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Abstract: In recent years, industrial production has become more and more automated. Machine
cutting tool as an important part of industrial production have a large impact on the production
efficiency and costs of products. In a real manufacturing process, tool breakage often occurs in an
instant without warning, which results a extremely unbalanced ratio of the tool breakage samples to
the normal ones. In this case, the traditional supervised learning model can not fit the sample of tool
breakage well, which results to inaccurate prediction of tool breakage. In this paper, we use the high
precision Hall sensor to collect spindle current data of computer numerical control (CNC). Combining
the anomaly detection and deep learning methods, we propose a simple and novel method called
CNN-AD to solve the class-imbalance problem in tool breakage prediction. Compared with other
prediction algorithms, the proposed method can converge faster and has better accuracy.

Keywords: tool breakage; deep learning; anomaly detection; spindle current

1. Introduction

Modern industry is increasingly demanding automation, and automatic management of computer
numerical control (CNC) has great significance for the industry [1,2]. In a real manufacturing process,
breakage of machine tools usually happens without any indication, which brings to the high defect
rate and production cost. The task of tool breakage monitoring aims at accurately detecting the tool
wear state in real-time, which often consists of four parts—sensor data acquisition, data processing,
feature extraction and modeling. The problem of data cost and class-imbalance is the difficulty of tool
wear monitoring. In this work, we propose a new framework to explore a tool monitoring system
who emphasizes on the actual scene. The hall sensor is used for collecting current data of machine
spindle in our system, which can achieve low cost and high real-time data acquisition. Then, We use
frequency domain technology to filter and denoise the signal, and time domain technology to feature
extraction. Finally, we propose a novel method called CNN-AD, which is trained by only normal
machining signals, to solve the class-imbalance problem and has stronger generalization ability.

As input to the tool breakage monitoring system, a suitable physical signal is crucial for
understanding the process of tool wear, the common used physical monitoring signals include
acoustic emission, vibration force, spindle current, cutting force, cutting temperature and so on [3–5].
In traditional tool wear monitoring, Li proposed a method to detect tool flute breakage by monitoring
the features which are generated through improved time-domain averaging (TDA) decomposes the
feed-motor current signals [6]. Nie detected tool wear by using db8 to decompose the Acoustic Emission
(AE) signals and extracting the feature vector of frequency band [3]. Akbari proposed a method that
monitoring the tools wear by quantizing the harmonic distortion of spindle current and characteristic
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analysis in time and frequency domain [7]. In these studies, features are selected manually by signal
analysis to observe tool wear changes, but the features used are relatively single and do not have the
learning ability, so they are often poor in judging complex and changeable signals. With advances
in sensor and computer technology, more and more sensor signals and statistical learning methods
are incorporated into tool breakage monitoring systems. Lian proposed a method that extracted
the features by singular value decomposition (SVD) and classified tool breakage through Linear
Discriminant analysis (LDA) based on spindle current to monitor the tool breakage [8]. Lin proposed a
method of least-squares support vector machine (LS-SVM) which is trained by the feature extracted
with Sym6 wavelet transformation to decompose the feedback signals [9]. Xu proposed a method
of Empirical Mode Decomposition (EMD) and support vector machine (SVM) based on AE signal,
AE signals is decomposed by EMD to achieve Intrinsic Mode Functions (IMFs), then feature vectors are
calculated by IMFs and SVM is trained by this feature vectors [10]. The training of SVM often needs to
reduce the dimension in a wide range, such as principal component analysis (PCA), which will lead
to the omission of certain signal features. Neural networks are also corporated into tool monitoring.
Li proposed a method of a fuzzy network to defect tool wear based on current [11]. Corne analyzed the
feasibility of prediction tools based on current and the performance of different neural networks [12,13];

The existing studies improve the accuracy and diversity of tool wear prediction, but there are
still some problems—(1) The cost of model training is expensive, supervised learning requires a
large number of training sets, but tool breakage often means that defective goods will be produced,
which leads to high cost. (2) Due to the class-imbalance, the high accuracy of the model is often
reflected in the good performance of normal wear prediction, but in fact, the prediction accuracy of
tool breakage is poor. (3) The generalization ability of these methods is not enough. It is likely to make
a prediction error when an untrained breakage occurs, and this is common in practical processing
because the form of tool chipping is often random. Anomaly detection refers to the problem of finding
patterns in data that do not conform to expected behavior [14]. Getting a labeled set of anomalous
data instances which cover all possibilities of anomalous behavior is more difficult than getting labels
for normal behavior. Moreover, the anomalous behavior is often dynamic in nature. Tool breakage
detection is a typical anomaly detection problem, tool breakage samples are only a little, while the
normal machining samples are abundant.

In summary, our key contributions are—(1) A tool breakage monitoring system is proposed
for low-cost, high real-time and accurate detection. (2) CNN-AD has strong generalization ability
when there are differences between tool breakage and normal machining signals. (3) Combining the
anomaly detection and deep learning methods, CNN-AD solves the class-imbalance problem because
it only uses normal machining signals for training. we perform extensive experiments on the actual
processing dataset, compared with other prediction algorithms, it is found that CNN-AD can converge
faster and have better performance.

2. Materials and Methods

We use the spindle current data as experimental data. In this section, we discuss the data
environment and the main method used in the experiment.

2.1. Data Environment

The experimental data is collected in the real production process of a well-known manufacturer.
We install the Hall sensor on the spindle control wire of the machine tool, and the current signal is
sliced and stored in the memory after the data acquisition card performs analog-to-digital conversion.
Experimental environment information of processing is shown in Table 1.
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Table 1. Experimental environment.

Parameters Values

Machine model Super MC F2.0-I/S
Tool type Corner Radius End Mill

Tool material Cemented carbide
Tool specification 701B-DJ 4244-50

Workpiece material S136
Processing method Milling

Rotating speed 6500 r/min
Feed rate 1500 mm/min

Working Engagement 2.0
Back Engagement 0.1

Different experimental environments or even subtle changes in machine parameters will affect
the collected data. The most important parameters of this machine we must notice are as follows:

• Methods of processing, like Turning, Milling, Grinding, Drilling, Wire Cutting. Different processing
methods will mean the extent and type of wear on the tool are different.

• Rotating speed, different processing requires different rotating speed. When the rotating speed is
high, it will lead to high temperature due to high-speed friction during tool processing, which will
change the structure and composition of the tool material, and it is also more likely to cause
tool wear.

• Feed rate, which represents the degree of tool movement relative to the workpiece in the direction
of feed motion. The size of the feed rate not only determines the machining efficiency of the
machine tool, but also has an important impact on the surface quality of the workpiece. If the
feed rate changes sharply, it will seriously affect the service life of the tool and the CNC machine.

Considering the real-time requirements in actual processing, we use Hall Current Sensor and NI
PCIe data acquisition card to acquire the spindle current of the machine with the sampling frequency
of 20,000 points per second in this work.

2.2. Definition of Abnormal and Data Category

In our work, an important statement needs to be declared. We regard tool breakage as an abnormal
case, and general machining as a normal case. The abnormal division of the sample is usually based
on the experience of the worker, who judges according to the machining noise and the quality of
the workpiece. The processing noise of machine tools will go through the experience from slight to
harsh. When the tool breakage occurs, the noise is harsh and the vibration of the machine tool will
increase. In addition, when the machining specification of the workpiece is not up to standard and the
processing surface is rough, we also think the breakage has occurred.

To prevent confusion, categories of data also need to be defined. In the experiments, the processing
current data with a duration of 6 min is regarded as a sample, which is divided into two categories:
positive corresponding to normal state and negative to abnormal state. The label of sample depends
on the tool status at the 7th minute. For example, at the 47th minute, the tool breakage occurred, then,
the label of samples from 41 to 46 min was divided to negative. In addition, the samples after 47 min
were also classified as negative.

2.3. Feature Analysis Methods

2.3.1. Time Domain Feature Analysis

Time domain signal refers to the measurement sequence with time as variable, which is completely
localized in the time domain. it can accurately and intuitively reflect the change of the tool at each
moment during the cutting process. we can extract relatively stable and reliable monitoring indicators
through time-domain analysis. The common time domain analysis methods are as follows:
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• Mean, which represents the central trend of the tool condition monitoring signal, is a first-order
statistical feature. With the increase of tool wear, the mean value of sensor signal will change in
different degrees. Defined as:

x̄ =
1
N

N

∑
i=1
|xi|. (1)

• Variance, describes the dynamic fluctuation degree of the signal. Defined as:

σ2 =
1
N

N

∑
i=1

(xi − x̄)2. (2)

• Peak-to-peak value, is the difference between the peak and trough of a signal, used to describe
the degree of fluctuation of the signal. Defined as :

X = max(xi)−min(xi). (3)

• Kurtosis describes the sharpness of the peak of a frequency-distribution curve and the flatness of
the data distribution. Kurtosis can often get a good result in anomaly detection problems. A high
Kurtosis means that the increase in variance is caused by an extreme difference in which the low
frequency is either greater or less than the average, as :

K =
1
n ∑N

i=1 (xi − x̄)4

( 1
n ∑N

i=1 (xi − x̄)2)2
. (4)

• Skewness describes the asymmetry of the probability distribution of real random variables.
A skewness of zero means that data are evenly distributed on both sides of the average, negative
skewness means that most of the data are on the right side of the average. Conversely, positive
values of skewness indicated that most of the data are on the left side of the average, as :

S =
1
n ∑N

i=1 (xi − x̄)3

( 1
n ∑N

i=1 (xi − x̄)2)
3
2

. (5)

In the experiment, we performed the above-mentioned time domain analysis with a time span
of 1 s and 1 min to observe the changes in tool wear in the time domain. Then, the features that are
sensitive to tool wear are selected as the input of the final model.

2.3.2. Frequency Domain Feature Analysis

Generally, the signals measured by the sensors are time domain signals, but the tool breakage
often causes the change of signal frequency distribution. Therefore, it is necessary to analyze the
signal in frequency domain. Frequency domain analysis can obtain the frequency structure, and the
relationship between amplitude, phase energy and frequency. The typical methods as follows:

• Frequency spectrum:

X(ω) =
∫ +∞

−∞
x(t)e−jωtdt. (6)

• Power spectrum:

Sx(ω) = |F(ω)2| =
∫ +∞

−∞
Rx(τ)e−jωtdt, (7)

where Rx(τ) is an autocorrelation function.
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2.3.3. Wavelet Packet Analysis

Many studies extract characteristics through wavelet packets [15,16]. Frequency domain analysis
describes the spectral characteristics of the signal, but it can not indicate both the time and frequency
local information of the signal. In order to solve this problem, the wavelet packet transform is used to
get the local characteristics of the time-frequency domain. Given orthogonal scaling function j(t) and
wavelet function f (t), as: 

ϕ(t) =
√

2 ∑
k

h0k ϕ(2t− k)

φ(t) =
√

2 ∑
k

h0kφ(2t− k),
(8)

where h0k, h1k are the filter coefficients. In order to further extend the two scale equation, the following
recurrent relation is defined. 

w2n(t) =
√

2 ∑
k∈Z

h0kwn ϕ(2t− k)

w2n+1(t) =
√

2 ∑
k∈Z

h1kwn ϕ(2t− k),
(9)

where w0(t) = φ(t) is a scaling coefficient and w1(t) = ϕ(t) is a wavelet coefficient. The set of functions
wn(t)n∈Z are wavelet packets. In order to discuss the space of wavelet packets, the scale subspace Vj
and the wavelet subspace Wj are unified to be characterized by a new subspace Un

j ,and the following
symbols are introduced as: {

U0
j = Vj, j ∈ Z

U1
j = Wj, j ∈ Z.

(10)

According to the wavelet multiresolution analysis, there are:

Vj+1 = Vj
⊕

Wj, j ∈ Z. (11)

The introduced wavelet packet symbols are expressed as:

U0
j = U0

j+1

⊕
U1

j+1, j ∈ Z. (12)

Then extension to the wavelet packet:

Un
j = U2n

j+1

⊕
U2n+1

j+1 , j ∈ Z, n ∈ Z+, (13)

where U2n
j+1 and U2n+1

j+1 are the subspaces of Un
j , U2n

j+1, corresponds to w2n, and U2n+1
j+1 corresponds

to w2n+1. The decomposition space of multiresolution analysis is L2(R) =
⊕

j∈Z Wj. In order to
make it easier to compare, we use Wn

j to represent Un
j , and the general expression of wavelet packet

decomposition is as follows:

wj = U2
j+1

⊕
U3

j+1

wj = U4
j+2

⊕
U5

j+2

⊕
U6

j+2

⊕
U7

j+2

...

wj = U2k

j+k

⊕
U2k+1

j+k

⊕
U2k+1

j+k

⊕
U2k+1−1

j+k .

(14)

The decomposition process of wavelet packets is shown in Figure 1:
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Figure 1. Three-layer wavelet packet decomposition.

The original frequency band is divided into two layers in each layer, and the original frequency
band is divided into 2k subbands for the k layer wavelet packet, then, the subdivision frequent band is
realized, and the resolution of the frequency domain is improved. Before the wavelet packet feature
is extracted, the wavelet packet decomposition level should be determined first. After the signal is
decomposed by wavelet packet, the band resolution of each wavelet packet decomposition is defined
as follows:

f = (
FS
2

/2n), (15)

where FS represents the signal sampling frequency, n is the number of wavelet decomposition layers.
Not each frequency-band energy can reflect the change of tool breakage. Therefore, if the number
of decomposition layers is too large, the number of interference features also increases. But if the
decomposition level is little, the resolution of the frequency band is very small, and it may not be
able to accurately extract the frequency band characteristic values that reflect the status of a tool.
In this paper, through comparing the characteristics of the spectrum distribution of signals in different
situations, we decide the frequency band resolution, and the number of decomposition layers which is
deduced by Equation (15).

2.4. Wear Prediction Methods

2.4.1. Convolutional Neural Network

Convolutional Neural Network (CNN) is one of the most representative network structures
in deep learning and has achieved great success in supervised learning [17–21]. In addition to
strong fitting and learning ability, CNN has some other advantages compared with traditional neural
networks, as follows:

• The CNN extracts the local features of the signals by convolution kernels, which is composed
of some parameters. The convolution kernels slides on input data with set step size to calculate
weighted average, such as:

X = W · X, (16)

where W is the convolution kernel matrix and X is the equal-sized input data block corresponding
to the convolution kernels. The parameters in the convolution kernel matrix will increasingly
favor the inputs or locations that have a significant impact on the outcome as the network is
optimized. For example, when we observe a person, we focus on his nose, hair, eyes, and so forth,
and these positions are important features of him.

• Weight sharing. For the different inputs, the same convolution kernel matrix is used to extract
features, which is like using the same pair of eyes for observing different images. In this way,
CNN can save a lot of parameters compared to traditional neural networks. At the same time,
this weight sharing structure reduces the complexity of the network and prevents over-fitting to a
certain extent.

2.4.2. Convolution Neural Network Framework In Experiments

The performance of CNN will be affected by some super parameters, which are shown in Table 2.
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Table 2. Some parameters of neural network.

Parameters CNN

Network depth 5
Learning rate 0.0001

Activation function Relu
Size of input 7200 × 4
Mini-batch 20

Total number of cycles 3600
Optimizer Adam

• Depth of network, the neural network is composed of many parameters. If the network is deep
and has many parameters, the network will have greater learning ability and capacity, but it
may also lead to over-fitting, and vice versa. With this in mind and after testing, we chose a
compromise depth.

• Learning rate is one of the most important hyperparameters of CNN. When we choose a large
learning rate, the loss function may miss the best point and reach the other direction of the
gradient. If the learning rate is too small, the network will move slowly, and it may be lost
in the local optimum. So, a suitable learning rate can help us to reach the best point quickly.
After repeated adjustments, we finally set the learning rate with 0.0001.

The architecture of CNN is shown in Figure 2.

Figure 2. The architecture of convolutional neural network (CNN).

The convolutional neural network we built has an input layer, three hidden layers, and a fully
connected layer. Finally, we get the output of prediction results by the softmax layer. The data volume
we used is contained by the whole life cycle of five tools spindle current signals, totals of 404 samples.
The data of size 4 × 7200 × 1 into the network, we choose zero-padding if the data size does not reach
7200. Deserved to be mentioned, input data is randomly selected in the train step, but in the test step,
it is extracted by the time sequence of tool processing.

All the strides of the pooling layer we used are [1 × 2] and size of kernels is also [1 × 2]. A pooling
layer is connected after each convolutional layer and a ReLu layer is connected after each normalization
layer. Considering that small convolution can extract more detailed information, in the experiment, all of
our convolution kernels are 3× 3 in size. In Figure 2, the first convolutional layer includes 32-channels
convolution kernels for extract features of the input current signals, and the output result is input to the
second convolutional layer and filtered with 64-channels convolution kernels. The third convolution layer
connects the output of the second hidden layer with 128-channels convolution kernels. Then, we reshape
the output size of the third hidden layer [4,900,512] to [14 × 900 × 512], the fully connected layer takes
the reshaped vector as input for feature integration. Finally, we predict the signal category through a
softmax layer.
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2.4.3. Convolution Neural Network Using Abnormal Detection (CNN-AD)

CNN-AD is not a new type of neural network, but a method for solving the abnormal detection
problem. Detection of tool breakage is a typical abnormal detection problem. In the solution of
abnormal detection, the abnormal points often have a big difference from the normal points. So, models
are trained only with positive samples and set a threshold to the classification that is often used in
anomaly detection problems. In our experiments, tool breakage samples have a slight difference from
the normal samples. The reason is that when the tool breakage occurs, the friction between the tool and
the workpiece decreases instantly, which is reflected in a sudden drop in the current. The magnitude
of the drop is affected by the tool material and the machine tool. Then, due to the compensation
mechanism of the CNC [22], the friction will be compensated for quickly, and the current will recover
and increase again. Finally, the goal of CNN-AD is to detect this anomaly on the signal.

Based on the advantages of CNN described in Section 2.4.1, we also expect that the model used
in anomaly detection can help us find the difference between abnormal and normal samples for
classification. Traditional machine learning, such as SVM, continuously improves the decision-making
ability through the learning of samples, while CNN optimizes the feature learning of samples to find
specific characteristics of the category to distinguish categories. CNN is more in line with our ideas.
In addition, compared with other models, CNN has better fitting ability to high-dimensional data.
Therefore, CNN is selected as the skeleton of anomaly detection in this work.

We use a five-layer CNN as the same as Section 3.5, train this model only with positive samples
by gradient descent, and set a threshold according to the loss value. If the loss value of a sample is
higher than the threshold, the model classifies it as a negative sample, as shown in Figure 3. It is worth
noting that the threshold is not used in training, but only used to divide positive and negative samples
in the test phase. We assume that the loss value of positive samples in the network is very small.
But the negative samples will get a bigger loss value after passing through the network in the test
stage, because the network has not seen the negative samples in the training stage. The initial setting
of the threshold is manually set according to the loss value of the positive sample during training,
which needs to be greater than the maximum loss value of the positive sample, and then the threshold
is adjusted to be as small as possible to be less than the minimum loss value of the negative sample in
the test stage to fully divide negative samples. For example, the maximum loss value in the training
process is 0.5, setting the threshold to 0.6 will be an initial consideration, and then adjust the threshold
according to the division effect in the test.

(a) training time (b) testing time

Figure 3. The architecture of CNN-AD. (a) In the training stage, CNN-AD is trained by only normal
samples, the label is [1,0], then the cross entropy is calculated through the label and the output of the
network, and Adam is used for network optimization. (b) In the test stage, CNN-AD divides the test
set containing both normal and abnormal samples into two categories by threshold.
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3. Results and Discussion

In this section, we try to find the current features that can reflect tool wear by the methods
mentioned in Section 2.2. Then, these features we found will be fed into the models for training and
test the model on the target dataset.

3.1. Time Domain Analysis

The processing log (Table 3) shows the life cycle of the tool and the processing volume of the
machine. In the actual production, the CNC machine will be running until the tool has broken or
the machine tool is abnormal. In this process, the worker is based on the experience of the machine
processing noise to determine whether the tool edge is broken. When there is a sharp noise in the CNC
machine, the worker will stop the machine and take out the tool and observe the breakage under a
high-precision electron microscope. In fact, the worker’s judgment of the tool breakage will often be
later than the actual moment.

Table 3. The processing log.

Start Time End Time Cutting Sound Size

0 17 slight
12 40 normal
40 52 slightly larger
52 61 abnormal

After wiping off the unnecessary current data, such as a reset signal, we analyzed the mean,
variance, peak-to-peak, kurtosis and skew with a full life cycle of a tool. Figure 4a shows the whole
life cycle of a tool. The rest of Figure 4, we compared the result of the time domain features with the
original data. These features with a time span of 1 s have no obvious trend in the Figure 4, but we can
observe that a mutation appeared in both of these features. Comparing Figure 4 and Table 3, it can
be observed that the dramatic change of the current signal appears at 52–61 min and corresponds to
abnormal in Table 3.

(a) original data (b) mean value (c) variance value

(d) peak to peak value (e) kurtosis value (f) skew value

Figure 4. (a) the original data of a tool’s whole life cycle, (b) mean feature with a time span of 1 s,
(c) variance feature with a time span of 1 s, (d) peak feature with a time span of 1 s, (e) kurtosis feature
with a time span of 1 s, (f) skew feature with a time span of 1 s.

Figure 5 shows the analysis of the time domain with a time span of 1 min. Compared with Figure 4,
the one-minute time domain features are more smooth and the upward trend is more obvious. It is easy
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to understand that increased time span is like smoothing the current signal. Through the experiments
of different tools, we can conclude that the tool in this processing environment is windless in the earlier
stage of life and it explains why the wear of the tool is smooth at the beginning and why a dramatic
change appears at the end of its life.

(a) mean value (b) variance value (c) peak to peak value

(d) kurtosis value (e) skew value

Figure 5. Time domain analysis with time span of one minute.

3.2. Frequency Domain Analysis

In this paper, Fast Fourier Transform (FFT) is used for data processing. The sampling rate of
the data is 20,000 Hz, and the sampling point is 1,200,000/min. In order to obtain the change of the
instantaneous frequency structure of tool breakage, we analyze the data of the initial processing, severe
wear, tool breakage and after tool breakage. Figure 6a described the FFT of new tool wear, Figure 6b
indicated the FFT of severe wear, Figure 6c responded to the FFT of tool breakage and Figure 6d is the
FFT analysis after tool breakage. Concluding from Figure 6:

• The process frequency of the tool is mainly concentrated in the low frequency (220 Hz). And there
are almost no amplitude of other frequency.

• The amplitude of cutting frequency varies with the change of tool state.

Figure 6. (a) FFT of new tool wear, (b) FFT of severe wear, (c) FFT of tool breakage, (d) FFT after tool
breakage

3.3. Wavelet Packet Analysis

According to the results of frequency domain analysis, the wavelet packet decomposition level
is 5, the corresponding frequency band resolution is 312.5 Hz, and the db5 wavelet is used for
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decomposition. The corresponding frequency-band energy distribution is obtained by analyzing the
initial data (Figure 7).

In Figure 7, ordinates represent different frequency bands, with frequencies increasing from
bottom to top. Each band has a bandwidth of 312.5 Hz, such as 31 for 0–312.5 Hz, 32 for 312.5–625 Hz,
and 36 for the seventh frequency band of 1875–2187.5. The abscissa indicates the time. The darker the
color of the frequency band is, the higher the energy is.

Figure 7. Frequency-band energy distribution at the initial stage of processing.

It can be seen from Figure 7 that the energy of the signal is mainly distributed in the range of
0–624 Hz, and the frequency band of 0–312.5 Hz has more energy, which is consistent with the fourier
analysis results. The energy distribution of the signal is determined, and then, the energy change of
the two cycles is analyzed.

As shown in Figure 8, the trend of the two frequency bands is the opposite, the frequency band of
0–312.5 Hz (recorded as frequency band 31) energy: 1. With the increasing processing time, energy
gradually decreases. 2. After tool breakage, the energy gradually increases. Besides, the energy of band
312.5–625 Hz (recorded as band 32) increases with the increasing of processing time and decreases after
tool breakage. At the same time, the extreme points of Figure 8 in 37 min is caused by the machine tool
stopped processing.

Figure 8. Energy trend of the top two frequency bands, the top picture described the energy change of
the band 0–312.5 Hz, the bottom picture indicated the energy change of the band 312.5–625 Hz.
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3.4. Data Processing and Feature Selection

In the experiment, before the data enters the model training, denoising processing and feature
extraction are required to improve the correlation between the data and tool wear. The signals are
mainly composed of three parts—useless machine idling signals, processing signals and noise signals.
In this section, we expect to clarify the frequency of each part through the frequency technology, so as
to filter out the noise signal, making the data cleaner.

According to the results of the Fourier analysis in Section 3.2, the signal is mainly composed of
220 Hz signals, but Fourier cannot reflect the changes in signal energy in the time dimension. Wavelet
packet technology solves this problem well. The result of wavelet analysis shows that the signal has
energy in both the 31 and 32 bands, and the 31 band has the strongest energy, which is consistent
with the Fourier results. There is a certain correlation between the tool wear and the energy trends of
all two frequency bands. Therefore, we used low-pass and frequency band filtering to figure out the
components of these two frequency bands, as shown in Figure 9.

(a) origin data

(b) 31 frequency band

Figure 9. Cont.
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(c) 32 frequency band

Figure 9. (a) The original data of a current sample. (b) The original data is filtered by 300 Hz low-pass.
It can be seen that the two high amplitudes in the original data are filtered out, and the filtered signal is
smoother. (c) The original data is filtered by the frequency band of 300 Hz to 600 Hz, and it can be seen
that the signal amplitude after filtering is small and disorderly. We regard it as current noise.

It can be concluded that the signals in the 31 frequency band is the tool processing signal which is
more flat, while the 32 frequency band seems to be composed of processing noise. Therefore, we use a
low-pass filter to denoise the signals, and then the denoised signals after feature extraction are input
into the model for training.

After signal filtering, we use time domain technology to extract features of the signals (described
in Section 3.1). Considering that the skewness does not have a good effect on all cutting tools, it reflects
the degree of symmetry of the signal, while the current signal performs better in symmetry in the
experiment. We choose the four characteristics of mean, variance, kurtosis, peak-to-peak value as the
input of neural network, indicating the stability of the signal, the degree of fluctuation, the amplitude
of the fluctuation, and the abnormal situation, in order to comprehensively characterize the change
information of tool wear on the current signal. Finally, we get the input data of the network by
under-sampling with the four feature methods, as shown in Figure 10.

Figure 10. The characteristic calculation is carried out at every 1,000 points, so that the original current
data of 6 min is under-sampled to 7200 × 4 (four characteristics).
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3.5. Tool Breakage Detection by Models

In the experiment, we regard the prediction of tool breakage as two categories game, normal
samples are taken as positive samples, and vice versa. The structure of CNN-AD is shown as Section 2.3,
four characteristics are taken as input for training. In order to verify the effect of CNN-AD, we take three
commonly used models as a comparison, CNN model without anomaly detection, back propagation
network (BP) and SVM. The both structure and input of CNN model without anomaly detection is
the same as CNN-AD, except the way of training. BP network consists of a three-layer perceptron
with 512 neurons. The dimension of input data was reduced from 7200 × 4 to 16 by principal
component analysis (PCA), and then taken into SVM. In addition, we added an unsupervised anomaly
detection method for comparison, One-Class Support Vector Machine (OCSVM) which is introduced
by Schölkopf et al. [23] OCSVM is about to learn a rough, close frontier delimiting the contour of
the initial observations distribution, then, if further observations lay within the frontier-delimited
subspace, they are considered as coming from the same population than the initial observations.
Otherwise, if they lay outside the frontier, they will be judged abnormal. In the experiment, we chose
the RBF kernel for OCSVM to define the boundary.

In the training stage, both positive and negative samples are used for training in the comparison
models, and for CNN-AD, there are only positive samples. In the testing stage, CNN-AD predicts
the sample as normal or abnormal by a threshold (set empirically to 1.0) to divide the network loss.
Besides, due to the class-imbalance of samples, the accuracy can not correctly evaluate the performance
of models on the abnormal samples, we use confusion matrix, recall rate and F1-score as reference
index to evaluate the performance on both normal and abnormal samples. The average results of
these models reported in Table 4. In the experiment, we chose the RBF kernel for OCSVM to define
the boundary.

Table 4. Performance of models.

Model Accuracy Recall Rate F1-Score

BP 87.6% 88.57% 88.08%
SVM 92.92% 100% 91.892%

OCSVM 60.18% 63.81% 61.94%
CNN 96.46% 100% 97.87%

CNN-AD 99.12% 100% 99.55%

We can conclude from Table 4 that CNN-AD performs best, the accuracy rate is 100%, which is
possibly caused by the training way of CNN-AD can amplify the difference between normal and
abnormal samples. CNN-AD did not learn the characteristics of abnormal samples which results in
the high loss value of abnormal samples.

The difference between positive samples was small, from the confusion matrix of each model
(Table 5), the performance of models in positive samples is satisfactory, SVM, CNN and CNN-AD
can even achieve 100% accuracy of positive samples. The main difference in the performance of these
models lies in the prediction of negative samples, the prediction accuracy of each models in negative
samples was 75% (BP), 0% (SVM), 12.50% (OCSVM), 50% (CNN), 87.5% (CNN-AD) respectively. In the
comparison of anomaly detection methods, OCSVM is better than SVM in judging abnormal samples,
while the judging performance of normal samples is poor. This may be due to the small difference of
the sample points in the multi-dimensional space (Figure 11), and the sample points cannot be divided
directly by the boundary.
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Table 5. Confusion Matrix of Models.

Confusion Matrix The Actual Data
Positive Negative

BP Predict data positive 93 2
negative 12 6

SVM Predict data positive 105 8
negative 0 0

OCSVM Predict data positive 67 7
negative 38 1

CNN Predict data positive 105 4
negative 0 4

CNN-AD Predict data positive 105 1
negative 0 7

The difficulty of predicting tool breakage lies in the prediction accuracy of negative samples,
as shown in Figure 11, the abnormal samples are mixed between the normal samples, and the difference
between the abnormal and the normal samples cannot be clearly observed from the two-dimensional
representation of the current data. In addition, the time of tool breakage is very short compared to
normal processing, there are only a few abnormal samples but dozens of positive samples of a whole
life cycle of a tool. The form of each breakage tool in current signals is likely to be different, such as the
difference in current amplitude or the changing trend. These reasons make the model can not fit the
negative sample very well. CNN-AD solves this problem by enlarging the difference between positive
and negative samples by its unique training method.

Figure 12 shows the loss of CNN-AD, CNN and BP; it indicates that normal process samples are
similar and easier to fit. During the training step, CNN-AD reaches convergence just in 10 iterations,
that is because CNN-AD is trained only with positive samples, and positive samples are very similar
to each other, which is due to fast convergence. CNN convergence requires 300 iterations, BP reaches
convergence in 100 iterations. Although BP converges faster than CNN, the results of BP are fluctuating.
BP is not stable, its accuracy often has more than 80% or less than 60%. CNN is stable, the accuracy of
CNN is stable at more than 95%. This may be because CNN is more complex and has more parameters
than BP.

Figure 13 shows the loss of the CNN-AD in the test stage, test dataset is a continuous life cycle of a
tool, we can observe that the loss of the network suddenly increases in the late life of the tool, which is
consistent with our previous analysis. The characteristics of the tool breakage are very different from
the characteristics of the normal sample, so we can classify abnormal samples by the threshold.

(a) True Data (b) Result of CNN-AD

(c) Result of BP (d) Result of SVM (e) Result of OCSVM (f) Result of CNN

Figure 11. The prediction results of each model in the testing stage. The test data is reduced to
2 dimensions by t-sne, red indicates abnormal samples, green indicates normal samples.
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(a) Loss of CNN (b) Loss of CNN-AD

(c) Loss of BP

Figure 12. Loss change in model iteration.

Figure 13. Loss of CNN-AD in test stage, the sudden rise of loss value is the moment of tool breakage.

4. Conclusions

In this paper, we find out some characteristics related to tool wear by feature engineering.
Then, we propose a simple and effective CNN-based anomaly detection method to detect tool breakage
through the spindle current, and verify the feasibility that tool breakage of CNC can be detected by
spindle current. Finally, we give evidence that the anomaly detection method is more suitable for
the problem of positive and negative sample imbalance. There is still some problem of limitations of
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the method, the performance of CNN-AD is based on the difference in the distribution between the
abnormal and the normal samples. In addition, CNN-AD only learns from normal samples, it does not
have the ability to learn abnormal samples. When the data distribution of the abnormal samples is
very close to the normal samples, the performance of CNN-AD may decrease. In addition, because the
negative data in the experiment are not sufficient to cover all forms of tool breakage, it can not verify
the performance changes of CNN-AD on the above problems. Different machine tools and different
tools have a different form of tool breakage, our results in this paper are built for a given machine with
specific parameters, tools and materials. If this environment is changed, the results will be different,
because the wear of tools is affected to a large extent by this environment element. So, if you plan to
use CNN-AD, please make sure there is a difference between positive and negative samples.

In view of the limitations of CNN-AD, we plan to introduce the transfer learning [24] to solve
these problem, the processing data under different parameters but similar distribution is transferred
for the tool wear prediction under the target parameters to cover more abnormal situations and
make the model have the learning ability of normal samples and abnormal samples for supervised
learning. We expect this approach can bring better generalization capabilities and be more suitable for
actual scenarios.
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