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Abstract: Wildfires are an increasing problem worldwide, with their number and intensity predicted
to rise due to climate change. When fires occur close to vineyards, this can result in grapevine smoke
contamination and, subsequently, the development of smoke taint in wine. Currently, there are
no in-field detection systems that growers can use to assess whether their grapevines have been
contaminated by smoke. This study evaluated the use of near-infrared (NIR) spectroscopy as a
chemical fingerprinting tool, coupled with machine learning, to create a rapid, non-destructive
in-field detection system for assessing grapevine smoke contamination. Two artificial neural network
models were developed using grapevine leaf spectra (Model 1) and grape spectra (Model 2) as inputs,
and smoke treatments as targets. Both models displayed high overall accuracies in classifying the
spectral readings according to the smoking treatments (Model 1: 98.00%; Model 2: 97.40%). Ultraviolet
to visible spectroscopy was also used to assess the physiological performance and senescence of leaves,
and the degree of ripening and anthocyanin content of grapes. The results showed that chemical
fingerprinting and machine learning might offer a rapid, in-field detection system for grapevine
smoke contamination that will enable growers to make timely decisions following a bushfire event,
e.g., avoiding harvest of heavily contaminated grapes for winemaking or assisting with a sample
collection of grapes for chemical analysis of smoke taint markers.

Keywords: smoke taint; remote sensing; climate change; near-infrared spectroscopy; volatile phenols

1. Introduction

The incidence and intensity of wildfires are increasing worldwide, mainly due to the effects of
climate change [1-5]. Bushfires that occur near wine regions can result in grapevine smoke exposure,
which can alter the chemical composition of grape berries. Wine produced from these smoke-affected
grapes may exhibit unpalatable smoky aromas and flavors, such as “burnt wood”, “ashy”, and “burnt
rubber” [6-9]. These undesirable characters have been attributed to smoke-derived volatile phenols
(VPs), including guaiacol, 4-methylguaiacol, cresols, and syringol [7,10,11]. It is thought that these VPs
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accumulate primarily in the skin of grape berries following smoke exposure and, to a lesser extent,
in the pulp and seeds [12-15]. Grapevine smoke exposure, and the resulting smoke taint in wine,
have caused significant financial losses for grape growers and winemakers due to discarded grapes and
unsaleable wine. For example, the 2009 Black Saturday bushfires in Victoria, Australia, were estimated
to have caused AUD 300 million in lost revenue [16-19]. More recently, the Australian Grape and Wine
Incorporated (AWGI) estimated an AUD 40 million loss from the 2019/2020 summer bushfires [20].
Vineyard smoke exposure, therefore, remains a significant issue for the wine industry, particularly
given the increasing frequency and severity of bushfires [21].

Grapevine leaves have also been found to accumulate VPs, and a positive correlation has been
demonstrated between the levels of smoke compounds detected in leaves and wine when they were
included in the primary fermentation [13,22,23]. From a physiological point of view, smoke exposure
has also been shown to decrease stomatal conductance in leaves, which may result from the reaction of
carbon dioxide (CO;) and carbon monoxide (CO) with water vapor in the substomatal cavity producing
carbonic acid (H,CO3) [24,25]. Carbonic acid reduces the pH in the stomata, resulting in partial or
complete stomatal closure [25,26]. Damage to leaf surfaces following smoke exposure has also been
observed, with the development of necrotic lesions or, in extreme cases, total leaf necrosis [10,22,27].
This may be the result of ozone (O3) present in smoke, which has been linked to chlorophyll destruction
and accelerated leaf senescence [28,29].

Some chromatographic techniques such as gas chromatography-mass spectrometry (GC-MS)
and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) have been
developed to quantify levels of free and glycosidically bound VPs in grapes and wines [30-33].
While these techniques are currently used for qualitative and quantitative analysis and may assist
growers in determining the level of smoke taint in the final wine, there are numerous shortcomings:
sample preparation is time-consuming and destructive, and analyses require expensive reagents,
standards, and equipment, as well as trained personnel. Furthermore, following a bushfire event,
there may be long delays in the availability of results due to large numbers of samples being submitted
to commercial laboratories for analysis [34,35]. Consequently, alternative methods of smoke taint
analysis have recently been investigated and may offer non-destructive sample preparation, as well as
accurate and rapid results.

The use of spectroscopic techniques has increased in recent years due to their ease of use,
rapid results, minimal sample preparation, and non-destructive nature, all of which allow repeated
measurements to be taken [34-39]. Furthermore, the development of smaller, handheld spectroscopic
devices coupled with decreasing costs, has allowed these technologies to be more readily accessible
and affordable to growers and farmers, while their portability allows for in-field use, reducing the risk
of sample deterioration during transportation [39,40]. Ultraviolet (UV) to visible (Vis) spectroscopy
involves the region between 200-780 nm, which can be used to analyze compounds containing organic
acids, phenolic compounds, and pigments such as anthocyanins, carotenoids, and chlorophylls [41].
UV-Vis spectroscopy has been used to determine the contribution of chemical compounds towards the
composition of extra virgin olive oils to determine the region in the Mediterranean it was produced,
to optimize the aging process of Spanish wines, and to assess the impact of heating edible oils and to
determine their acid level [42—-44]. Near-infrared (NIR) spectroscopy between the light spectra regions
of 780-2500 nm has been widely used in agricultural and food science applications, with NIR bands
corresponding to overtones resulting from the vibrations of O-H, C-H, N-H, and S-H bonds [39,41].
Various spectroscopic techniques, most notably in the NIR region, have been used for numerous
applications in viticulture, including the assessment of grape quality and ripeness as well as the
authentication of geographical origin [38,45-50]. Research has also been conducted on the use of
mid-infrared (MIR) spectroscopy (between 2500-25,000 nm) of the electromagnetic spectrum, as well
as synchronous two-dimensional MIR correlation spectroscopy (2D-COS) for the classification of
smoke tainted wines [34,35]. Both techniques showed potential for screening smoke tainted wine,
with MIR spectroscopy achieving 61 and 70% classification rates for control and smoke affected wines,
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respectively. However, classification rates were affected by the degree of smoke taint, as well as
compositional differences arising from the grape variety and oak maturation [34]. While this technology
may help to assess wine samples for smoke taint, it does not provide an early, in-field detection system
that could help growers identify which grapes may be contaminated before winemaking. At present,
there is very little research investigating the in-field use of Vis-NIR spectroscopy for the classification
of smoke-affected grapevine leaves and berries. Research by Fuentes and coworkers [19] developed a
model using NIR spectroscopy between the region of 700-1100 nm to predict the levels of guaiacol
glycoconjugates in berries and wine, and the levels of guaiacol in wine. These models may offer
growers a non-destructive in-field detection system for grapevine smoke contamination. However,
further research is required to determine the effectiveness of different NIR regions for monitoring
smoke contamination.

Several chemometric techniques have been used to analyze spectral data, including partial least
squares (PLS) regression, principal component analysis (PCA), and artificial neural networks (ANN),
to name a few [41]. Of these techniques, ANNs have increased in popularity as classification, prediction,
and clustering tools, particularly since they can better interpret the non-linear patterns of spectral
data [51-54]. Machine learning (ML) modeling based on ANN can be trained from a set of given data
known as ‘inputs’ or independent variables and form complex, non-linear relationships with these
inputs and the “targets’ or dependent variables [54]. For example, preliminary ML models for the
classification of smoke tainted grapevines have been developed using infra-red (IR) thermal imagery
from canopies, which gave an indication of changes in stomatal conductance for classification of
control and smoke-exposed grapevines [25]. In addition to this, another model has been proposed
that aims to quantify levels of smoke derived compounds in grapes and wine using NIR spectroscopy
measurements as inputs [25]. Furthermore, UV-Vis spectroscopy may offer insights into the degree of
physiological performance of leaves as well as fruit ripening and quality through analyzing pigment
content, such as chlorophylls, anthocyanins, and carotenoids [55-59].

The objective of this study was to investigate the use of NIR spectroscopy, coupled with ML
modeling for the detection of grapevine smoke contamination. Grapevine leaves and berries were
analyzed in the vineyard in a smoke trial using a NIR spectrometer, and the absorbance values
were used as inputs to train different machine learning algorithms in order to create ANNs with
the best classification performances. In addition to this, UV-Vis spectroscopy was used to assess the
physiological performance and degree of senescence of leaves, as well as the degree of ripening and
anthocyanin content of grapes. This may offer growers a rapid and non-destructive detection system
that they can employ themselves to obtain real-time information regarding smoke exposure. This will
facilitate timely decision-making around which fruit to sample for chemical analysis and/or to harvest
to maintain wine quality.

2. Materials and Methods

2.1. Vineyard Site and Experimental Design for the Smoke Trial

The smoke trial was conducted in late January-early February during the 2018/2019 growing
season, at the University of Adelaide’s Waite Campus in Urrbrae, South Australia (34°58’ S, 138°38’ E).
The trial, described previously by Szeto and colleagues [60], involved the application of smoke and/or
in-canopy misting to Cabernet Sauvignon grapevines and comprised five different treatments: a control
(C), i.e., neither misting nor smoke exposure; (ii) a control with misting (CM), i.e., in-canopy misting
but no smoke exposure; (iii) a high-density smoke treatment (HS); (iv) a high-density smoke treatment
with misting (HSM); and (v) a low-density smoke treatment without misting (LS). Treatments were
applied to Cabernet Sauvignon grapevines planted in 1998 at 2.0 and 3.3 m vine and row spacings,
and trained to a bilateral cordon, vertical shoot positioned trellis system (VSP), hand-pruned to a
two-node spur system, with under vine drip irrigation (twice weekly, from fruit set to pre-harvest).
Smoke treatments were applied (approximately seven days post-véraison, the period grapes are thought
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to be most susceptible to smoke contamination [10]) using a purpose-built smoke tent (Figure 1a,b)
and experimental conditions reported previously [4,61]: low and high-density smoke treatments were
achieved by burning different fuel loads (i.e., ~1.5 and 5 kg of barley straw, respectively). In-canopy
misting was evaluated as a method for mitigating the uptake of smoke-derived volatile phenols by
grapes and involved the continuous application of fine water droplets (65 pm) to the grapevine bunch
zone using a purpose-built sprinkler system (delivering water at 11 L/h), as previously described [62].
Each treatment was applied to six vines from three adjacent panels, except the HS treatment, which
comprised only five vines, with treatments separated by at least one buffer vine. LS, HS, and HSM
treatments comprised duplicate applications of smoke to 1.5 panels/three vines at a time (except for one
HS treatment). The in-canopy sprinkler system was turned on 5 min before the first HSM treatment
was applied and off 15 min after the second HSM treatment was completed, such that CM and HSM
grapevines were misted for approximately 2.5 h in total. The second and fifth vine from each treatment
(the middle vines from smoke treatments) were then selected for physiological and NIR measurements.

Figure 1. Smoke treatments were applied to grapevines using a purpose-built smoke tent; grapevines

were enclosed in the tent and exposed to smoke derived from the combustion of barley straw (a,b).

2.2. Physiological Measurements

The rate of photosynthesis (A), stomatal conductance (gs), and transpiration (E) were determined
using a portable infrared gas analyzer equipped with a broad leaf chamber (LCpro-SD, ADC Bioscientific
Ltd., Hoddesdon, UK). Measurements were taken on three leaves of each side of the canopy per vine
(n = 12 leaves per treatment) with a photosynthetic photon flux density of 1000 pumol m~2 s~! supplied
by a high efficiency, low heat output, mixed red-blue light-emitting diode (LED) array unit. Water
vapor and CO; concentration in the chamber were set to ambient. Measurements were taken one day
(24 h) after smoke treatments were applied, on clear, sunny days.

2.3. Determination of Volatile Phenols and Their Glycoconjugates in Grape Juice/Homogenate

The concentration of volatile phenols and their glycoconjugates were determined (in grape juice
and homogenate, respectively) using analytical methods described previously [30,32,33,60]. Volatile
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phenols were measured by stable isotope dilution analysis (SIDA) [3,30,33], using an Agilent 6890 gas
chromatograph coupled to a 5973-mass spectrometer (Agilent Technologies, Forest Hill, Vic., Australia).
Isotopically labeled standards, i.e., d4-guaiacol and ds-syringol, were prepared in-house using methods
outlined previously [3,30,33]. The limit of quantitation for volatile phenols was 1-2 pg/L. Volatile
phenol glycoconjugates were also measured by SIDA [30,32], using an Agilent 1200 high-performance
liquid chromatograph (HPLC) equipped with a 1290 binary pump, coupled to an AB SCIEX Triple
Quad™ 4500 tandem mass spectrometer, with a Turbo V™ jon source (Framingham, MA, USA).
The preparation of the isotopically labeled internal standard, i.e., d3-syringol gentiobioside, has been
reported previously [30,32]. The limit of quantitation for volatile phenol glycosides was 1 pg/kg.

2.4. Near-Infrared Data Collection

Grapevine leaf and berry spectra were collected one day after smoke exposure, using a
microPHAZIR™ RX Analyzer (Thermo Fisher Scientific, Waltham, MA, USA), which had a spectral
range of 1596 to 2396 nm at intervals of 7-9 nm. Prior to undertaking the measurements and after every
10-15 readings, the device was calibrated using a white background calibration standard (included with
the device). The white background was placed on top of the leaf while measuring to avoid signal noise
inclusion due to variation in light or environmental changes. Leaves and berries were also analyzed
using the Lighting Passport Pro™ handheld spectrometer (Asensetek Incorporation, Xindian District,
New Taipei City, Taiwan), which has a spectral range of 380-780 nm at intervals of 1 nm. Measurements
were taken at approximately 3 cm from the leaves and berries. All measurements were conducted at
ambient temperature between 9:00 a.m. and 6:00 p.m.

For the leaf spectral measurements, nine sunlit and nine shaded, mature, fully expanded leaves
were selected (i.e., 18 leaves per vine, 36 leaves per treatment). Leaves were free of any visible signs of
disease or blemishes. Each leaf was measured in three areas, in triplicate, using the microPHAZIR™
RX Analyzer, while three measurements per leaf were taken with the Lighting Passport Pro™ handheld
spectrometer. For the berry spectra, two bunches were selected per vine, and nine berries (three from
the top, middle, and bottom of each bunch) were measured, in triplicates using the microPHAZIR™
RX Analyzer (n = 540). On the other hand, twelve berries per treatment were analyzed using the
Lighting Passport Pro™ (n = 180) while still attached to the bunch.

2.5. Calculating Spectral Indices

Spectral indices for the analysis of pigment content were calculated for both leaves and berries.
Leaf spectra taken using the Lighting Passport Pro™ were used to calculate the normalized difference
vegetation index (NDVI), normalized anthocyanin index (NAI), plant senescence reflectance index
(PSRI), and carotenoid reflectance index (CRI) [56,57,59,63-65]. Berry spectra were used to calculate
the NAI and PSRIL. The calculations and wavelengths used for determining these indices are given in
Table 1.

Table 1. Calculations for the spectral indices investigated in this study.

Index Name Index Abbreviation Equation References
Egrer)r:alized anthocyanin NAI % [56,57]
glegsienoid reflectance CRlsso ﬁ _ ﬁ [63,64]
giir:)’zenoid reflectance CRIp ﬁ _ % [65]
Plant senescence 1680—1500

PSRI

reflectance index 1750 [59]
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2.6. Statistical Analysis

Physiological measurements, spectral indices, volatile phenols, and their glycoconjugates were
analyzed by one-way analysis of variance (ANOVA) using Minitab®version 18.1 (Minitab Inc.,
State College, PA, USA). Mean comparisons were performed using the Fisher least significant difference
(LSD) method as a post-hoc test at & = 0.05. Near-infrared data were analyzed using The Unscrambler
X version 10.3 software (CAMO Software, Oslo, Norway). Absorbance values for all wavelengths
were plotted for both the microPHAZIR™ RX Analyzer and Lighting Passport Pro™ leaf and berry
readings. Principal component analysis (PCA) was also performed using The Unscrambler X program.
All microPHAZIR™ RX Analyzer measurements were pre-processed using the second derivative
transformation, Savitzky—Golay derivation, and smoothing using The Unscrambler X version 10.3
software prior to the plotting of graphs and statistical analysis.

2.7. Artificial Neural Network Modeling

Three ANN models were developed for berry and leaf NIR readings, which were used as inputs to
classify the different smoke treatments using customized code written in MATLAB®)(version R2020a,
MathWorks Inc., Natick, MA USA) (Figure 2). This code tested a total of 17 training algorithms in a
loop to find the optimum in terms of accuracy and performance. Once the optimum training algorithm
was identified, further training was performed to develop the most accurate ANN model. For both
models, the Levenberg-Marquardt training algorithm was found to be the best algorithm, resulting in
models with the highest accuracy and no signs of overfitting.

Inputs Hidden Layer Output Layer Outputs
24 + -/ +— I s 5
b b
Near-infrared C
bsorb. ralues
ey 10meurons Stargets O
HSM
LS
(@)
Inputs Hidden Layer Output Layer Outputs
S\ o W
100 A e 2 wEma
b b
Near-infrared C
absorbance values
(1600.239 non) 10neurons 5 targets i\g
HSM
LS

(b)

Figure 2. Two-layer feedforward network with ten hidden neurons and sigmoid function for the three
classification models: (a). microPHAZIR™ leaf model (Model 1) and (b). microPHAZIR™ berry
model (Model 2). Abbreviations: C = control without misting; CM = control with misting; HS = high
density smoke without misting; HSM = high density smoke with misting; and LS = low density smoke.

Overtones within the 1596-1800 nm range were used as inputs for the microPHAZIR™ leaf
model (Model 1). This region was selected to avoid water overtones and any classification resulting
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from the water status of the vines. The entire spectral range was used for the microPHAZIR™ berry
model (Model 2) (15962396 nm). The two models were developed using a random data division with
70% (n = 1134 for Model 1 and 378 for Model 2) training, 15% (1 = 243 for Model 1 and 81 for Model 2)
for validation with a mean squared error (MSE) performance algorithm and 15% (n = 243 for Model 1
and 81 for Model 2) for testing with a default derivative function. Ten hidden neurons were selected
for each of the two models after conducting a trimming exercise with three, five, and ten neurons.

3. Results

3.1. Physiological Measurements

Results of gas exchange parameters are shown in Table 2. The transpiration rate was lower for the
HS treatment (P < 0.005) with a mean rate of 1.43 mmol m~2 s™1, while no differences were observed in
the other treatments. The CM and C treatments both had the highest g values with an average value
of 0.15 mol m~2 s~! for each, while HS and LS treatments had the lowest average gs at 0.056 mol m~2
s7! and 0.082 mol m~2 s~! respectively. Mean rates of A were found to be highest in the C and CM
treatments (10.77 pmol m~2 s7! and 9.66 pumol m=2 s71, respectively), while the LS and HS treatments
had the lowest (7.01 umol m~2 s~ and 5.59 umol m~2 s, respectively).

Table 2. Gas exchange parameters measured for the different smoke treatments.

Smoke E (mmol m—2s-1) gs (mol m~2s71) A (umol m—2 s-1)
Treatment Mean SD Mean SD Mean SD
C 2482 0.70 0.152 0.05 10.77 2 3.46
CcM 2314 0.54 0152 0.05 9.66 ab 231
HS 1.43P 0.62 0.06 ¢ 0.03 5.59 d 2.8
HSM 2.062 0.44 0.10" 0.03 8.15 be 1.97
LS 2.182 0.78 0.08 bc 0.03 7.01¢d 242

Abbreviations: C = control without misting; CM = control with misting; HS = high density smoke without misting;
HSM = high density smoke with misting; and LS = low density smoke; SD = standard deviation. Means followed by
different letters are significantly different based on Fisher least significant difference (LSD) post hoc test (@ = 0.05).

3.2. Levels of Smoke Taint Marker Compounds in Grape Juice/Homogenate

Differences in volatile phenol concentrations between HS and HSM treatments were found for
guaiacol, 4-methylsyringol, and syringol (P < 0.05; Table S1). In particular, 4-methylsyringol and
syringol had the largest differences in concentrations amongst the smoke treatments, with the HS
treatment exhibiting the highest mean values (17 and 126 ug/L, respectively) followed by the HSM
treatment (9 and 59 ug/L, respectively) while the CM treatments exhibited the lowest mean values
(2 and 8 pg/L), which displayed the lowest mean value. There were no differences between the HS and
HSM treatments, nor between the C, CM, and LS treatments for 4-methylguaiacol, phenol, and total
cresols; however, HS and HSM grapes had significantly higher volatile phenol concentrations than C,
CM, and LS grapes.

Some differences in volatile phenol glycoconjugate levels could be seen amongst the five smoke
treatments. Some glycoconjugates displayed differences between the HS and HSM treatments. There
was no difference in GuRG levels between the LS, HS, and HSM treatments, with no levels detected in
the C and CM treatments. The HS smoke treatment had the highest levels of PhRG, PhGG, CrPG, SyGG,
and SyPG, followed by the HSM and LS treatments and then the C and CM treatments. Interestingly
the C and HS treatments had the highest level of CrGG followed by the CM and HSM treatment, while
the LS treatment had the lowest concentration.
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3.3. NIR Absorbance Patterns for Leaves and Berries

Absorbance spectra for the averages of replicates for both raw and transformed leaf absorbance
spectra are depicted in Figures 3 and 4. For the microPHAZIR™ RX Analyzer leaf absorbances,
clear differences in spectral readings were observed for each smoking treatment. A peak was observed
at approximately 1784-1793 nm (Figure 3a), while for the transformed data (Figure 3b), large peaks are
present between 1596-1647 nm.

0.18 — T T T

0.16

0.14

0.12

0.1

0.08

0.06

Absorbance(au)

0.04

L L L L L L L L L L
1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800
Wavelengths (nm)

(@

Absorbance (au)

1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800
Wavelengths (nm)

(b)

Figure 3. Raw leaf absorbance (a) and second derivative spectra (b) measured with the microPHAZIR™

near-infrared (NIR) analyzer for the different smoke and misting treatments. Abbreviations: C = control
without misting; CM = control with misting; HS = high density smoke without misting; HSM = high

density smoke with misting; and LS = low density smoke.
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0.95
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Figure 4. Raw berry absorbance (a) and second derivative spectra (b) measured with the

microPHAZIR™ NIR analyzer for the different smoke and misting treatments. Abbreviations:
C = control without misting; CM = control with misting; HS = high density smoke without misting;
HSM = high density smoke with misting; and LS = low density smoke.
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Differences in absorption readings were also found for the microPHAZIRTM RX Analyzer berry
absorbance spectra (Figure 4a). Peaks were originally observed at approximately 1785 and 1902 nm, but
in the transformed data (Figure 4b), large peaks were observed between approximately 1596-1640 nm
and 1820-1940 nm.

3.4. Principal Component Analysis

Figure 5a shows the principal component analysis (PCA) for the microPHAZIR™ RX Analyzer
leaf spectra with absorbance values between 1600-1800 nm. The first principal component (PC1)
accounted for 62% of the data variability, while principal component two (PC2) accounted for 24%.
Hence, 86% of the total variability was explained by these PCs. There was no clear separation of the
different smoke treatments when modeled with the microPHAZIR™ leaf spectra. PC1 was represented
by wavelengths between 1604-1621 nm and between 1621-1647 nm (loadings shown in Figure 5b).
PC2 was represented by wavelengths between 1613-1647 nm, as well as 1604 nm.

0.05

0.04
0.03
§ 0.02
u L]
o
3 001 . .
~ .
0 R 35
-0.01 . .,
-0.02
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
PC-1 (62%)
® C O oM HS HSM LS
(a)
0.8
0.6
0.4
0.2
0 SR T
< wﬁMHOH!\.mY*@.'«:ﬁ.\G\.
b e B 0 g 3 8y adaa Ry
02 3 LR 3 E&ELBE SRS REIRRRTRRK
4 L o i i i - i Ll L} — i L] i - — i Ll
-0.4
-0.6
-0.8
== PC-1 PC-2

(b)

Figure 5. Principal component analysis (PCA) for the microPHAZIR™ leaf absorbance values between
1600-1800 nm (a) and loadings (b). Abbreviations: C = control without misting; CM = control
with misting; HS = high density smoke without misting; HSM = high density smoke with misting;
and LS = low density smoke.
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Figure 6a shows the PCA for the microPHAZIR™ RX Analyzer berry spectra, where 59% of
the data variability was described by PC1, while PC2 accounted for 10% of the data variability; thus,
a total of 69% of the total data variability was explained by the first two components of the PCA.
As with the microPHAZIR™ RX Analyzer leaf spectra, most of the smoke treatments overlapped
quadrants. The CM treatment was grouped primarily in the upper right quadrant, while C and LS
treatments were grouped primarily in the lower right. The HS treatment was located primarily in the
upper right and left quadrants, while the HSM treatment was grouped in the left upper and lower
quadrants. PC1 one was represented by the wavelength region 1604-1622. PC2 was represented by the
wavelengths between 1630-1647 nm and 2374-2389 nm (loadings shown in Figure 6b).
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Figure 6. Principal component analysis (PCA) for the microPHAZIR™ berry absorbance values
between 1600-2396 nm (a) and loadings (b). Abbreviations: C = control without misting; CM = control
with misting; HS = high density smoke without misting; HSM = high density smoke with misting;
and LS = low density smoke.
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3.5. Spectral Indices

Results for the spectral indices are shown in Table 3. In the case of the leaf NDVI and NAI,
the HS and C treatments had the lowest mean values (0.72 and 0.64 for the HS treatment and 0.84 and
0.74 for the C) (P < 0.05). There were no differences for the remaining treatments. For the leaf PSRI,
the HS treatment had the highest mean value at 0.065, with no differences for the remaining treatments.
For the leaf CRI5(, the LS and HS treatments had the highest values at 1.45 and 1.20, respectively,
and for the CRlyg, the LS treatments had the highest mean values at 1.76, with no differences for the
remaining treatments.

In the case of the berry NAIL the HS and LS treatments had the highest mean values with 0.88 and
0.87, with both the C and LS treatments having the lowest mean values of 0.80 and 0.75. For the PSR],
both the LS and C treatments had the highest mean values of 0.02, while the HSM had the lowest value
at —0.02.
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Table 3. Means and standard deviation (SD) of spectral indices calculated for leaves and berries.

Leaf Berry
Treatment NDVI NAI PSRI CRI500 CRI700 NAI PSRI

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

CcM 0.852 0.10 0.77 2 0.11 0.00b 0.01 0.70b 0.64 0.82P 0.79 - - - -
C 0.84ab 008 (0742 011 0.01" 0.02 0.67P 0.78 0.77P 0.87 0.80P 0.07 0.022 0.02
HS 0.72b 0.50 0.64 P 0.49 0.072 0.19 1.202 0.24 0.82P 0.62 0.882 0.04 0.00° 0.00
HSM 0872 011 0792 011 000 002 048P 006 058P 045 0.75° 0.0 _0502 0.00
LS 0.922 0.04 0.842 0.08 0.00P 0.01 1452 1.08 1.762 1.40 0.872 0.05 0.022 0.01

13 of 23

Abbreviations: C = control without misting; CM = control with misting; HS = high density smoke without misting; HSM = high density smoke with misting; and LS = low density smoke.
Means followed by different letters are statistically significant based on Fisher’s least significant difference (LSD) post hoc test (a = 0.05).
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3.6. Artificial Neural Network Models

Table 4 shows the confusion matrices for the two models developed using the spectral readings
as inputs and the experimental treatments as targets. Both models displayed high accuracy in
classifying the spectral readings according to the treatments, with an overall accuracy of 98% for the
microPHAZIR™ Jeaf model (Model 1) and 97.4% for the microPHAZIR™ berry model (Model 2).
Models 1 and 2 presented validation accuracies (94% and 93%, respectively) close to those of the
training stage (100% both models). Furthermore, performance values for training (Models 1 and
2: MSE < 0.01) were lower than the other stages and validation (Model 1: MSE = 0.02; Model 2:
MSE = 0.03) and testing (Model 1: MSE = 0.02; Model 2: MSE = 0.04) were similar; this indicates that
there were no signs of overfitting for both Model 1 and Model 2.

Figure 7 depicts the receiver operating characteristic (ROC) curves for the two ANN models
developed. All models showed high true-positive rates (sensitivity) and low false-positive rates
(specificity) for classifying the spectral readings according to the experimental treatment, which can
also be observed in the last column of each confusion matrix. For Model 2, the HS treatment had the
highest sensitivity (100%), followed by the CM and HSM treatments (99.1% each) and LS treatment
(96.3%). The C treatment had the lowest sensitivity of 92.6% for this model. For Model 1, the C
treatment had the highest sensitivity (99.1%), followed by the LS treatment (98.8%), HS treatment
(97.8%), and CM treatment (97.5%), while the HSM had the lowest sensitivity of 96.9%.

Table 4. Statistical results for the artificial neural networks pattern recognition models. Model 1:
microPHAZIRTM for leaves, and Model 2: microPHAZIRTM for berries. Performance is based on
means squared error (MSE).

Stage Samples (n) Accuracy % Error % Performance (MSE)
Model 1
Training 1131 100 0 0.00
Validation 243 94.2 5.8 0.02
Testing 243 92.6 74 0.02
Overall 1617 98.0 2 -
Model 2
Training 378 100 0 0.00
Validation 81 92.6 7.4 0.03
Testing 81 90.1 9.9 0.04

Overall 540 97 .4 2.6 -




Sensors 2020, 20, 5099

Model 1
1 ﬁ
0.9
08Ff
0.7}
L
& 06}
(4]
2
"a_‘. 05}
o)
fout
g 04 —C
.
= —CM
0.3 —HS
— HSM
0.2} —LS
0.1
0 : . : 5
0 0.2 0.4 0.6 0.8
False Positive Rate
(a)
Model 2
F
0.9
0.8
0.7
L
& 06}
]
2
= 05f
o
font
Q
E 041 —C
—CM
03Ff —LS
—HS
0.2 —HSM
01}
0 1 1 1 1
0 0.2 0.4 0.6 0.8

False Positive Rate

(b)

15 0f 23

Figure 7. Receiver operating characteristic (ROC) curves for the two models developed (a) the
microPHAZIR™ leaf model, (b) the microPHAZIR™ berry model. Colored lines represent the
different smoking treatments. Abbreviations: C = control without misting; CM = control with misting;

HS = high density smoke without misting; HSM = high density smoke with misting; and LS = low

density smoke.
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4. Discussion

4.1. Physiological Measurements

Leaf gas exchange parameters were measured the day after smoking. The three smoke treatments
showed significant reductions in gs, in particular, the high-density smoke without misting (HS)
treatment, which showed the lowest average reading for gs (Table 2). Stomatal closure is one of the first
responses to smoke exposure undertaken by plants [6,26], and a study by Ristic and colleagues [26]
found that the time required for gs to recover following one hour of smoke exposure for Cabernet
Sauvignon grapevines was approximately 6-10 days. A previous study by Bell et al. [6] found that g
of potted Cabernet Sauvignon grapevines had returned to 60% of pre-smoke exposure rate following
fifteen min exposure to smoke using Tasmanian blue gum (Eucalyptus globulus L.) leaves as fuel, while
rates had returned to 80% of pre-smoke values following exposure to smoke derived from Coast Live
Oak (Quercus agrifolia Née) leaves. This indicates that in addition to the type of fuel used, the intensity
of smoke exposure may also affect the extent of stomatal closure and, hence, reduction in gs. It is,
therefore, not surprising that the HS treatment had the lowest gs. However, it is interesting that the
low smoke treatment (LS) had lower g5 than the high smoke with misting treatment (HSM), which
indicates that misting may have reduced the effect of smoke exposure on gs. During a bushfire, the type
of fuel burnt will vary depending on the region and the type of plant species native to the area, as well
as the amount of smoke exposure due to land topography and wind vectors; therefore, the effect on
gs may vary [17,18,23,66]. While misting only partially prevented the uptake of volatile phenols and
glycoconjugates in grapes [60], it did appear to have a physiological effect. It is evident that misting
reduced the effect of smoke exposure on gs. Smoke contains a complex mixture of gases such as sulfur
dioxide (SO;), O3, and nitrogen dioxide (NO,), as well as dust particles that have been shown to
inhibit photosynthesis and affect stomatal opening [6,26,29]. Stomata are the primary point of entry for
these gases and dust particles [6]; therefore, misting may help prevent the uptake of dust and other
particles by trapping them in water that has condensed on the leaf surface, preventing their entrance
into the stomata. The present water may also act as a solvent for gases such as SO, and NO,, thereby
incorporating them into a solution that then may drip off the leaf surface. In addition to this, smoke
exposure may trigger stomatal closure by producing high vapor pressure deficits [26,29]. The presence
of misting may help reduce the leaf-to-air vapor pressure difference produced by smoke exposure,
thereby reducing the impact on gs. Misting also appeared to reduce the effect of smoke exposure on
transpiration rate (E) as there were no differences between the two control treatments and the LS and
HSM treatments. Only the HS treatment had significantly reduced E. Mean rates of photosynthesis (A)
followed similar patterns to gs, with the HS treatment having the lowest value, followed by the LS
treatment and then the HSM treatment, while the control without misting (C) had the highest rate of
A. This indicates that while misting may have reduced A in the control treatments, it may also help
reduce the effects of smoke exposure on A.

4.2. Near-Infrared Spectroscopy Patterns and Principal Component Analysis

From the PCA biplots (Figures 5 and 6) and spectra (Figures 3 and 4) generated in the current study,
it is evident that smoke exposure alters the NIR spectral signals of grapevine leaves and berries, and this
may prove useful for the detection of grapevine smoke contamination. For the microPHAZIR™ RX
Analyzer leaf spectra, high loadings (Figure 5b.) were observed for the wavelength regions between
1604-1621, 1621-1647, and 1613-1647 nm, all of which correspond to C-H stretching of sugars and
aromatic compounds [67-70]. For the microPHAZIR™ RX Analyzer berry spectra, high loadings
(Figure 6b.) were observed for the wavelength regions between 1604-1622, 1630-1647, and 2374-2389
nm, which correspond to C-H stretching of sugars, such as glucose, as well as aromatic hydrocarbons,
which may be due to the presence of smoke-derived volatile phenols, such as guaiacols, cresols,
and syringols, and their glycoconjugates [67,68,71,72].
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4.3. Spectral Indices

4.3.1. Leaf

The normalized difference vegetation index (NDVI) gives an indication of plant vigor and
fruit ripening resulting from relative changes in chlorophyll content. It is based on the variation
between the maximum absorption of red by chlorophyll pigments and the maximum reflectance in
the infrared caused by leaf cellular structure [56,57,73-75]. Similarly, relative changes in anthocyanin
content are expressed as the normalized anthocyanin index (NAI). Both the NDVI and NAI are
expressed as a normalized value between —1 (lack of green or redness) to +1 (green or red) [56,57].
Not surprisingly, HS leaves had the lowest NDVI and NAI values. Previous studies investigating the
effects of pollution on leaf pigments found a decrease in photosynthetic pigments following exposure
to pollutants, including sulfur dioxide (SO;), carbon dioxide (COy), nitrogen dioxide (NO;), and ozone
(O3) [59,76,77]. These studies are often used as comparisons for investigating the effects of smoke
exposure on leaves as compounds in air pollution can also found in smoke [6,22]. There were no
differences in NDVI and NAI values between the LS, HSM, and control treatments (C and CM),
indicating that misting may reduce the effects of smoke exposure on leaf pigments, and low levels of
smoke exposure for one hour may also have no effect. Longer periods of smoke exposure (days or
weeks, as is often the case with wildfires) may be required to cause a noticeable change in leaf pigments.

The plant senescence reflectance index (PSRI) gives an indication of the stage of leaf senescence
and fruit ripening through assessing changes in carotenoid accumulation and their proportion to
chlorophyll. Values range from —1 to +1, with higher values indicating increased stress and carotenoid
accumulation [55,63-65,78]. The PSRI was highest for the HS treatment, indicating heightened stress
and leaf senescence. This also corresponds with the high CRI5py value for this smoke treatment,
indicating increased carotenoid accumulation.

4.3.2. Berries

Research by Noestheden et al. [5] found that smoke exposure induced changes in phenylpropanoid
metabolites in Pinot Noir berries and wine, some of which are associated with the color and mouthfeel
of the wine. Berries exposed to HS and LS treatments had the highest mean NAI values, indicating
that smoke exposure may increase anthocyanin content, possibly due to an increase in phenolic
accumulation as a stress response induced by exposure to ozone present in smoke [5,79,80]. The HSM
treatment had a low NAI value, indicating that misting may reduce anthocyanin concentrations through
increased irrigation. Castellarin et al. [81] found that early (before véraison) and late (after the onset of
ripening) season, water deficits increased anthocyanin accumulation during ripening. The application
of in-canopy misting may reduce water stress and, therefore, reduce anthocyanin accumulation.

Interestingly the HSM followed by the HS treatments had the lowest PSRI values. As carotenoid
concentrations in grapes generally decrease during véraison, this may have resulted in lower PSRI
values. Therefore, the PSRI may not be suitable for assessing the degree of ripening in grape berries.

4.4. ANN Modeling

Both ANN models classified leaf and berry readings as a function of smoke exposure with
high accuracy. The microPHAZIR™ leaf model (model 1) had the highest positive classification,
with 98% accuracy (Table 4). The NIR region selected for use in Model 1 was between 1600-1800 nm
in order to minimize any possible interference due to the absorption spectra of water in the region
of approximately 1930 nm [69]. Furthermore, the region between 1680-1690 nm is associated with
aromatic C-H stretching [67]; as such, any patterns observed by the ANN would most likely be due to
the presence of smoke-derived volatile phenols. Research by Kennison [22] found a positive correlation
between levels of smoke-derived compounds found in leaves and levels in wine; this ANN model
developed may, therefore, offer a rapid, in-field method for assessing grapevine smoke contamination.
It also demonstrates great promise for further research into the use of NIR spectroscopy coupled with
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unmanned aerial vehicles (UAVs) with Global Positioning System (GPS) trackers, which could fly over
vineyards to scan grapevine canopies and provide maps of smoke contaminated regions.

The microPHAZIR™ berry model (model 2) also had a high overall accuracy in classifying
grape berries according to smoke treatment (97.4%). For Model 2, the entire wavelength range
between 1600-2396 nm was used. This includes the C-H stretching of aromatic compounds at 1680 nm,
O-H stretching at 1930 nm associated with glucose, cellulose, and water, and C=O second overtone
associated with carboxylic acids and water between 1900-1910 nm [67,69]. As NIR measurements
were conducted in-field on whole berries, this offers a non-destructive tool for assessing grapevine
smoke contamination. Whole grapes may be used for assessment as smoke compounds have been
found to occur primarily in grape skins [3,25]. Furthermore, the Lighting Passport™ smart handheld
spectrometer may be of interest to growers due to its affordability compared to other spectrometers.
It is also very small and lightweight, making it easy to undertake measurements in-field, and it can be
connected to smartphones via Bluetooth, where data can be stored and retrieved for later analysis [82].

The two ANN models more accurately differentiated the spectral readings relative to PCA.
This may be because ANNSs are better suited to handle complex, non-linear data, and more readily
find patterns or relationships between data than other forms of analysis [53,83-85]. Research by
Janik et al. [53] found that the combination of ANNs with partial least squares (PLS) or PCA overcomes
issues of non-linearity as well as increasing the accuracy of regression models in predicting total
anthocyanin concentrations in red grape homogenates. This may also explain why Model 2 was able
to accurately differentiate the berry spectral readings from C, CM, and LS treatments, despite analysis
of variance indicating there were no statistically significant differences.

As smoke exposure altered the chemical fingerprinting of grapevine leaves and berries, the ANN
models were able to detect changes in the spectral patterns and then classify the readings as a function
of experimental treatments. This may offer grape growers a rapid method of assessing the level of
smoke contamination in grape berries and leaves, with a high level of accuracy and precision. This may
assist growers in deciding which berry samples to send for further chemical analysis to quantify the
levels of smoke compounds in grapes and predict the level of smoke taint in the final wine, or they may
decide to avoid harvesting heavily contaminated grapes for winemaking. Furthermore, as this method
is non-destructive, repeated measurements are possible. By knowing the level of smoke contamination,
growers can make informed decisions.

While the ANN models developed were able to classify Cabernet Sauvignon leaf and berry
spectra accurately, further research is required to assess whether these models can be used for other
grape varieties, as differences in berry composition and leaf physiology may affect the accuracy of
classification [6,34]. Previous research evaluated MIR spectroscopy for the classification of smoke
tainted wines found compositional differences due to grape variety prevailed over differences resulting
from low levels of smoke exposure [34]. Furthermore, the physiological responses of different grape
varieties to smoke were found to vary, both in magnitude and in recovery time [6,26]. Thus, further
testing of these models using berry and leaf spectra from different grapevine varieties is required.

5. Conclusions

Results from this study indicate that smoke exposure alters the NIR spectra of Cabernet Sauvignon
grapevine leaves and berries. As a result, accurate classification models can be developed using ANN
modeling. Artificial neural networks are better at classifying non-linear or complex data than traditional
techniques, such as principal component analysis. Furthermore, the use of UV-Vis spectroscopy may
offer insights into the physiological performance of leaves and the quality and degree of ripening
of grapes. These techniques may assist grape growers in identifying grapevines that have been
contaminated by smoke, thereby informing decision-making to avoid harvesting and processing
heavily contaminated grapes and/or the need for mitigation techniques to manage the risk of smoke
taint in resulting wine. Further testing of the ANN models developed in the current study is required
to assess their accuracy in classifying grapevine leaf and berry spectra from other grape varieties.
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