expressed by Equation (2).

hl
k = f (

n

∑
j=1

W(l−1)
kj · h(l−1)

j + b(l−1)
k) (2)

The size of the weight matrix is expressed by W ∈ Rm×n, and the bias is b ∈ Rm. Instead of ReLU
or tanh, sigmoid is utilized for neural activations.

The applied reconstruction error Er between the input vector x and the reconstructed input x̄
followed by the mean squared error function is shown in Equation (3).

Er =
1
n

n

∑
i=1

xi + x̄i
2 (3)

Sensors 2020, 20, 4583 7 of 20

n represents the count of input examples. DSAE is chosen to obtain a reconstructed depiction of the
input vector. Hence, sparsity is included in the DSAE cost function to cap the average activation value
of neural nodes in the computational layers. Let ρ be the average activation value of sparse parameters,
and a penalty term is employed to prevent ρk from deviating from parameter ρ. Therefore, the mean
activation value of the k-th neuron in the hidden layer is expressed by:

ρk =
1
n

n

∑
i=1

[hk(x(i))] (4)

where both n’s represent the count of input data points and i the sample. Since the average activation
ρk approaches ρ (a constant close to 0), the KL divergence is adopted to facilitate sparsity.

KL(ρ||ρk) = ρ log
ρ

ρk
+ (1− ρ) log

1− ρ

1− ρk
(5)

Next, the cost function of the neural network is set as c(W, b, x, x̄). Adding the sparse penalty
term is expressed by Equation (6).

csparse = c(W, b, x, x̄) + β
m

∑
k=1

KL((ρ||ρk) (6)

The β rate influences the strength of the sparsity penalty. L2 Regularization (L2R) is employed in
the cost function as a means to avoid overfitting (see Equation (7)).

c̄sparse = csparse + α||w||2 (7)

where α is a coefficient and ||w||2 represents the penalty term. This means that an increase in the value
of α translates to a deeper weight attenuation.

The work contained herein considers a three hidden layer sparse auto-encoder (so-called deep
sparse autoencoder), which utilizes the sigmoid in place of the neural activation functions. The input
layer has N nodes depending on the selected dataset: IoT-23, LITNET-2020, and NetML-2020. N
varies taking into account the total number of features in each dataset after the data pre-processing
phase. The initial computational layer reduces the dimensions to 19 (IoT-23), 30 (LITNET-2020), and 20
(NetML-2020) nodes with a favorable error approximation. The following layer decreases the number
of features to 15 (IoT-23), 20 (LITNET-2020), and 16 (NetML-2020). Finally, in the third layer, the
features are reduced to 10 (IoT-23), 15 (LITNET-2020), and 12 (NetML-2020), respectively. Once the
learning stage of the autoencoder is successfully concluded, the network is placed as the input vector
provider to the classifier in the final stage. The following set of parameters was determined by running
preliminary experiments with a trial and error approach: the weight decay λ = 0.0003, the sparsity
parameter ρ = 0.5, and the sparsity penalty term β = 6, respectively. The method is delineated in
Algorithm 2, and the visualization of the applied dimensionality reduction on each dataset is presented
in Figure 2.

Algorithm 2 Deep Sparse AutoEncoder (DSAE).

Input: Input vector x
Output: Reconstructed input x̄

Initialization:
1: Initialized weights W and thresholds b
2: Obtain the reconstruction error Er according to Equation (3)
3: Add sparsity regularizer to cost function according to Equation (5)
4: Add L2 regularization to cost function according to Equation (7)

End

Sensors 2020, 20, 4583 8 of 20

(a) IoT-23 dataset (b) LITNET-2020 dataset (c) NetML-2020 dataset

Figure 2. The figures depict the Deep Sparse AutoEncoder (DSAE) reconstruction procedure
side-by-side with the bottleneck representation of the samples on three benchmark datasets. The
x-axis and y-axis represent 1 dimension vs. 2 and the colors stand for attack classes (blue—benign,
orange—malicious).

3.5. Classifier Modeling

The proposed framework utilizes a stacked generalization approach over flow-based data.
The results obtained by the Level-0 classifiers (x̄) are forwarded to the meta-classifier. Thus, the overall
approach incorporates two different deep learning algorithms (Deep Neural Network (DNN),
Long Short-Term Memory (LSTM)) and a meta-classifier (Logistic Regression) (illustrated both in
Sections 3.5.1 and 3.5.2). Stacked generalization is employed to synergize the deep learning methods, as
a way to cooperatively use several models to potentially eliminate the generalizing biases concerning
a particular training set. Figure 3 illustrates the concept, which consists of the base and meta-classifier.
The implementation of a stacked generalization involves two kinds of models: (a) base models (Level-0
classifiers) and (b) meta-models (Level-1 or meta-classifier). The essence of stacked generalization lies
in using the Level-1 classifier to perform the task by learning from Level-0 models.

Accuracy

Anomaly

Yes/No

Feature Engineering

3-
la

ye
rs

S
p
ar

se
A

u
to

E
n
co

d
er

LSTM

Model

DNN
Model

M
et

a

L
ea

rn
er

Classifier ModelingData Pre-processing

NetFlow
Datasets

F
ea

tu
re

S
el

ec
ti

on

F
ea

tu
re

C
on

ve
rs

io
n

F
ea

tu
re

N
or

m
al

iz
at

io
n

x̄

x̄ z k
n

=
p k

(x̄
n
)

dcv

Figure 3. Proposed procedure of constructing a stacked ensemble classifier.

In general, machine learning can be viewed as a minimization of the problem as shown in
Equation (8).

min
f

n

∑
i=1

l(f (xi), yi) + λr(f) (8)

The first term of Equation (8) is the loss function, which expresses the distance between the
predicted and real values. The second term in Equation (8) is a regularization term that measures the
complexity of the function f .

Furthermore, one of the key methods in the proposed approach is to obtain the training set (dcv)
for the Level-1 model (mmtc f) using the cross-validation approach. For example, given a pre-processed

Sensors 2020, 20, 4583 9 of 20

dataset d randomly split into K equal folds {d1, d2,...,dK} (in this work, K = 5), let us consider dtr
k and

dte
k to be the training and test sets for the k-th fold in a K-fold cross-validation. Given different deep

learning models (M1, M2,....,ML), where L = 2 in this research, each ML is trained by dtr
k and predicts

each instance on dte
k . Let pk(x̄) denote the prediction of the model ML on x̄. Then, we have:

zkn = pk(x̄n) (9)

At the end of the entire cross-validation process of each model ML, the data (dcv) are an ensemble
from the outcome of the L models (see Equation (10)).

dcv = (yn, z1n, ..., zLn), n = 1, 2, ..., N (10)

where dcv is the training set for the Level-1 model (i.e., meta-classifier) mmtc f . Hence, to finish the
training, Level-0 models mL are trained using the pre-processed dataset d, and mmtc f is trained by dcv

followed by 5-fold cross-validation. Now, in the testing phase (i.e., hold-out set for testing), given a new
instance, Level-1 model mmtc f produces the final outcomes for that instance. It is important to mention
that 5-fold cross-validation was performed and obtained the average accuracy, standard deviation, and
standard error of the mean as presented in Tables 1–3, respectively. The offered framework (Figure 3)
works via the end-to-end prototype where the Level-1 classifier (i.e., meta-classifier) is trained by the
dcv obtained from the Level-0 classifier.

Table 1. Results of classifiers’ performance in terms of 5-fold cross-validation; best results are indicated
with bold.

Fold DNN LSTM Stacked (Proposed)

fold1 99.97% 99.95% 99.96%
fold2 99.92% 99.94% 99.97%
fold3 98.65% 99.39% 99.96%
fold4 99.97% 99.98% 99.98%
fold5 96.93% 99.96% 99.99%

Average Accuracy 99.088% 99.844% 99.972%
Standard Deviation 1.331 0.254 0.013
SEM 0.595 0.113 0.005

Table 2. Results of classifiers’ performance in terms of 5-fold cross-validation; best results are indicated
with bold.

Fold DNN LSTM Stacked (Proposed)

fold1 100% 100% 100%
fold2 99.98% 100% 100%
fold3 100% 99.96% 100%
fold4 100% 100% 100%
fold5 99.99% 100% 100%

Average Accuracy 99.994% 99.992% 100%
Standard Deviation 0.007 0.016 0.000
SEM 0.006 0.007 0.000

Sensors 2020, 20, 4583 10 of 20

Table 3. Results of classifiers’ performance in terms of 5-fold cross-validation; best results are indicated
with bold.

Fold DNN LSTM Stacked (Proposed)

fold1 99.97% 99.95% 99.97%
fold2 99.92% 99.95% 99.98%
fold3 98.72% 99.60% 99.99%
fold4 99.97% 99.98% 99.99%
fold5 96.91% 99.96% 99.99%

Average Accuracy 99.098% 99.888% 99.984%
Standard Deviation 1.193 0.144 0.007
SEM 0.533 0.064 0.003

3.5.1. Modeling the Deep Neural Network

Following [27], the structure of the DNN utilized in the proposed stacking framework for an
anomaly detection system is described below.

We initialize a four layer neural network. Back-propagation is used to train the network with
stochastic gradient descent as the optimizer. The input data are propagated through the hidden layers
and then transformed to the final output. A loss function is employed to penalize the network by
back-propagating the error to adjust the weights. The network parameters (i.e., weights) are updated
for each mini-batch at each iteration (i.e., epoch).

The proposed model has four subsequent layers with 52, 34, 26, and 16 nodes on the hidden layers.
The last part of the model is a fully connected neural network with 2 output nodes. Furthermore,
the following parameters of DNN are defined as the activation function (ReLU, Sigmoid), optimizer
(Adam), batch size (512), epochs (500), and loss function (binary—crossentropy). This model is also
using an early stopping algorithm to gain the best value of validation accuracy.

3.5.2. Modeling Long Short-Term Memory

To obtain the time-related non-linear dynamics in the provided data, an LSTM network is utilized.
LSTM is an improvement over the RNN architecture, extending the ability to capture long-term
dependencies [28].

A four layer LSTM is built on top of the DSAE to obtain the encoded temporal patterns. Finally,
a fully connected dense layer is stacked together to process the outputs of the LSTM. The utilized
optimizer was Adam. The activation functions (tanh, Sigmoid), batch size (512), epochs (500), and loss
function (binary—crossentropy) were also defined as the network parameters. Similar to DNN, this
model also uses the early stopping algorithm to gain the best value of the validation accuracy.

4. Selection of Datasets

Labeled network traffic datasets facilitate the power of supervised methods to offer necessary
information to train the IDS efficiently in order to achieve extraordinary accuracy and dependability in
distinguishing a wide range of network attacks.

Recently, several new flow-based benchmark datasets have been introduced to the public domain
such as IoT-23, LITNET-2020, and NetML-2020. Due to their temporal proximity, these have not
yet been widely used by the cybersecurity community. However, we use these datasets for efficient
anomaly-based network intrusion detection, on the realistic and up-to-date network traffic data.

4.1. IoT-23

IoT-23 (https://www.stratosphereips.org/datasets-iot23) is a network traffic dataset that
incorporates 20 malware subsets and three benign subsets. The dataset was initially made available in
January 2020 by the Stratosphere Laboratory in Czechia. The objective of the dataset is to present a

https://www.stratosphereips.org/datasets-iot23

Sensors 2020, 20, 4583 11 of 20

sizable dataset of labeled malware and benign traffic coming from real captures to develop intrusion
detection tools featuring machine learning algorithms.

The following labels in all 20 malicious captures are: Part-Of-A-Horizontal-PortScan (213,852,924
flows), Okiru (47,381,241 flows), Okiru-Attack (13,609,479 flows), DDoS (19,538,713 flows), C&C-Heart
Beat (33,673 flows), C&C (21,995 flows), Attack (9398 flows), C&C (888 flows), C&C-Heart Beat Attack
(883 flows), C&C-File download (53 flows), C&C-Tori (30 flows), File download (18 flows), C&C-Heart
Beat File Download (11 flows), Part-Of-A-Horizontal-PortScan Attack (5 flows), C&C-Mirai (2 flows).
On the other hand, the number of flows belonging to benign is 30,858,735 flows. Nevertheless,
the dataset has 21 feature attributes including the class label. Therefore, a total of 21 attributes
determining the features of connections are present in each data instance. The attributes are mixed
in nature, with some being nominal, some being numeric, and some taking on time-stamp values.
The general overview of the dataset is presented in Table 4, followed by a description of the attack class
labels. Due to the large size of the IoT-23 dataset, only seven scenarios (Malware-1-1, Malware-3-1,
Honeypot-4-1, Honeypot-5-1, Honeypot-7-1, Malware-34-1, Malware-43-1) were evaluated in this
work. The feature attributes with their description in the IoT-23 dataset are presented in Table 5.

Table 4. IoT-23 datasets (capture names, malware types, and sizes).

Capture Name Malware Name Capture Size

Honeypot-4-1 Bening 64 k
Honeypot-5-1 Bening 180 k
Honeypot-7-1 Bening 20 k
Malware-34-1 Mirai 2.9 M
Malware-43-1 Mirai 2.9 M
Malware-1-1 Hide&Seek 2.9 M
Malware-3-1 Muhstik 8.8 G
Malware-35-1 Mirai 142 M
Malware-39-1 IRCBot 24 M
Malware-7-1 Mirai 1.3 G
Malware-8-1 Hakai 11 G
Malware-9-1 Hajime 446 M
Malware-20-1 Torli 1.4 M
Malware-21-1 Torli 948 M
Malware-42-1 Torjan 412 K
Malware-17-1 Kenjiro 420 k
Malware-36-1 Okiru 567 k
Malware-33-1 Kenjiro 7.6 G
Malware-48-1 Mirai 1.6 G
Malware-44-1 Mirai 7.4 G
Malware-49-1 Mirai 508 M
Malware-52-1 Mirai 2.9 G
Malware-60-1 Gagfyt 446 M

Table 5. IoT-23 dataset features’ list with descriptions.

Attribute Number Features Description

1 fields-ts Flow start time
2 uid Unique ID
3 id.orig-h Source IP address
4 id.orig-p Source port
5 id.resp-h Destination IP address
6 id.resp-p Destination port
7 proto Transaction protocol
8 service http, ftp, smtp, ssh, dns, etc.
9 duration Record total duration

Sensors 2020, 20, 4583 12 of 20

Table 5. Cont.

Attribute Number Features Description

10 orig-bytes Source2destination transaction bytes
11 resp-bytes Destination2source transaction bytes
12 conn-state Connection state
13 local-orig Source local address
14 local-resp Destination local address
15 missed-bytes Missing bytes during transaction
16 history orig-pkts History of source packets
17 orig-ip-bytes Flow of source bytes
18 resp-pkts Destination packets
19 resp-ip-bytes Flow of destination bytes
20 tunnel-parents Traffic tunnel
21 label Attack label

4.2. LITNET-2020

The LITNET-2020 (https://dataset.litnet.lt) NetFlow dataset [29] consists of senders and collectors.
The senders are made up of Cisco routers and Fortige (FG-1500D) firewalls, which were utilized to
evaluate NetFlow data passing through the collectors. The collector incorporates software that accounts
for receiving, storing, and filtering data. The specific counts of data samples in the classes of the
dataset (with a total of 45,492,310 flows) is presented in Table 6. All instances are categorized into
ordinary data (45,330,333 flows) and malicious data (5,328,934 flows). The malicious instances are
further categorized into nine classes, taking into account the type of network attack.

Table 6. Sample counts for the type of attacks, number of flows, and number of attacks in the dataset.

Attack Type Flows Attacks

Smurf 3,994,426 59,479
ICMP-flood 3,863,655 11,628
UDP-flood 606,814 59,479
TCP SYN-flood 14,608,678 3,725,838
HTTP-flood 3,963,168 22,959
LANDattack 3,569,838 52,417
Blaster worm 2,858,573 24,291
Code red worm 5,082,952 1,255,702
Spam bot’s detection 1,153,020 747
Reaper worm 4,377,656 1176
Scanning/spread 6687 6232
Packet fragmentation attack 1,244,866 477

The data preprocessor selects initially 49 features that are specified to the NetFlow V9 protocol [30]
to arrange the dataset. Furthermore, an additional 15 feature attributes are supplemented by the
data extender. Having said that, an additional 19 attributes are offered to recognize attack types.
Therefore, the final datasets have a set of 84 feature attributes. The feature attributes with their
descriptions of the LITNET-2020 dataset are summarized in Table 7. The captures were accumulated in
a real-world network.

https://dataset.litnet.lt

Sensors 2020, 20, 4583 13 of 20

Table 7. LITNET-2020 dataset features’ list with descriptions.

Attribute Number Features Description

1 ts Flow start time
.. .. 49 attributes that are specified
.. .. in NetFlow v9 [30]
.. .. +15 extended attributes
64 tr Flow received time-stamp

65 icmp-smf Flooding network broadcast
66 icmp-f Flooding target with ICMP packets
67 udp-f Ddos’ing with UDP traffic
68 tcp-f-s Flooding attack with SYN packets
69 tcp-f-n-a Flooding attack with SYN packets
70 tcp-f-n-f Flooding attack with SYN packets
71 tcp-f-n-r Flooding attack with SYN packets
72 tcp-f-n-p Flooding attack with SYN packets
73 tcp-f-n-u Flooding attack with SYN packets
74 tcp-dst-p Ddos’ing with HTTP traffic
75 tcp-land Landing type of attack
76 tcp-src-tftp Flooding TFTPservice
77 tcp-src-kerb Flow of destination bytes
78 tcp-src-rpc Flooding Kerberos service
79 tcp-dst-p-src Flooding RPCservice
80 smtp-dst Uses a vulnerability in an HTTP server
81 udp-p-r-range Flooding with SMTP connections
82 p-range-dst Scans on UDP ports 80, 8080, 81, etc.
83 udp-src-p-0 Several ports, one address
84 Label Attack label

4.3. NetML-2020

The NetML-2020 (https://evalai.cloudcv.org/web/challenges/challenge-page/526/overview)
dataset was created for anomaly detection tasks by obtaining 30 traffic data from Stratosphere IPS
(https://www.stratosphereips.org/). The flow features are extracted in the JavaScript Object Notation
format by offering a raw pcap file as an input to the feature extraction tool, and each flow sample is
listed in the output file. Finally, a unique id number is placed to identify every flow and the label
information taking into account the raw traffic packet capture file. The NetML dataset provides 484,056
flows and 48 feature attributes (since we consider “top-level” granularity, only 26 meta-features were
selected after the data pre-processing stage). The detailed description of the feature attributes and
selected capture files is listed both in Tables 8 and 9.

Every capture offers flows belonging to a different category. Flows derived from the
capture—win1.pcap file are considered malicious in the highest granularity labels and Tinba in the
bottom-level labels. Three annotations, “top-level”, “mid-level”, and “fine-grained”, are chosen to
express the class granularity. At the highest granularity, the dataset is binary (benign or malware).
The “mid-level” distinguishes specific software communication, e.g., Facebook, Skype, Hangouts, etc.
Lastly, the “fine-grained” level classifies multiple distinct types of attacks, e.g., Ramit, HTBot, etc.

https://evalai.cloudcv.org/web/challenges/challenge-page/526/overview
https://www.stratosphereips.org/

Sensors 2020, 20, 4583 14 of 20

Table 8. Files used to create the NetML dataset.

Type of Attack File Name

Bening 2013-12-17-capture1.pcap
Bening 2017-04-18-win-normal.pcap
Bening 2017-04-19-win-normal.pcap
Bening 2017-04-25-win-normal.pcap
Bening 2017-04-28-normal.pcap
Bening 2017-04-30-normal.pcap
Bening 2017-04-30-win-normal.pcap
Bening 2017-05-01-normal.pcap
Bening 2017-05-02-kali-normal.pcap
Adload 2018-05-03-win12.pcap
Artemis capture-win15.pcap
BitCoinMiner 2018-04-04-win16.pcap
CCleaner 2017-12-18-win2.pcap
CCleaner 2018-01-30-win17.pcap
Cobalt 2018-04-03-win11.pcap
Downware 2018-02-23-win10.pcap
Dridex 2018-04-03-win12.pcap
Emotet 2017-06-24-win3.pcap
HTBot 2018-04-04-win20.pcap
MagicHound 2017-11-22-win4.pcap
MinerTrojan 2018-03-27-win4.pcap
PUA 2018-02-16-win8.pcap
PUA 2018-02-23-win11.pcap
Ramnit 2018-04-03-win6.pcap
Sality 2017-11-23-win16.pcap
Tinba capture-win1.pcap
TrickBot capture-win11.pcap
Trickster 2018-01-29-win7.pcap
TrojanDownloader 2018-03-27-win23.pcap
Ursnif capture-win12.pcap
WebCompanion 2018-03-01-win9.pcap

Table 9. NetML-2020 dataset features’ list with descriptions.

Attribute Number Features Description

1 sa source address
2 da destination address
3 pr protocol (6 or 17)
4 src-port source port
5 dst-port destination port
6 bytes-out total bytes out
7 num-pkts-out total packets out
8 bytes-in total bytes in
9 time-start time-stamp of first packet
10 time-end time-stamp of last packet
11 intervals-ccnt[] compact histogram of pktarriving intervals
12 ack-psh-rst-syn-fin-cnt[] histogram of tcpflag counting
13 hdr-distinct distinct values of header lengths
14 hdr-ccnt[] compact histogram of header lengths
15 pld-distinct distinct values of payload length
16 pld-ccnt[] compact histogram of payload lengths
17 hdr-mean mean value of header lengths
18 hdr-bin-40 pkts with header lengths between 28 and 40
19 pld-bin-128 pkts whose payload lengths are below 128
20 pld-bin-inf pkts whose payload lengths are above 1024
21 pld-max max value of payload length
22 pld-mean mean value of payload length
23 pld-medium medium value of payload length
24 pld-var variance value of payload length
25 rev flow features of the reverse flow
26 Label attack label

Sensors 2020, 20, 4583 15 of 20

5. Experiments and Results

To assess the classification performance, metrics such as the accuracy score, precision, recall, F1
score, and Matthews Correlation Coefficient (MCC) were calculated. Additionally, geometric mean
(g-mean), omnibus tests, and the Friedman rank were used as evaluation indicators to evaluate the
algorithm’s results. It is important to mention that in this work, we consider binary classification:
normal and malware (zero, one) for both individual algorithms and the proposed stacked ensemble
framework, respectively.

Evaluation matrices and experimental settings are discussed both in Sections 5.1 and 5.2, while
Sections 5.3–5.5 present the result of the experiments (including statistical tests), respectively.

5.1. Evaluation Metrics

A standard suite of metrics was used in this work for the evaluation of the approach: Accuracy
(ACC), Precision (Pr), Recall (Re), F1-score, False Positive Rate (FPR), Matthews Correlation Coefficient
(MCC), and g-mean. The formulation of g-mean, as used in this work, is included in the next subsection.

Geometric Mean

This work uses the g-mean definition presented in [24]. The geometric mean (g−mean) is applied
to assess the results given by the classifiers for datasets containing imbalanced classes; it is expressed
in the following manner: (g−mean ∈ [0, 1]):

g−mean = M

√√√√ M

∏
m=1

Accm (11)

where Acc signifies the accuracy of classification in a given category and M is the count of defined
categories (in this case, M = 2).

In order to further analysis, a statistical test was performed, e.g., the Friedman test [31],
a non-parametric method. The initial phase of this method performs a gradation of the algorithms for
every selected dataset (i.e., best—1, second best—2, etc.).

5.2. Experimental Settings

The experiments were performed on a Linux setup with 16 GB RAM and the Intel Core i7 10-th
Generation Processor. All the experiments were administered using the Python programming language
and the TensorFlow/Keras/Scikit-learn stack.

5.3. Experimental Evaluation on the IoT-23 Dataset

The following section gives the evaluation of the results attained by the stacked ensemble classifier
proposed against individual classifiers, namely DNN, LSTM, and random forest [27]. The IoT-23
dataset was used to assess the efficiency of the classifiers. It is one of the most recent network traffic
datasets (20 malware, three benign), and the description is detailed in Section 3.1. Each classifier (i.e.,
DNN, LSTM, and stacked) underwent the learning procedure on the training set. The results are
reported in terms of accuracy, average accuracy, standard deviation, and Standard Error of the Mean
(SEM) using five-fold cross-validation, as shown in Table 1. These classifiers were trained and tested
on the same data distribution. The performance comparisons are also reported using statistical tests
and evaluation matrices such as the overall accuracy, g-mean score, and Friedman average rank.

Table 10 presents the overall accuracy and Friedman average rank, followed by the result of the
g-mean score secured by the state-of-the-art classifiers vs. the stacked ensemble classifier. Note that a
lower value in ranking represents improved classification results. Furthermore, the evaluation results
taking into account the precision, recall, FPR, and MCC are presented in Table 11.

Sensors 2020, 20, 4583 16 of 20

Table 10. Performance evaluation of the IoT-23 test set; best results are indicated with bold. g-mean,
geometric mean.

Method Accuracy g-Mean Friedman Rank Statistical Test

Random Forest [27] 0.893 – – No
DNN 0.984 0.932 3 Yes
LSTM 0.991 0.962 2 Yes
Stacked (proposed) 0.997 0.971 1 Yes

Table 11. Result of evaluation matrices w.r.t. existing approaches on the IoT-23 test set; best results are
indicated with bold.

Method Feature Engg. Pr Re FPR F1-Score MCC

Random Forest [27] AE 0.92 0.89 1.22 0.896 0.87
DNN DSAE 1.00 0.89 0.23 0.87 0.98
LSTM DSAE 1.00 0.92 0.19 0.95 0.99
Stacked (proposed) DSAE 1.00 0.95 0.13 0.98 0.99

5.4. Experimental Evaluation on the LITNET-2020 Dataset

In this section, we performed our experiments with the most recent, publicly available benchmark
dataset, LITNET-2020 [29], published by Kaunas Technological University in May 2020. To examine
the performance of our framework using selected features, we first trained the individual classifiers
and stacked ensemble framework using five-fold cross-validation and present the results in terms of
accuracy, average accuracy, standard deviation, and SEM in Table 2.

Similar to Section 5.3, the detection performance of the tested methods such as DNN, LSTM, and
random forest vs. stacked ensemble algorithms is also compared. The results are reported in terms of
statistical tests and evaluation matrices such as the overall accuracy, F1-score, g-mean, and Friedman
average rank in Table 12. The evaluation of the performance results concerning the precision, recall,
false positive rate, and MCC is also presented in Table 13.

Table 12. Performance evaluation of the LITNET-2020 test set; best results are indicated with bold.

Method Accuracy g-Mean Friedman Rank Statistical Test

Random Forest [27] 0.911 – – No
DNN 0.997 0.991 1 Yes
LSTM 0.991 0.991 1 Yes
Stacked (proposed) 1.00 0.999 1 Yes

Table 13. Result of evaluation matrices w.r.t. existing approaches on the LITNET-2020 test set; best
results are indicated with bold.

Method Feature Engg. Pr Re FPR F1-Score MCC

Random Forest [27] AE 0.93 0.90 0.12 0.95 0.98
DNN DSAE 1.00 1.00 0.1 1.00 0.99
LSTM DSAE 1.00 1.00 0.07 1.00 0.99
Stacked (proposed) DSAE 1.00 1.00 0.05 1.00 1.00

5.5. Experimental Evaluation on the NetML-2020 Dataset

In this section, we demonstrate the effectiveness and performance of the proposed stacked
ensemble framework on the challenging NetML-2020 dataset [32]. This dataset was released during the
open challenge Network Traffic Analytics using Machine Learning (NETAML) workshop sponsored
by the Intel Corporation.

Sensors 2020, 20, 4583 17 of 20

We selected two basic classification models including DNN and LSTM classifiers as our baselines
since DNN is frequently utilized in multiple domains and LSTM presents a strong deep learning
approach that can achieve the foremost increases with regards to accuracy. The selected baseline
methods underwent the training procedure using the same data that were used by our proposed
stacked ensemble framework. Five-fold cross-validation was performed, and the results are reported
in Table 3.

Thereafter, the proposed stacked approach is compared with the baseline algorithms and the
methods reported in [32], as shown in Table 14, and it showed an increase in performance over
the baseline algorithms and those found in the subject literature. Similar to the previous section,
the evaluation of the model performance with respect to precision, recall, FPR, and MCC is presented
in Table 15.

Table 14. Performance evaluation of the NetML-2020 test set; best results are indicated with bold.

Method Accuracy g-Mean Friedman Rank Statistical Test

Random Forest [27] 0.961 – – No
Random Forest [32] 0.993 – – No
SVM [32] 0.962 – – No
MLP [32] 0.988 – – No
DNN 0.998 0.992 2 Yes
LSTM 0.999 0.995 2 Yes
Stacked (proposed) 1.00 0.999 1 Yes

Table 15. Result of evaluation matrices w.r.t. existing approaches on the NetML-2020 test set; best
results are indicated with bold.

Method Feature Engg. Pr Re FPR F1-Score MCC

Random Forest [27] AE 0.98 0.987 0.3 0.98 0.92
Random Forest [32] – 0.993 0.995 0.15 0.993 0.98
SVM [32] – 0.98 0.982 0.42 0.98 0.92
MLP [32] – 0.981 0.991 0.2 0.981 0.97
DNN DSAE 0.96 0.98 0.1 1.00 0.99
LSTM DSAE 1.00 0.989 0.21 1.00 0.99
Stacked (proposed) DSAE 0.99 0.999 0.0 1.00 1.00

The showcased performance increases prove a significant improvement in performance of the
proposed stacked ensemble method as compared to the baseline. The method shows promise in
terms of classification accuracy and other evaluation metrics. It was also investigated and proven
experimentally that the deep sparse autoencoder improves the accuracy of the proposed algorithms as
compared to the case where it was not employed [27,32]. The results also exhibit that the enhanced
effectiveness can be obtained not only by improving the topology of the neural network or performing
hyperparameter tuning, but also by enhancing the preprocessing stage.

Figure 4 depicts the duration of the training of the proposed framework comparing state-of-the-art
methods. The training duration is obtained by calculating the computation time required for forming
the classification model. During the investigation, the proposed classifier used in the final stage had
appreciably lower training time as compared to more complex classifiers working with the inputs
obtained as the output of Level-0 training (dcv). It is to be noted that the baseline classifiers were also
trained with the same set of outputs (including the algorithms previously used in the Level-0 classifier:
DNN, LSTM).

Sensors 2020, 20, 4583 18 of 20

Logistic

Figure 4. Training time taken by the proposed model vs. baseline models (RF, RF-NTML, SVM, MLP,
DNN, and LSTM).

Lastly, as a means to further show how effective the proposed method performs, we further
analyze the cumulative amount of incorrect detection.

6. Conclusions and Future Work

This work addressed an ensemble approach incorporating deep learning algorithms using
the concept of stacked generalization for an effective anomaly-based network intrusion detection
system. In this paper, various feature engineering methods were applied together with dimensionality
reduction to achieve the highest efficiency. A combination of DNN and LSTM followed by a
meta-classifier resulted in significant performance and detection of anomalies w.r.t. the most recent
network traffic datasets. Three heterogeneous datasets, IoT-23, LITNET-2020, and NetML-2020, were
used to assess the effectiveness of the proposed stacked ensemble framework. Following statistical
significance tests, we came to the verdict that the suggested approach outperforms the state-of-the-art
individual classifiers and meta-classifiers such as random forest and support vector machine.

From the series of conducted experiments, it is inferred that the proposed approach provides a
significant improvement in terms of evaluation metrics when validated against pre-specified testing
sets. Briefly, the proposed framework can eliminate the challenge of providing recent network traffic
datasets and provide an acceptable accuracy to detect anomaly behaviors in the desired network.

For future work, the implementation strategy can be further extended to conduct experiments
on more sophisticated datasets if those can be acquired. Advanced computational methods like
Apache Spark will be utilized in the future to boost the processing speed and facilitate the scalability
for massive volumes of network data. Additionally, the approach is to be validated for solving a
multi-class problem. At the moment, we also focus on the second part of the model (i.e., transfer
learning). The study will apply a lifelong learning algorithm along with a deep learning one to make
the method [33] more robust to unknown and known attacks. Finally, first steps have already been
taken to secure the deep learning component itself against the threat of adversarial attacks [34], and
we plan to continue research in that regard.

7. Data Availability

The datasets used in this work are publicly available for research purposes.

Sensors 2020, 20, 4583 19 of 20

• IoT-23: https://www.stratosphereips.org/datasets-iot23
• LITNET-2020: https://dataset.litnet.lt
• NetML-2020: https://github.com/ACANETS

Author Contributions: Conceptualization, V.D. and M.C.; methodology, V.D.; software, V.D.; validation, V.D.;
formal analysis, V.D., M.C., and M.P.; investigation, V.D.; resources, V.D. and M.C.; data curation, V.D. and M.C.;
writing, original draft preparation, V.D.; writing, review and editing, V.D., M.C., and M.P.; visualization, V.D.;
supervision, M.C., R.K.; project administration, M.C. and R.K.; funding acquisition, M.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is funded under the InfraStress project, which has received funding from the European
Union’s Horizon 2020 research and innovation program under Grant Agreement No. 833088.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kozik, R.; Choraś, M.; Flizikowski, A.; Theocharidou, M.; Rosato, V.; Rome, E. Advanced services for critical
infrastructures protection. J. Ambient. Intell. Humaniz. Comput. 2015, 6, 783–795. [CrossRef]

2. Wang, E.K.; Ye, Y.; Xu, X.; Yiu, S.M.; Hui, L.C.K.; Chow, K.P. Security issues and challenges for cyber physical
system. In Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications &
Int’l Conference on Cyber, Physical and Social Computing, Hangzhou, China, 18–20 December 2010;
pp. 733–738.

3. Dhanabal, L.; Shantharajah, S. A study on NSL-KDD dataset for intrusion detection system based on
classification algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, 446–452.

4. Dong, B.; Wang, X. Comparison deep learning method to traditional methods using for network intrusion
detection. In Proceedings of the 2016 8th IEEE International Conference on Communication Software and
Networks (ICCSN), Beijing, China, 4–6 June 2016; pp. 581–585.

5. Garg, S.; Kaur, K.; Kumar, N.; Kaddoum, G.; Zomaya, A.Y.; Ranjan, R. A hybrid deep learning-based model
for anomaly detection in cloud datacenter networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 924–935.
[CrossRef]

6. Aggarwal, C.C.; Sathe, S. Outlier Ensembles: An Introduction; Springer: Berlin/Heidelberg, Germany, 2017.
7. Kim, J.; Kim, J.; Thu, H.L.T.; Kim, H. Long short term memory recurrent neural network classifier for

intrusion detection. In Proceedings of the IEEE 2016 International Conference on Platform Technology and
Service (PlatCon), Jeju, Korea, 15–17 February 2016; pp. 1–5.

8. Hodo, E.; Bellekens, X.; Hamilton, A.; Tachtatzis, C.; Atkinson, R. Shallow and deep networks intrusion
detection system: A taxonomy and survey. arXiv 2017, arXiv:1701.02145.

9. Abolhasanzadeh, B. Nonlinear dimensionality reduction for intrusion detection using auto-encoder
bottleneck features. In Proceedings of the IEEE 2015 7th Conference on Information and Knowledge
Technology (IKT), Urmia, Iran, 26–28 May 2015; pp. 1–5.

10. Fiore, U.; Palmieri, F.; Castiglione, A.; De Santis, A. Network anomaly detection with the restricted Boltzmann
machine. Neurocomputing 2013, 122, 13–23. [CrossRef]

11. Alom, M.Z.; Bontupalli, V.; Taha, T.M. Intrusion detection using deep belief networks. In Proceedings of the
IEEE 2015 National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15–19 June 2015;
pp. 339–344.

12. Mendes-Moreira, J.; Soares, C.; Jorge, A.M.; Sousa, J.F.D. Ensemble approaches for regression: A survey.
ACM Comput. Surv. Csur 2012, 45, 1–40. [CrossRef]

13. Govindarajan, M.; Chandrasekaran, R. Intrusion detection using neural based hybrid classification methods.
Comput. Netw. 2011, 55, 1662–1671. [CrossRef]

14. Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990,
12, 993–1001. [CrossRef]

15. Polikar, R. Ensemble Learning in Ensemble Machine Learning: Methods and Applications; Zhang, C., Ma, Y., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012.

16. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
17. Sesmero, M.P.; Ledezma, A.I.; Sanchis, A. Generating ensembles of heterogeneous classifiers using stacked

generalization. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2015, 5, 21–34.

https://www.stratosphereips.org/datasets-iot23
https://dataset.litnet.lt
https://github.com/ACANETS
http://dx.doi.org/10.1007/s12652-015-0283-x
http://dx.doi.org/10.1109/TNSM.2019.2927886
http://dx.doi.org/10.1016/j.neucom.2012.11.050
http://dx.doi.org/10.1145/2379776.2379786
http://dx.doi.org/10.1016/j.comnet.2010.12.008
http://dx.doi.org/10.1109/34.58871
http://dx.doi.org/10.1016/S0893-6080(05)80023-1

Sensors 2020, 20, 4583 20 of 20

18. Cerqueira, V.; Pinto, F.; Sá, C.; Soares, C. Combining boosted trees with metafeature engineering for
predictive maintenance. In Proceedings of the International Symposium on Intelligent Data Analysis,
Stockholm, Sweden, 13–15 October 2016; pp. 393–397.

19. Karthick, R.R.; Hattiwale, V.P.; Ravindran, B. Adaptive network intrusion detection system using a hybrid
approach. In Proceedings of the IEEE 2012 Fourth International Conference on Communication Systems and
Networks (COMSNETS 2012), Bangalore, India, 3–7 January 2012; pp. 1–7.

20. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the
UNSW-NB15 data set and the comparison with the KDD99 data set. Inf. Secur. J. Glob. Perspect. 2016,
25, 18–31. [CrossRef]

21. Choraś, M.; Pawlicki, M.; Puchalski, D.; Kozik, R. Machine Learning–The Results Are Not the only Thing that
Matters! What About Security, Explainability and Fairness? In Proceedings of the International Conference
on Computational Science, Amsterdam, The Netherlands, 3–5 June 2020; pp. 615–628.

22. Liu, X.Y.; Wu, J.; Zhou, Z.H. Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man
Cybern. Part Cybern. 2008, 39, 539–550.

23. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

24. Rendón, E.; Alejo, R.; Castorena, C.; Isidro-Ortega, F.J.; Granda-Gutiérrez, E.E. Data Sampling Methods to
Deal With the Big Data Multi-Class Imbalance Problem. Appl. Sci. 2020, 10, 1276. [CrossRef]

25. Zhang, C.; Cheng, X.; Liu, J.; He, J.; Liu, G. Deep sparse autoencoder for feature extraction and diagnosis of
locomotive adhesion status. J. Control. Sci. Eng. 2018, 2018. [CrossRef]

26. Xu, J.; Xiang, L.; Liu, Q.; Gilmore, H.; Wu, J.; Tang, J.; Madabhushi, A. Stacked sparse autoencoder (SSAE)
for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 2015, 35, 119–130.
[CrossRef]

27. Dutta, V.; Choraś, M.; Pawlicki, M.; Kozik, R. Hybrid Model for Improving the Classification Effectiveness
of Network Intrusion Detection. In Proceedings of the 13th International Conference on Computational
Intelligence in Security for Information Systems (CISIS 2020), Burgos, Spain, 18–20 September 2020, accepted.

28. Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to monitor machine health with convolutional bi-directional
LSTM networks. Sensors 2017, 17, 273. [CrossRef]

29. Damasevicius, R.; Venckauskas, A.; Grigaliunas, S.; Toldinas, J.; Morkevicius, N.; Aleliunas, T.; Smuikys, P.
LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection. Electronics
2020, 9, 800. [CrossRef]

30. Claise, B.; Sadasivan, G.; Valluri, V.; Djernaes, M. Cisco Systems Netflow Services Export Version 9.
Available online: https://www.hjp.at/doc/rfc/rfc3954.html (accessed on 14 August 2020).

31. Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance.
J. Am. Stat. Assoc. 1937, 32, 675–701. [CrossRef]

32. Barut, O.; Luo, Y.; Zhang, T.; Li, W.; Li, P. NetML: A Challenge for Network Traffic Analytics. arXiv 2020,
arXiv:2004.13006.

33. Kozik, R.; Choras, M.; Keller, J. Balanced Efficient Lifelong Learning (B-ELLA) for Cyber Attack Detection.
J. UCS 2019, 25, 2–15.

34. Pawlicki, M.; Choraś, M.; Kozik, R. Defending network intrusion detection systems against adversarial
evasion attacks. Future Gener. Comput. Syst. 2020, 110, 148–154. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/19393555.2015.1125974
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.3390/app10041276
http://dx.doi.org/10.1155/2018/8676387
http://dx.doi.org/10.1109/TMI.2015.2458702
http://dx.doi.org/10.3390/s17020273
http://dx.doi.org/10.3390/electronics9050800
https://www.hjp.at/doc/rfc/rfc3954.html
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1016/j.future.2020.04.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation and Objectives
	Contributions and Organization

	Related Work
	Deep Learning
	Ensemble Learning and Stacked Generalization

	Proposed Methodology
	General Overview
	Data Pre-Processing
	Feature Selection
	Feature Normalization

	Data Balancing
	Feature Dimensionality Reduction
	Classifier Modeling
	Modeling the Deep Neural Network
	Modeling Long Short-Term Memory

	Selection of Datasets
	IoT-23
	LITNET-2020
	NetML-2020

	Experiments and Results
	Evaluation Metrics
	Experimental Settings
	Experimental Evaluation on the IoT-23 Dataset
	Experimental Evaluation on the LITNET-2020 Dataset
	Experimental Evaluation on the NetML-2020 Dataset

	Conclusions and Future Work
	Data Availability
	References

