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Abstract: Automatically finding correspondences between object features in images is of main interest
for several applications, as object detection and tracking, identification, registration, and many
derived tasks. In this paper, we address feature correspondence within the general framework
of graph matching optimization and with the principal aim to contribute. We proposed two
optimized algorithms: first-order and second-order for graph matching. On the one hand, a first-order
normalized cross-correlation (NCC) based graph matching algorithm using entropy and response
through Marr wavelets within the scale-interaction method is proposed. First, we proposed a
new automatic feature detection processing by using Marr wavelets within the scale-interaction
method. Second, feature extraction is executed under the mesh division strategy and entropy
algorithm, accompanied by the assessment of the distribution criterion. Image matching is achieved
by the nearest neighbor search with normalized cross-correlation similarity measurement to perform
coarse matching on feature points set. As to the matching points filtering part, the Random
Sample Consensus Algorithm (RANSAC) removes outliers correspondences. One the other hand,
a second-order NCC based graph matching algorithm is presented. This algorithm is an integer
quadratic programming (IQP) graph matching problem, which is implemented in Matlab. It allows
developing and comparing many algorithms based on a common evaluation platform, sharing input
data, and a customizable affinity matrix and matching list of candidate solution pairs as input data.
Experimental results demonstrate the improvements of these algorithms concerning matching recall
and accuracy compared with other algorithms.

Keywords: normalized cross-correlation; Marr wavelets; entropy and response; graph matching;
RANSAC

1. Introduction

Computer vision is an important research direction in current computer science since it occupies
a pivotal position in human perception simulation. Automatically finding correspondences between
object features in images is of interest for several applications, as target tracking [1], 3D object
retrieval [2], pattern recognition [3], image stitching [4] and in many other fields.

Image matching is used to determine the geometric alignment of two or more images of the
same scene taken by the same or different sensors from different viewpoints at the same or different
times. We can distinguish dense correspondence, that determines correspondences at the pixel
level, and sparse correspondence, that determines correspondences between a sparse set of higher
lever features being first extracting from images. Most of the time such features represent invariant
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information at some location in the image, like corners, edges, gradients. Since we are interested
in sparse correspondence, we study the standard methods for automatic extraction of the feature
point sets from images. This becomes a critical step since it should avoid the presence of outliers and
should allow discriminating objects easily. We propose a method for feature extraction step suitable to
first-order matching.

Local feature descriptors, that is, providing detail feature detection and feature description
information, play a fundamental and vital role in the process of feature correspondence, directly
affecting the accuracy and objective score of graph matching (GM). High-quality local feature
descriptors describe key points with uniqueness, repeatability, accuracy, compactness, and effective
representation. These key points can keep robust and constant in terms of scaling, rotation, affine
transformation, illumination, and occlusion [5]. Here we focus on the theoretical and mathematical
descriptions of various local feature descriptors. In the feature points detection algorithm, local
descriptors are typically used to describe image regions near feature points. Currently, methods
for extracting feature points include Harris descriptor [6], Gilles descriptor [7], LoG descriptor [8],
corner detector (CD) [9], Harrislaplace descriptor [10], SIFT descriptor [11], and so on. Among these
feature extraction algorithms proposed in the literature, Marr wavelets which was originally used
in [12] is favored for several properties: robustness (against distortion), rotationally invariant, noise
insensitivity [13]. We choose to focus on the latter, whereas other methods will serve as a basis for
comparative evaluation.

Given a pair of images, how to detect and extract feature points is the first step in image matching.
Automatic feature extraction is the key point, and further related image matching can be performed
based on the feature-to-feature correspondence. Given some standard nearest neighbor matching
strategies, how to improve the reliability of the feature set is the problem to be solved here. To this end,
we try to combine or enhance standard and easy-to-implement feature detection methods to make the
final overall method (including feature detection and matching) competitive in terms of computation
time and matching quality.

In order to obtain better matching results, the method proposed inserts a Laplace filter-based
image preprocessing method before detecting feature points to increase the size of the candidate
feature set. Since the Marr wavelet within scale-interaction method is more inclined to extract the edge
information of the object, the Laplacian method can be used to enhance the edge details of the image.
Then, a sparse feature point method based on entropy selection is proposed as a new filtering step.
Filtering (also known as convolution) is also a very popular operation in the field of image processing,
which can be applied to image encryption by changing pixel values [14]. This step combines the local
entropy evaluation with the brightness deviation response as a new process for feature selection.

Entropy is a key concept in thermodynamics and statistical mechanics. It not only plays a special
role in physical quantities, but also relates to the macro and micro aspects of nature, and determines
the behavior of the macro system. Entropy is a well-defined quantity regardless of the type or size
of the system under consideration. Entropy has many general properties, for instance, invariance,
continuity, additivity, concavity, etc. [15].The probability distribution of entropy can be interpreted not
only as a measure of uncertainty, but also as a measure of information [16]. Local entropy represents
structured information, which is used to count the probability of occurrence of gray level in the sub-image,
but independently around a single pixel. We claim that it is not sensitive to the influence of noise and
can improve the accuracy of the image description. Based on the mesh division, the feature points in
the sub-regions can be sorted according to their local entropy and selected trough deviation values.
Then, entropy selection can not only effectively reduce the useless feature points for saving time, but also
ensure the uniformity of feature point distribution. Mainly, the advantage of the proposed entropy and
response algorithm is to realize a good compromise (trade-off) between accuracy and computation time
together when compared to other standard approaches from literature. It is worth noting that both
accuracy and computation time are essential criteria to compare and evaluate heuristic methods [17,18].
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A necessary graph matching procedure based on the normalized cross-correlation similarity
measure is applied to measure the effectiveness of the method in image matching. It entrusts quality
assessment to the Random Sample Consensus Algorithm (RANSAC) program, which eliminates
mismatched pairs and calculates true match recalls. The experiments were performed on standard
image processing benchmarks. They showed how to increase the size of the feature set and matching
accuracy with saving computation time.

The contributions of our paper are proposing two optimized algorithms: first-order and
second-order for graph matching. Both of them are realized based on normalized cross-correlation
(NCC) algorithm, which allows us to address graph matching or derived sub-problems with a closer
relationship with experiments on integer quadratic programming (IQP) models in the Matlab platform.
Especially for the first-order graph matching, we have proposed a new combination of feature
points detection algorithms among Laplace filter, Marr wavelets, and the entropy-response based
selection method.

This paper is organized as follows. Section 2 introduces the motivations and taxonomy of graph
matching. The formulation of standard graph matching is explained in Section 3. In Section 4,
the different steps of the proposed feature extraction and first-order graph matching procedures
are respectively presented. A preliminary version of this section forward appears as part of our
previous conference paper [19]. We also extended the NCC based second-order graph matching in
Section 5. The evaluation of the two proposed algorithms and their comparison with some algorithms
are exposed in Section 6. Section 7 presents the conclusion.

2. Background of Graph Matching

2.1. Motivations of Graph Matching

Graph matching plays an important role in processing many practical applications in computer
vision, such as feature correspondence [20], action recognition [21], image classification [22,23],
shape matching [24], image retrieval [25], and pattern recognition [26,27]. The goal of graph matching
is to find the optimal mapping constraint between two sets of nodes in two corresponding images,
which will preserve the relationship between the graphs as much as possible so that when vertices are
labeled based on the correspondence, they look ‘the most similar’.

In a more general case, this problem is expressed mathematically as a quadratic distribution
problem, including finding a distribution that maximizes the objective function. Over the past
decade, considerable effort has been invested in developing approximate methods to address more
general QAP. Gold and Rangarajan [28] proposed a graduated assignment algorithm that combines
graduated nonconvexity, two-way (assignment) constraints, and sparsity to solve a series of linear
approximations to the cost function using Taylor expansion iterations. Leordeanu [29] presented an
efficient approximation by using the spectral matching method (SM), which approximates the IQP
problem to spectral relaxation. Cour et al. [17] introduced a new spectral matching with affine
constraints (SMAC), which can not only provide a higher relaxation than SM but also keep the speed
and scalability benefits of SM. Torresani et al. [20] designed a complex objective function which refers to
dual decomposition (DD) that can be effectively optimized by double decomposition. Cho and Lee [18]
presented reweighted random walk (RRWM) algorithms for graph matching. Later, Cho et al. [30]
provided a max-pooling graph matching method (MPM), which not only resists deformation but also
significantly tolerates outliers. This central idea of this algorithm is that the pairs with maximum
scores are the correct matches.

Recently, some authors have proposed the use of high-dimensional relationships between
super edges for high-order graph matching. The most commonly used is based on third-order
research. The calculation of the high-order affinity matrix is generally based on the tuples of feature
points, and it is achieved by comparing the corresponding edges and angle information of two
sets of corresponding triangles. Another vital characteristic of high-order matching is that it is
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invariant to changes in scale and affine. Zass and Shashua [31] reformulated a high-order graph
matching (HGM) in the view of probabilistic view of the probability setting of convex optimization
representation. Chertok and Keller [32] proposed a general framework for solving higher-order
assignment problems based on the core assumption that high order affinities are encoded in an
affinity tensor. In this algorithm, they derive a marginalization scheme that can map triples to
matrices or vectors. Olivier Duchenne et al. [33] derived a tensor-based high-order graph matching
(TM) that invariant to affine, rigid, or transformations. This algorithm defined a tensor to represent
the affinity assignment between the tuples of features. It is a multidimensional power iteration
operation during which the solution will be projected onto the closest assignment matrix. Lee et al. [34]
demonstrated a hypergraph matching via reweighted random walks (RRWHM) in a probabilistic
manner. The algorithm uses a personalized jump and re-weighting scheme, which effectively
reflects the one-to-one matching constraints in the random walk process. It can realize strong
anti-deformation and anti-noise performance compared with other state-of-the-art methods. Ngoc [35]
presented a general framework with a flexible tensor block coordinate ascent scheme for hypergraph
matching. It is a crucial idea under a multilinear reconstruction using the original objective
function, which can guarantee the third-order matching scores their algorithms increase monotonically.
Another hypergraph matching algorithm based on tensor refining was proposed in [36], accompanied
by an alternative adjustment approach to accelerate the convergence processing.

Despite decades of extensive research, graph matching is still a challenging problem for
two main reasons: (1) generally, the objective function is non-convex and prone to local minima.
(2) The constraints of space and time complexities. We set out to conduct research to solve
these challenges.

2.2. Taxonomy of Graph Matching

The goal of the graph matching process is mainly focused on finding the correspondences between
two characteristics, edges, and points, under certain constraints. A graph-based matching method
treats a set of points as graphics. In the most common cases, the algorithm used to solve inexact
matching problems can be classified into three categories: first-order, second-order, and high-order
graph matching methods.

• First-order graph matching At the view of first-order graph matching, it mainly implicates
vertex-to-vertex properties based on local feature descriptors, focuses primarily on unary
information, regardless of edge-related associated information. This matching method was
proposed initially to find the correspondence between two sets of points and transformation
parameters at the same time. It uses a coordinate positioning and grayscale information to
calculate the transformation parameters and uses a soft assignment algorithm to estimate the
correspondence between two sets of points. Finally, it converts the alignment of the two-point sets
into the optimal match between the two graphs. Although the result of the first-order matching is
stable, it fails when there is ambiguity, such as local appearance and repeating texture. In the case
of high noise and outlier registration, it performs poorly, which dramatically limits its range of
applications. Therefore, first-order matching is more suitable for focusing on non-rigid motion
types with a small local affine transformation.

• Second-order graph matching Second-order graph matching mainly enriches the vertex, and edge
approaches; it is objective function established by a matrix representing the affinity properties
between candidate pairs, that is to say, each node represents the correspondence between points,
and the weights represent pairwise protocols between the corresponding potential pairs. A secure
connection of the adjacency matrix can judge the correct assignment or not. Therefore, it better
stands for some point of view between candidate pairs and overcomes the disadvantages of the
first-order algorithm. Since the graph matching algorithm is usually based on the integer quadratic
programming (IQP) formula, with an approximate solution, so the second-order graph matching
problem is also the NP-hard problem. That means it can be formulated as an optimization
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problem; the purpose is to get the best match and receive a higher score based on the objective
scoring function.

• High-order graph matching Hypergraph is a natural generalization of traditional graphs.
Since pairwise assignments are sensitive to scale-invariant between two corresponding graphs,
pairwise relationships are not enough to capture the entire geometrical structure. Unlike pairwise
matching in which each link can have two vertices at its ends, each link in the hypergraph can
have three or more vertices, which can have a more powerful tool to model complex structures
for more high-level information. Therefore, the most crucial idea to solve the hypergraph
problem is to search for higher-order constraints, rather than unary or pairwise constraints.
Essentially, hypergraph matching is a combinatorial optimization problem. In the process of
obtaining the final solution, it is not straightforward for us to find its optimal global solution
based on a reasonable time. In recent years, more accessible methods use probability frames to
explain hypergraph matching, of which tensor-based models are often used. Considering the
complex structure of the data, we believe that the learning and construction of hypergraphs will
hopefully become an increasingly promising research direction in the future.

3. General Formulation of Graph Matching Problem

This section introduces the general representation of traditional graph matching and the definition
of the high-order graph matching problem. The main purpose is on finding the correspondence
one-to-one mapping between two feature sets from two image sources. The goal is to maximize a
function score among the set of correspondence pairs. In first-order matching, only local attribute
descriptors are considered and evaluated, whereas, in the general case of graph matching, two order
potentials between pairs (edges) of features must also be maximized to established the similarity
between edges of features. On the other hand, the high-order GM method considers the invariant
geometric information by considering the relationship between tuples of feature points. The input
feature graph becomes a hyper-graph, where hyper-edges replace edges, that is subsets of k points,
with the order k ≥ 2, rather than only considering couple of points.

Suppose we are given a pair of graphs GP = (P, EP) with NP feature points for the reference
graph GP, and GQ = (Q, EQ) with NQ feature points for the query graph GQ. P and Q are the two
sets of feature points, and EP and EQ denote edge sets. We note i, j ∈ P and a, b ∈ Q as representing
feature points. Therefore, the main problem is to find a suitable one-to-one mapping from one feature
set to the other feature set as illustrated in the Figure 1. The pictures in Figure 1 are from PF-WILLOW
dataset (https://www.di.ens.fr/willow/research/proposalflow/).

Figure 1. Feature point correspondence mapping.

Finding a mapping form P to Q can be equivalent to find an NP × NQ assignment matrix X,
such that Xia = 1 when point i is assigned to point a, and Xia = 0 otherwise. Therefore, a one-to-one
admissible solution must verify the following constraints in (1), that requires a binary solution, and (2)
and (3), that express the two-ways constraints of a one-to-one mapping.

X ∈ {0, 1}NP×NQ (1)

https://www.di.ens.fr/willow/research/proposalflow/
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∀i
NP

∑
a=1

Xia ≤ 1 (2)

∀a
NQ

∑
i=1

Xia ≤ 1 (3)

Then, the problem of graph matching can be formulated as the maximization of the following
general objective score function (4):

score(X) = ∑
ia,jb

Hia,jbXiaXjb, (4)

where Hia,jb means the similarity or affinity measurement corresponding to the tuple of feature points
i, j and a, b. The higher is the score Hia,jb, the higher are the similarities between the two corresponding
edges (i, j) and (a, b). The product XiaXjb is equal to 1 if and only if points i, j are respectively mapped
to points a, b.

Then, we need to know how to compute such a positive and symmetric similarity matrix H.
Many cost functions may be used to compute affinity matrices for first-order and second-order GM.
Note that Hia,ia represents first-order similarity term, between local attributes of points i ∈ P and
a ∈ Q. For example, the authors in [37,38] use the normalized cross-correlation (NCC) cost function,
as we have used to validate our feature point extraction method in this thesis. Nevertheless, any
point-to-point distance function can be used, as the Euclidean distance between SIFT descriptors,
or sum of squared error data terms.

Duchenne et al. in [33] propose a general formula to compute the second-order affinity term Hia,jb
as shown in (5), where f is a feature vector associated to each edge.

∀ia, jb Hia,jb = exp(−γ‖ fi,j − fa,b‖2) (5)

Leordeanu et al. in [29], and as most often encountered, computes the Euclidean distance between
the corresponding candidate point pairs i, j and a, b, to build the affinity term Hia,jb, as shown in
Equation (6). Here, σd is the sensitive controller of the deformation.

H(ia, jb) =

 4.5−
(dij − dab)

2

2σ2
d

i f |dij − dab|< 3σd

0 otherwise
(6)

4. First-Order NCC Based GM

In this section, we introduce the implementation of the system image matching process, including
feature point detection and extraction, feature point matching, and removing mismatching pairs.
The schematic diagram of the whole process is shown in Figure 2. Regarding the interest point
matching strategy, the proposed pipeline illustrated in Figure 2 can be summarized as (1) Laplacian
filter is used for edge detection; (2) Marr wavelets are used to identify salient points in the image;
(3) entropy based metric for selecting the most distinctive points of the image denoted as feature points;
(4) feature points matching; (5) outlier removal through RANSAC.



Sensors 2020, 20, 5117 7 of 26

Figure 2. The basic flowchart of graph matching.

4.1. Image Pre-Processing

Laplacian is a second-order derivative operator that detects the zero-crossing in image intensity
and usually produces more accurate edge detection results [39]. Laplace filter represents a discrete
approximation to the mathematical Laplace operator. Its second-order partial derivative in the
orthogonal direction of continuous space and the approximation of its mathematical equivalent
are defined below [40]:

∇2 f (x, y) =
∂2 f (x, y)

∂x2 +
∂2 f (x, y)

∂y2 (7)

∇2 f (x, y) ∼= { f (x + 1, y) + f (x− 1, y) + f (x, y + 1) + f (x, y− 1)} − 4 f (x, y) (8)

I(X) = I(x, y) = f (x, y)− c · ∇2 f (x, y) (9)

where f (x, y) is the original image, I(x, y) is the processed image, c is a constant.
From formula (8), the digital mask filter w can be viewed as the following 3× 3 set of filter

coefficients as shown in Figure 3a. The process of the Laplacian filter sharpening is essentially a
convolution process. Suppose the origin pixel of f is located in the upper left corner of the image f ,
and set the middle value of mask w as the center of kernel. Let w move at all possible positions so that
the center kernel of w can coincide with each of pixels of f . The convolution operation is essentially
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the sum of the products of the corresponding positions of the two functions. The convolution between
f and its corresponding mask filter w is shown in Figure 3b.

Figure 3. The process of the Laplacian filter sharpening: (a) the digital mask filter w, (b) the convolution
operation.

The definition of two-dimensional convolution is as:

I(x, y) = f ∗ w = ∑
k,l

f (x + k, y + l)w(k, l) (10)

4.2. Marr Wavelets within Scale-Interaction

Receptive field [41] is used to describe the stimulation pattern of the retina. The receiving field
of high-level neuron cells in the visual pathway is synthesized from the receiving field of low-level
neuron cells. Therefore, as the level increases, the range of the receptive field becomes more impressive.
Ultra-complex neuron cell models [42] can respond to complex object features through powerful
non-linear processing functions, and most ultra-complex neuron cells have sensitive termination
characteristics at the ends of line segments, corner points, and line segments with high curvature.
In other words, the response of ultra-complex neuron cells to light can be simulated by the difference
in response of spatial filters with different bandwidths to light. The response of the received field to
light can be represented by a spatial filter function, such as a Gaussian difference function or a Gabor
wavelet function.

The scale-interaction model for feature detection is based on filtering using a class of self-similar
Gabor functions or Gabor wavelets [43,44], which can achieve the minimum joint resolution in the
spatial and frequency domains. This recommendation is made because it is unique in reaching the
smallest possible value of the joint uncertainty [45]. The function of feature detection is defined as the
following formula:

Qij(x, y, θ) = f (Wi(x, y, θ)− γWj(x, y, θ)) (11)

where γ is a normalizing factor, Wi(x, y, θ) and Wj(x, y, θ) are spatial filters. They go through the
transformation of a nonlinear function f at location (x, y) with preferred orientation θ in two scales
i and j respectively. If feature detection function Qij obtains a local maximum at the location (x, y),
this location is considered to be a potential feature point position.

For further optimization, the Marr wavelets [46] were used instead of Gabor wavelets within the
scale-interaction model, because of its isotropic [47,48]. Two-dimensional Marr wavelets and their
corresponding feature detection function are defined as:

Mi(X) = λi(2− λ2
i X2)exp(−

λ2
i X2

2
) (12)

Qij(X) = |Mi(X)− γMj(X)| (13)

Rij(X) = I(X) ∗Qij(X) (14)
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where X = (x, y), and X2 = (x2 + y2). λi = 2−i and i represents the scaling value of Marr wavelets.
Convolve Qij(X) with an grayscale image I(X). If its response value Rij(X) obtains a maximum
local value, then X is considered to be a potential feature point. Algorithm 1 is pseudo-code of Marr
wavelets within scale-interaction. Figure 4 illustrates the process of extracting response value using
Marr wavelets within scale-interaction. (b) and (c) are convolution results between the original picture
and the mask filter. Then local maximum points are extracted on this basis.

Algorithm 1 Marr wavelets within scale-interaction algorithm

Input: I(X), i, j
Output: points

1: Ii = MarrFilter(I(X), i)
2: Ij = MarrFilter(I(X), j)
3: Isub ← |Ii − Ij|
4: localthr ← max(max(Isub)) ∗ r
5: if Isub(i, j) < localthr then
6: Ilocalthr(i, j)← Isub(i, j)← 0
7: end if
8: points← cornerpeaks ← Ilocalthr
9: function MarrFilter(I(X), scale)

10: δ = 2scale

11: x = −(2 ∗ f ix(δ)) : 1 : (2 ∗ f ix(δ))
12: y = −(2 ∗ f ix(2 ∗ δ)) : 1 : (2 ∗ f ix(2 ∗ δ))
13: Mi(X)← X ← meshgrid(x, y)
14: I f il ← I(X) ∗Mi(X)
15: end function

Figure 4. From the left to the right: (a) original image, (b) filtered result when i = 1, (c) filtered result
when i = 2 and (d) response image.

4.3. Entropy and Response

Aiming at the problems of uneven feature distribution, too many feature points, and long
matching time, a feature point extraction method based on local entropy and feature point response
was proposed, called the entropy and response algorithm (ER). In this section, three main parts
are explained.
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4.3.1. Entropy Algorithm

In actual images, feature points often appear as sharp changes of gray values or inhomogeneity in
grayscale distribution; that is, the local region of a feature point has a large amount of information.
Entropy is a measure of information in an image, and local entropy is a measure of local area
information of an image. Local entropy value under feature-rich region is much higher than the
local entropy value under feature-poor region. Therefore, it is possible to determine which regions
have more features by calculating the local information entropy of image, and then extract the feature
points in these regions.

Information entropy [49,50] is the amount that represents the overall characteristics of the source
in a common sense. It is considered from the statistical properties of the entire source to measure
the expected value of a random variable. An image is essentially a source of information that can
be described by information entropy. Let the gray image G have m gray levels, mesh division is
performed to obtain n× n sub-regions. The whole information entropy Hi and the average entropy H̄
of the image are calculated as follows:

Hi =
m

∑
i=1

pilog2 pi (15)

H̄ =
1
n2

n2

∑
j=1

Hj (16)

where pi is the probability that the ith gray level appears, that is, the ratio of the number of pixels
whose gray value is i to the total number of pixels of the image. So the local entropy is counted for the
probability of occurrence of gray level in the sub-image. Since the value of the information entropy
is only related to the distribution of the local gray-scale pixels, but independent with a single pixel,
so it is not sensitive to the influence of noise and can improve the accuracy of the image authenticity
description. Here, we use the local information entropy of the image to extract feature points. Under the
meshing strategy, the image is divided into n× n sub-regions. Therefore, the sub-average entropy
value of each sub-grid can be calculated. Figure 5 is a schematic diagram of mesh division, n is set
to 40.

Figure 5. Schematic diagram of meshing: (a) image divided by 4× 4 sub-regions, (b) image divided by
8× 8 sub-regions.

4.3.2. Response Algorithm

After mesh division and the computation of each local entropy, we will get n× n sub-regions
for the whole image, then detected feature points are mapped into the respective sub-areas. In this
case, if we compute and sort the entropy values of all of these feature points extracted, then the first N
feature points with larger entropy values can be selected to describe the whole image. However, this
method only utilizes the entropy values of feature points, without considering its distribution in the
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image. Finally, feature points with high entropy values may mostly appear in the same local area,
which will cause aggregation. So a block division and response algorithm are proposed to deal with
this problem.

As mentioned before, if a pixel presents a sharp change in its neighborhood, this pixel will
have a stronger deviation value from the mean value. Based on the Bresenham discrete circle [51]
with the pixel point pi as the center and three pixels as the radius, 16-pixel points on the discrete
circumference are considered in correspondence with the central pixel point pi. This is shown in
Figure 6. These 16 pixels are assigned to dark and bright areas. The dividing criteria and deviation [52]
are respectively defined as the following:

Sbright =
{

x|Ipi ,x > Ipi + t
}

(17)

Sdark =
{

x|Ipi ,x ≤ Ipi − t
}

(18)

Dev = max( ∑
x∈Sbright

|Ipi ,x − Ipi | − t, ∑
x∈Sdark

|Ipi − Ipi ,x| − t) (19)

where Sbright indicates bright area, Sdark indicates dark area. Ipi is the gray value of center point pi,
Ipi ,x represents the gray value of a pixel labeled x on a discrete circumference centered at pixel pi, t is
the set threshold. Dev is the sum of the deviation value among the gray values of the pixel pi and its
corresponding neighboring pixels located in the bright or dark area.

Figure 6. Bresenham discrete circle centered on pixel pi.

4.3.3. Distribution Criterion

After the calculation of the entropy and response, a distribution criterion is proposed to extract
the corresponding points that meet the requirements. In the region where the local entropy is bigger
than the average of entropy H̄, the feature points are extracted with the ratio r. The only one strongest
response point is extracted in each remaining region where the local entropy is smaller than H̄. Here, we
choose the unified ratio method for the selection of r. Assuming that there are m regions whose local
entropy is greater than H̄, then ri(1, 2, ..., m) is the ratio of extracting feature points in the ith region.
For example, when r = 10%, that is, in the mth region with large local entropy, the feature points with
the top 10% responses given by Dev are extracted. The appropriate value of r is set empirically.

The detail of the entire ER method is outlined in Algorithm 2. Based on the mesh division strategy,
we first compute each of the local average entropy value of all these sub-regions. Then the feature
points are sorted according to the computation of their deviation values in each of their sub-region.
Finally, the distribution criterion can not only effectively reduce some of the useless feature points,
but also ensure the uniformity of feature point distribution. As we can see, the step entropy and
response can both develop a custom algorithm to identify feature points. Entropy strategy is only to
calculate the reflection degree of an individual pixel, but the response is based on the deviation value
of a set pixels between the center point, and it is adjacent points based on the Bresenham discrete circle
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principle, so that the mutation of response is more reflected for finding points with reliable contrast.
Therefore, deviation is more capable of extracting more qualified feature points than entropy.

Algorithm 2 Entropy and response algorithms

Input: I(X), points, m, n, t, r
Output: pointsselect

1: for j = 1→ n2 do
2: pointsj ← points
3: Hj, H̄ ← Entropy(I(X), m, n)
4: psub(j) ← Response(pointsj, t)
5: if Hj > H̄ then
6: pointsselect ← p(psub(j)∗r)
7: else
8: pointsselect ← pmax
9: end if

10: j = j + 1
11: end for
12: return pointsselect
13: function Entropy(I(X), m, n)
14: pi(m∗1) ← Isub(i)(n∗n) ← I(X)
15: H = ∑m

i=1 pilog2 pi
16: H̄ = 1

n2 ∑n2

j=1 Hj
17: end function
18: function Response(points, t)
19: Ip,x ← circlep ← points
20: Dev = max(∑x∈Sbright

|Ip,x − Ip| − t, ∑x∈Sdark
|Ip − Ip,x| − t)

21: psub ← p(Devp)
22: end function

4.4. Definition of First-Order GM Problem Based on NCC

The purpose of graph matching [53] is to determine the correct attribute correspondences
P = (VP, EP) and Q = (VQ, EQ) between two graphs P and Q, where V means vertex, and E represents
edge. We customize corresponding mapping edges e1 = ij ∈ EP, e2 = ab ∈ EQ.

The objective of graph matching is to find the correct corresponding point pairs between two
graphs P and Q among the feature points extracted. A unidirectional ’one-to-one’ constraint is assumed,
which requires one node in P to match at most one node in Q.

Cross-correlation is a standard method for estimating the similarity between two sets of data [54].
Normalized cross-correlation (NCC) is an essential application, which has been used widely for many
signal processing applications due to its effective and direct representation in the frequency domain,
and it is less sensitive to linear variations in the amplitude of two comparison signals [55]. We use the
NCC algorithm to measure the similarity between two feature point p in graph P and q in graph Q.
These ratios Ra(p, q) of the calculated correlation values represent the degree of matching between
the two sets of corresponding images. The NCC algorithm used to find similarity match between a
window near feature point p and a window around feature point q is defined as:

Ra(p, q) = ∑i[(W pi −W p)(Wqi −Wq)]√
∑i(W pi −W p)2

√
∑i(Wqi −Wq)2

(20)

where the summations are over all window coordinates, W pi and Wqi are pixel intensity in windows
for p and q respectively, each of the windows is sized as 5× 5. Also, W p and Wq are the corresponding
mean of the window pixels. The coordinate of maximum values in this normalization cross-correlation
is the position of the best matches for reference images.

Based on the NCC similarity measure, we use the nearest neighbor ratio (NNR) method to perform
a rough match on the feature point set. The selection and matching process of the NNR algorithm with
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one-way ‘one-to-one’ constraint is described as follows: Based on the sample feature point pairs in
the two images, first use the NCC algorithm to extract all the most significant corresponding pairs.
These ratios are then compared with a fixed threshold. If the NCC ratio is higher than this fixed
threshold, the corresponding point pair is considered a match. Otherwise, the pair of points are
discarded. The fixed threshold is usually a constant not greater than 0.9. Since correct matching has
stronger similarity than incorrect matching, this is a functional judging characterization for graph
matching according to the NNR concept. Figure 7 shows a flowchart of data processing. The detected
feature points of the two images are respectively put into two corresponding buffers. Each point p in
graph P is used to calculate the ratio of NCC to all points q in graph Q, and then all ratios are sorted in
descending order. Under the principle of NNR, some will be extracted as the best matching points,
otherwise, they will be discarded.

Figure 7. The basic flowchart of data processing.

4.5. Outlier Elimination

In this application, before using the Marr filter for convolution, we will use Laplacian for
convolution as a preprocessing step. Due to the linear relationship of these two operations,
this corresponds to a single convolution, which is a smoothed fourth-order derivative filter.
Therefore, as each derivative amplifies the noise, the number of feature points increases. On the other
hand, although the NNR method is easy to implement and sometimes well-matched, some points
in these extracted feature point sets do not match, so a mismatched cleanup operation is required.
Therefore, it is particularly important to find ways to reduce the mismatch caused by interference.

The RANSAC algorithm [56,57] is called the Random Sample Consensus Algorithm, which can
well eliminate the existence of mismatches. The algorithm has strong robustness and the ability
to correct data sets. The basic idea of the RANSAC algorithm is to use an iterative method to
extract the sample set from the model. Find an optimized parametric model that can include more
internal points in the data set and then test the extracted samples using the residual set. Points in
the algorithm that fit the data set model are called interior points. Otherwise, they are called outliers.
Therefore, the RANSAC algorithm can be used to find the best parameter model in the data set
containing outliers through an iterative algorithm. The detailed implementation process of RANSAC
is as follows:

(a) Randomly extracts non-collinear a pairs of feature points from the data set (a = 4 in experiment),
then calculate their transformation homography matrix H, and record it as model M.

(b) Calculate projection error of each point in the dataset with model Mk. If the error is less than a
predefined threshold τ, add it into the inner point set Ik.

(c) If the current number of elements in inner point set Ik is greater than the number in optimal inner
point set Ibest, then update Ibest and re-estimate the model Mbest.

(d) If the number of iteration is more than k, the operation will be exited; otherwise, the number of
iterations is increased by 1, and the above steps are repeated.
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The threshold τ is selected in accordance with n-dimensional chi-square distribution. χ is the
cumulative chi-square distribution. Assume that the out-of-class points are white Gaussian noise with
a mean of 0 and a variance of η. The number of iterations k will be updated instead of fixed until it is
greater than the maximum number of iterations.

τ2 = χ−1
n (µ)η2 (21)

k =
log(1− pc)

log(1− µa)
(22)

where pc is the confidence level, generally taking 0.95 to 0.99; µ is the ratio of inlier point; a is the
minimum number of samples required to calculate for model. The pseudo-code of RANSAC is outlined
in Algorithm 3.

Algorithm 3 Random Sample Consensus (RANSAC) algorithm

Input: pc, kmax, τ, a, m
Output: Mbest, Ibest

1: k = 0, Imax = 0
2: for k < kmax do
3: τ2 = X−1

n (µ)η2

4: Use randomly sampled subset a to estimate Mk and Ik.
5: if |Ik| > Imax then
6: Mbest = Mk, Ibest = Ik
7: µ = |Ibest|/m, kmax = log(1− pc)/log(1− µa)
8: end if
9: k = k + 1

10: end for

4.6. Parameters of the Proposed Algorithm

This section details the specific parameters used in the experiments. In the feature point detection
part, the Marr wavelet algorithm is used to define the feature points as the maximum local value
inside the scale-interaction image (with γ = 1). The two scales we chose are i = 1 and j = 2. Then the
mesh division and feature points extraction are processed, the image is meshed by n× n to obtain n2

sub-regions. Here, n = 40 is selected. The detected feature points are mapped into various sub-regions
and sorted based on the deviation value Dev in each sub-region to which they belong. At the same time,
each local information entropy Hi and average information entropy H̄ are calculated. Assume that
there are k sub-regions with local information entropy greater than the average information entropy,
then feature points with maximum responsiveness of 30% are extracted from these k regions. In the
feature point matching part, the NCC similarity measurement algorithm and NNR method are used
to match the feature point set roughly. For the matching point filtering part, RANSAC can better
remove the unmatched points, and finally get more accurate matching results. Its computational
complexity is O

(
max(NP, NQ)

)
, where NP is the number of features in the reference image, and NQ is

number of features in query image. The algorithm is suitable for performing real-time global methods.
Besides, it can also achieve efficient parallel implementation in GPU systems. Algorithm 4 outlines the
details of the entire process of the proposed algorithm.

Algorithm 4 The proposed algorithm

Input: Input images I1 and I2
1: I1 and I2 processed under Laplace filter
2: (I1′ , I2′) = MarrWaveletsFunction(I1, I2)
3: (points1, points2)← (cornerpeaks1, cornerpeaks2)← (I1′ , I2′)
4: (pointsselect1, pointsselect2) = EntropyResponseFunction(points1, points2)
5: (pointsselect1′ , pointsselect2′) = RANSACFunction(pointsselect1, pointsselect2)
6: MatchingPairs = NCCandNNR(pointsselect1′ , pointsselect2′)
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5. Second-Order NCC Based GM

The first-order GM provides convolution-based algorithms, whereas the second-order GM
emphasizes geometric inter-feature relationships, transforming the correspondence problem to a
purely geometric problem stated in a high dimensional space, generally modeled as an integer
quadratic programming. This section presents our second application. We introduce in this section
a new contribution with an application to second-order graph matching in the Matlab framework.
The framework is based on the original Matlab application provided by Cho et al. [18]. This application
constitutes a useful framework for graph matching as an IQP problem. It offers useful mathematical
abstractions, and it allows us to develop and compare many algorithms based on a common evaluation
platform, sharing input data, but also customizing affinity matrices and a matching list of candidate
solution pairs as input data. This allows us to reuse these common data and context to start elaborate
NCC algorithms for second-order graph matching application (As we discussed in detail in Section 4.4).
This approach uses NCC algorithm to search for the indicator vector, then the matching score will
be computed under IQP based formulation. By considering the second-order term, the algorithm
determines the mapping between two graphs that should reflect the geometric similarity relationship
between the pairwise matching features. All the algorithms are executed and compared based on the
same experimental framework with common data from standard benchmarks in the domain.

We set P and Q the two sets of features of query graph GP = (P, EP) and reference graph
GQ = (Q, EQ) respectively. We note i, j ∈ P and a, b ∈ Q as feature points, ij ∈ EP and ab ∈ EQ as
edges. Also, e1 = (i, a) and e2 = (j, b) represent, when needed, candidate assignments. The main
task it to find a suitable one-to-one mapping between P and Q. The feature points correspondence
mapping is shown in the Figure 1. The yellow lines are correct matches.

Affinity matrix M, also known as affinity tensor, is used to organize the mutual similarities
between sets of feature points. The measurement of affinity can be interpreted as a product of a
solution vector x, that represents the set of candidate correspondences, by the matrix. The solution
variable x ∈ {0, 1}NP NQ is an indicator vector such that xia = 1 means feature i ∈ P matches with
feature a ∈ Q, xia = 0 means no correspondence, and where NP and NQ are the respective set sizes of
P and Q.

A graph matching score S between edges can be defined by the following equation:

S = ∑
ij∼ab

f (ij, ab) = ∑
ia,jb

M(ia, jb)xiaxjb = xT Mx, (23)

where ij ∼ ab means (i, a) and (j, b) are correspondence pairs, and x is the indicator vector. Then,
the purpose of the graph matching IQP problem is computing solution x∗ that maximizes the matching
score as follows:

x∗ = argmax(xT Mx), (24)

s.t. x ∈ {0, 1}NP NQ , (25)

∀i
NQ

∑
a=1

xia ≤ 1, (26)

∀a
NP

∑
i=1

xia ≤ 1. (27)

The binary constraint is expressed by Equation (25), while (26) and (27) express the two-way
constraints, that specify the solution to be a one-to-one mapping from P to Q. Note that by removing
constraint (27), we obtain a many-to-one mapping, that is, a (partial) function from P to Q. In this
chapter both constraints must be verified.

Affinity matrix M which consists of the relational similarity values between edges and nodes must
is considered as an input of the problem. It can be noted that its size is defined by the total number of
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candidate assignment pairs considered. Then, the affinity matrix size may vary from O
(
(NPNQ)

2),
in the case of full possible pairs, to O

(
(K× NP)

2) where K is some constant, in case of a restricted list
of candidate pairs. Note that this list of candidate pairs must be added as part of the input to relate the
entries of the affinity matrix to the feature points. The indicator variable x size varies also accordingly
to the symmetric affinity matrix size. Its length corresponds to the column, of line, size of the matrix,
and may vary from NP × NQ to K× NP depending on the application.

Here, the matching score is completely retained as pairwise geometric only. The individual affinity
M(e1, e1) that represents first order affinity, is set to zero since there is no information about individual
affinity. That is to say, all the diagonal values of the affinity matrix are zeros. The pairwise affinity
M(e1, e2) = M(ia, jb) between edges is given by:

M(ia, jb) = max(50− dia;jb, 0), (28)

where dia;jb is the mutual projection error function used in [58] between two candidate assignments (i, a)
and (j, b), that includes euclidean distance evaluation dij between locations of features i, j. The Table 1
summarizes notations and definitions used in this paper.

Table 1. Summarization of notations.

Notation Purpose

GP Reference graph
GQ Query graph
P Set of features in GP
Q Set of features in GQ
NP Total number of data featrues of GP
NQ Total number of data featrues of GQ
C Mapping constrains
L A set of candidate assignments
i, j Feature points in GP
a, b Feature points in GQ
e1 = (i, a), e2 = (j, b) Candidate assignments
M Affinity matrix
M(e1, e2) Pairwise affinity
M(e1, e1) Individual affinity
S Graph matching score
x Indicator vector
x∗ Optimal solution
dij Euclidean distances between the point i and j

6. Experimental Evaluation

6.1. First-Order GM Experiment

The experiments were performed on a CPU Intel(R) Core(TM) i5-4590 3.3 GHz. In this section,
we evaluate the proposed feature point matching method by using the Visual Geometry Group
dataset (https://www.robots.ox.ac.uk/~vgg/data/). The following will be divided into two parts
for experimental description: extract feature points and perform feature matching. For quantitative
evaluation, a set of experiments was performed. The proposed algorithm based on Laplace filter
and Marr wavelets under entropy method (L_Marr_E) was compared with other classic conventional
methods, corner detector [9], Gilles [7], Harris [6], LoG [8] and SIFT [11] algorithms.

6.1.1. Feature Points Extraction

Based on the above experimental theory, the following experimental verification was performed.
First, we needed to verify the importance of the Laplacian filtering algorithm at the feature point
extraction stage. Figure 8b,c show comparison graphs before and after adding a Laplacian filter. We can

https://www.robots.ox.ac.uk/~vgg/data/


Sensors 2020, 20, 5117 17 of 26

clearly see that using Laplace filters could greatly increase the number of feature points detected.
Figure 9 shows the feature point detection results between different algorithms: CD, Gilles, Harris,
LoG, SIFT, and L_Marr_E. Correspondingly, Table 2 details the specific number of feature points
extracted of Figure 9. Compared with the conventional method, this method could extract more
feature points.

Figure 8. Quantitative experimental analysis of feature point extraction: (a) original image, (b) feature
point extraction without Laplace filter, (c) feature point extraction with Laplace filter.

Figure 9. Feature points extraction under different algorithms: (a) corner detector (CD) (b) Gilles
(c) Harris (d) LoG (e) SIFT (f) L_Marr_E.
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Table 2. Feature point extraction results under different kinds of algorithms.

Method CD Gilles Harris LOG SIFT L_Marr_E

img.1 72 73 104 174 226 264
img.2 70 246 457 165 980 654
img.3 144 274 341 110 763 1576
img.4 203 844 1133 153 3533 8402
img.5 320 627 696 140 3366 7806

6.1.2. Feature Points Matching

The following experiments verified the application of entropy-based refinement in feature
matching. Combined with the fragile feature selection stage, ablation analysis provided some valuable
intuitions for the pipeline in the feature matching stage. Then, the Figure 10 shows the comparison
results, and we found that the RANSAC algorithm could thoroughly eliminate the mismatch points.
Besides, the NCC algorithm based on Laplacian filter and Marr wavelet (L_Marr) not only had higher
matching accuracy but also could increase the number of correct feature matches than the method
without Laplace filter (Marr).

Figure 10. (a,b) show graph matching without Laplace filter before and after RANSAC optimization;
(c,d) show graph matching under Laplace filter before and after RANSAC optimization; (e,f) show
graph matching using entropy algorithm without Laplace filter before and after RANSAC
optimization; (g,h) show graph matching using entropy algorithm under Laplace filter before and after
RANSAC optimization.

Then we conducted another ablation study. We calculated the five groups of databases as used
in Figure 9 and took their final average as shown in Table 3. It summarizes the number of image
matching pairs, the number of recall, and time. The computation of graph matching Recall [59] can be
defined as follows:

Recall = Nrm/Ntm (29)

where Nrm is defined as the number of detected true matches after RANSAC removes the mismatched
points, and Ntm means the total number of correspondences. From the Table 3, we can find that the
use of Laplace increases the recall rate, but at the same time it increases the computing time; however,
the use of entropy can greatly improve operating efficiency under the premise of basically ensuring
the recall value. Therefore, the two complement each other, the combination of Laplace and entropy



Sensors 2020, 20, 5117 19 of 26

can better realize the superiority of the proposed algorithm. As shown in the Table 3, the accuracy of
the global L_Marr_E method remains very high, even if slightly lower than the accuracy of L_Marr
method with no entropy, whereas a substantial computation time acceleration by a factor 5 is a benefit
of the method with entropy element.

Table 3. Experimental comparison results for quantitative analysis of feature point matching.

Methods Nrm Ntm Recall (%) Time (s)

Marr 3323 4711 70.58 18.76
L_Marr 10407 10954 95.01 98.02
Marr_E 998 1455 68.59 10.33

L_Marr_E 3523 3740 94.20 21.45

We now selected the L_Marr_E method, which provided the best compromise in both accuracy
and computation time in previous tests, as a competitor against other feature point selection methods
from literature. We conducted another experiment based on test data from the University of Oxford’s
Object Category dataset, which contained 13 different image sets. Among them, seven data sets
were selected for comparative analysis in this section. Table 4 shows the average of all image pairs
selected from the dataset. The best recall results were obtained through L_Marr_E, which produced
the most significant feature points in the two query images. It should be noted that when compared to
standard feature point extraction methods, our method provided the best accuracy despite a slight
increase of computation time. While entropy accelerated feature point selection in our framework
with Laplacian and Marr wavelet, as shown in Table 3, it allowed on the contrary to improve accuracy
against other independent standard feature point selection methods, as shown in Table 4. Even when
compared to the famous SIFT method, our method remained competitive according to the trade-off
between time and accuracy, accuracy being improved at a slight expense of computation time. Note
that L_Marr_E also provided the highest number of feature points. Figure 11 shows the corresponding
links between images under different algorithms: CD, Gilles, Harris, LoG, SIFT, and L_Marr_E.
Therefore, the proposed algorithm ould obtain the better matching effect.

Table 4. Feature point matching results under different kinds of algorithms.

Detector 1st Image 2nd Image Time (s) Recall (%)

1 CD 51 53 1.76 0.36
2 Gilles 124 134 2.24 0.16
3 Harris 208 226 2.8 0.35
4 LoG 300 300 4.27 0.27
5 SIFT 1275 1258 5.49 0.48
6 L_Marr_E 1998 1929 7.22 0.52

Figure 11. Feature points matching under different algorithms: (a) CD (b) Gilles (c) Harris (d) LoG
(e) SIFT and (f) L_Marr_E.
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6.2. Second-Order GM Experiment

In this subsection, experiments were conducted on a CPU Intel(R) Core(TM) i5-4590 3.3 GHz.
We performed experiments on the CMU house image database and real image database. Accuracy,
objective score and time were the most important main parameters in the field of graph matching.
We needed to use them as criterion when comparing with other different algorithms. The datasets
used in this paper, such as CALTECH and CMU house datasets, are the most popular databases
for some state-of-the-art algorithms. Although there are still many different databases, in order to
facilitate the comparative study of researchers who study graph matching, this article used these most
popular databases for easier comparing research. The proposed NCC algorithm was compared with
two state-of-the-art methods such as RRWM [18] and SM [29]. All of these different algorithms shared
the same images, feature points, and affinity matrices as input data. Each test set had a ground-truth
solution for accuracy evaluation.

6.2.1. Presentation

Performance evaluation could be done by computing the affinity score, but more importantly,
by evaluating accuracy according to a ground-truth set of true assignment pairs, that reflected the
application requirement of graph matching. We also evaluated the computation time. Based on the
above IQP, the objective score could be obtained by formula (4). Accuracy could be obtained by
dividing the actual correct number of matches detected by the maximum number of ground truth
pairs that could be returned, and the formula was as follows:

Accuracy = x∗ ∗VGTbool/maxGT, (30)

where x∗ is the binary vector solution returned by the algorithm, VGTbool ∈ {0, 1}NP NQ is a binary
vector representing the ground-truth pairs, and maxGT is the maximum number of true assignments
that could be returned when considering a many-to-one mapping, relaxing constraint formula (2).
However, solutions returned by the algorithms had to necessarily verify a one-to-one mapping in this
section. They verified both constraints formulas (2) and (3).

6.2.2. CMU House Image Matching

Experiments using the CMU house internal sequence dataset (http://vasc.ri.cmu.edu/idb/html/
motion/) could evaluate sequence matching of the same object. A total of 110 pictures in this dataset
were divided into different sequence gaps (from 10 to 100 with an interval of 10). Therefore, we ended
up with ten sets of data pairs. Each pair of image sets consisted of an initial fixed-position picture
(sequence 1) and its changing transformations. To evaluate the matching accuracy, 30 landmark feature
extraction points were manually tracked and labeled as ground truth on all frames. In this typical classic
CMU test, the proposed NCC method was competitive to the RRWM algorithm. The experimental
results are shown in Figure 12, and the detailed information of the quantitative evaluation is recorded
in Table 5. From Table 5 we can find that in this typical single object with only the angle conversion
test, the proposed NCC algorithm was comparable to RRWM in terms of accuracy and score. NCC
also cost less computing time than RRWM.

http://vasc.ri.cmu.edu/idb/html/motion/
http://vasc.ri.cmu.edu/idb/html/motion/
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Figure 12. CMU house dataset matching results among (a) RRWM, (b) SM, and (c) NCC algorithms.

Table 5. Comparative evaluation on CMU database for reweighted random walk method (RRWM),
spectral matching method (SM), and normalized cross-correlation (NCC).

Methods Accuracy Score Time (s)

1 RRWM 92.61 99.93 0.52
2 SM 89.21 94.44 0.07
3 NCC 94.88 95.31 0.23

6.2.3. Real Image Matching

In the experiments of real image matching, we used the CALTECH database (https://cv.snu.ac.
kr/research/~RRWM/) customized by Cho et al. [18]. In this CALTECH database, it contained 30
different image pairs. All ground truths of these corresponding candidates were manually pre-labeled.
Accuracy and objective scores were the main criteria for matching. Table 6 shows the average results
of 30 pairs of images obtained by RRWM, SM, and NCC algorithms. As can be seen from the table,
the performance of the NCC algorithm was not better than the RRWM and SM algorithms. Figure 13
shows the visualization of feature point connections. Correct and incorrect matches were marked with
yellow and black lines, respectively.

Since the second-order graph matching based on IQP was an NP-hard problem, various
approximate solutions were used to attempt to solve the pairwise similarity corresponding mapping
problem. Leordeanu and Hebert provided a spectral matching (SM) algorithm [29] based on the main
strength cluster of the adjacency matrix by finding its principal eigenvector. Reweighted random
walks for graph matching (RRWM) algorithm was introduced by Cho et al. [18], and it combined
mapping constraints with re-weighted jumping schemes. Both of these two methods implement an
iteration loop to compute a principal eigenvector. This basic iteration loop technique belongs to the
power iteration method. Although this method cannot guarantee to achieve the final global optimal
solution during the operation, it can converge to the fixed point of the tensor. However, NCC algorithm
is a single-threaded algorithm but not an iterative method. When the normalized cross-correlation
algorithm calculation is over, the entire matching process is completed. It cannot run the optimization
iterative until the solution x converges. Therefore, the NCC algorithm cannot achieve the expected
optimization effect in the second-order matching.

https://cv.snu.ac.kr/research/~RRWM/
https://cv.snu.ac.kr/research/~RRWM/
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Table 6. Comparative evaluation on CALTECH database for RRWM, SM, and NCC.

Methods Accuracy Score Time (s)

1 RRWM 61.13 99.92 0.16
2 SM 50.22 79.93 0.02
3 NCC 52.17 74.39 0.06

Figure 13. From the left to the right: (a) RRWM algorithm, (b) SM algorithm, and (c) NCC algorithm for
graph matching. (The yellow lines represent the correct matching pairs, and the black lines represent
the wrong matches.)

7. Conclusions

We study different declinations of feature correspondence problems by the use of the Matlab
platform, in order to reuse and provide state-of-the-art solution methods, as well as experimental
protocols and input data necessary with evaluation and comparison tools against existing sequential
algorithms, most of the time developed in Matlab framework. While feature extraction methods are
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numerous, it is not straightforward that each could represent the objects to match from a query to a
reference image adequately. In order to vary the feature set size while preserving a reasonable recall
rate in graph matching, we have proposed a new combination of filters with an entropy-response
based selection method. Laplace filter enhances the edges and details of an image. Secondly, Marr
wavelets embedded in scale-interaction are used to detect feature points. Then, we use the entropy and
brightness response to extract typical feature points. Most importantly, the entropy-based selection
method greatly reduces the calculation time. Image matching is achieved by nearest neighbor search
using a normalized cross-correlation similarity measure. Finally, the RANSAC process deletes the
outlier correspondence to achieve matching optimization. The first-order comparison results show that
our algorithm has a higher matching rate for reasonable computation time, despite the augmentation
of the number of feature points under the Laplace algorithm. The second-order graph matching is
also realized based on the NCC algorithm, which allows us to address graph matching or derived
sub-problems with a closed relationship with experiments on IQP models in the Matlab platform.
We found that the second-order NCC approach performs competitively to IQP models on CMU images
on accuracy and score. The performance looks less satisfactory for real case images of the CALTECH
database. In future work, we will improve implementation by exploiting natural parallelism of the
method on the GPU platform.
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