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Abstract: This paper proposes a deep-learning model with task-specific bounding box regressors
(TSBBRs) and conditional back-propagation mechanisms for detection of objects in motion for
advanced driver assistance system (ADAS) applications. The proposed model separates the object
detection networks for objects of different sizes and applies the proposed algorithm to achieve
better detection results for both larger and tinier objects. For larger objects, a neural network with
a larger visual receptive field is used to acquire information from larger areas. For the detection
of tinier objects, the network of a smaller receptive field utilizes fine grain features. A conditional
back-propagation mechanism yields different types of TSBBRs to perform data-driven learning for
the set criterion and learn the representation of different object sizes without degrading each other.
The design of dual-path object bounding box regressors can simultaneously detect objects in various
kinds of dissimilar scales and aspect ratios. Only a single inference of neural network is needed
for each frame to support the detection of multiple types of object, such as bicycles, motorbikes,
cars, buses, trucks, and pedestrians, and to locate their exact positions. The proposed model was
developed and implemented on different NVIDIA devices such as 1080 Ti, DRIVE-PX2 and Jetson
TX-2 with the respective processing performance of 67 frames per second (fps), 19.4 fps, and 8.9 fps
for the video input of 448 × 448 resolution, respectively. The proposed model can detect objects as
small as 13 × 13 pixels and achieves 86.54% accuracy on a publicly available Pascal Visual Object
Class (VOC) car database and 82.4% mean average precision (mAP) on a large collection of common
road real scenes database (iVS database).
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1. Introduction

In recent years, deep-learning algorithms have contributed to huge advancements in the
development of self-driving cars. By learning from abundant and peculiar databases, the neural
networks can realize the rules hidden in the black box. All that the researchers have to do is to design
an efficient architecture and make it learn well. For the visual perception of vehicles, the convolutional
neural networks (CNNs) are one of the most powerful types of architecture [1–5]. Various vision
applications such as object detection, object recognition, semantic segmentation and so on are based on
these. Among the aforementioned, the object detection is considered most significant and preferred
task for autonomous driving [6–10] vehicles.

Object-detection algorithms face the challenges of simultaneously detecting different objects
of diverse scaling sizes as shown in Figure 1. This also demonstrates the complexity of detecting
objects in the real driving scenarios. For the vehicles driven at higher speed on the highways and
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freeways, detecting obstacles distanced far from the vehicle becomes a critical issue of this application.
For instance, consider a real situation of a car travelling at 120 km/h; it can be mathematically established
that the car can come into collision with an object 100 m away in 3 s.
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Drivers who do not fully concentrate typically need about 1–2 s [11] to react to a sudden event
without any driver assistance system leaving behind only 2 s to prevent the probable collision with
the objects leading to major casualties. In the case of cities, heavy traffic also leads to the distraction
of drivers making it the most common cause of car accidents. To make it applicable for all kinds
of driving environment, the detection algorithms should be capable of locating objects of different
scales ranging from tinier to larger simultaneously and precisely. For real-world applications, reducing
the computational cost is a key designing concern. The object detection algorithms nowadays often
only either focus on accuracy [12–15] or computational speed [16–18] perspectives. For the accuracy
perspective, predicting the location of tiny instances is cumbersome as they often appear with blurred
boundaries and implicit appearances making it hard to distinguish them from their background. As far
as larger objects are concerned, these typically exhibit severe differences of visual representation. As a
result, two-stage detectors [12,13] are designed to extract a large amount of information from images to
classify all the objects of varying scales. Although larger configurations provide affluent information
for recognition, it makes the whole system slow and memory-intensive. If speed is weighed up as
the primary design concern, one-stage detectors [17,18] dismiss the complex pipeline in two-stage
detectors, and predict the location and object type at the same time. This simplification makes the
networks work faster but reduces the capability of detecting objects of different scales, especially
smaller objects.

Motivated by both one-stage and two-stage detectors, this paper proposes novel task-specific
bounding box regressors (TSBBRs), built based on a one-stage detector pipeline. The proposed TSBBRs
shown in Figure 2 are capable of fetching and decoding specific objects independently. As shown in
Figure 2, given an input image with arbitrary scales of objects in it, the features of whole image would
be extracted by the backbone layers. Then, treating the extracted features from the backbone as input,
two TSBBRs fetch and decode specific information and generate target objects’ predictions. Finally,
all predictions would be merged and passed to non-maximum-suppression (NMS) procedure.
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Given a color image as input, general features are extracted by the shared backbone. With these
features as input, TSBBRs fetch and decode their own related information followed by coordination
and class prediction simultaneously. Finally, all predicted boxes would be merged and passed into the
non-maximum-suppression (NMS) procedure to eliminate the redundant boxes.

With the aim of empowering the detection module to recognize the task-specific features from
inputs, a conditional back-propagation mechanism that makes each module have its own learning
target and update the weights at the same time is developed in the proposed algorithm.

The proposed conditional back-propagation mechanism is discussed in detail in Section 3.5. It is
in the criterion of the short side of bounding boxes. The back-propagation would be performed only if
it meets the experimentally preset criterion. Instead of alternative training for TSBBRs, the training
flow is made end to end. The loss would be collected and summed up with weighing in single
forward passing. After forward passing, the weights in the networks would be updated simultaneously.
This not only simplifies the training procedure but also makes the networks a better solution for such
applications. In our experiments, it is found that using the short side of the bounding boxes as a
back-propagation criterion is the most effective way to merge the TSBBRs.

The novelty and contributions of this paper can be listed as below:

(1) First, novel and modular TSBBRs for detecting the objects of all scales in the real-time scenarios
on the road are proposed and implemented. The proposed models can run at 67 fps on an
experimental setup equipped with NVIDIA 1080TI GPU, at 19.4 fps on an autonomous vehicle
platform i.e., NVIDIA Drive PX2, and at 8.9 fps on NVIDIA embedded Jetson TX2.

(2) Secondly, to make TSBBRs learn their own targets without degradation; a conditional
back-propagation mechanism to update the weights in different TSBBRs simultaneously to
reach the global minimum is developed.

2. Related Work

CNNs [1–3] have been a sensation in the research field of computer vision. They provide a way to
extract powerful visual models that yield hierarchies of features. A well-designed network through
end-to-end training even surpassed the human ability of visual perception [19].

Object detection tasks are some of the key applications of the advanced driver assistance systems
(ADAS) and self-driving cars. The vital requirement of such systems is that it can detect the salient
objects as precise as possible, which means that the algorithm should eliminate the false inference
during testing time and raise the recall rate. Detecting objects distanced from as far as possible is
also an important key to this technology. Another application issue is that the algorithm should
perform efficiently in real time under the restricted memory capacity and computational power on a
portable platform.



Sensors 2020, 20, 5269 4 of 21

The state-of-the-art methods of object detection can be broadly classified into methods based on
two-stage detectors and one-stage detectors.

2.1. Computer Vision-Based Methods

Previously, vehicle detection was based on computer vision (CV) methods. The process of car
detection was discriminated depending on contour information. The representative methods based on
non-contour information are those that used histogram-based features (HOG, etc.) [8,20,21], Haar-like
features [22,23] and the implicit shape model (ISM) [24]. Villamizar et al. acquired local statistical
information using a simple comparison between two bins of Histogram of Oriented Gradients (HOG) [21].
Ozuysal et al. built a Scale-Invariant Feature Transform (SIFT)-histogram pyramid for car detection at
multiple scales [20]. A Haar-like strip feature was employed to learn the structure of cars [23]. The Implicit
Shape Models (ISM) is a widely used technique in object detection where generalized Hough transform
is successfully applied to localize target objects. In contrast, other researches that use either contour or
edge based features include [25–27]. In [25], the whole idea of ISM was recaptured using part-based
contour fragments as features followed by an attempt to improve the recognition accuracy using oriented
chamfer matching. However, it seemed to be sensitive to shifting and rotation variations. On the other
hand, the variation of object appearances was learned using a deformable feature called active contour
fragment (ACF) [26] and a middle-level feature called ‘Sketch Tokens’ [27]. There was also an effort to use
heterogeneous features including edgelet, HOG and covariance rather than employing a single feature [28].
As for object localization, Hough transform-based center voting schemes were popularly exploited.

With the change in the research trends in recent years and the big leap towards the CNN-based
methods for object detection, this paper has proposed a CNN-based method for detecting cars in the
real traffic environment.

2.2. Two-Stage Detectors

The region-based object detectors with convolutional neural networks [12,13,29–34] split the
detection pipeline into a region proposal stage and a classification stage. Faster-Region-CNN (RCNN)
and its descending methods utilize the convolutional-based configuration to produce region proposals
accurately, called region proposal network (RPN).

RPNs find out that the convolutional features can also be used for generating region proposals.
RPN is constructed on top of the features extracted by the backbone network by adding additional
convolutional layers that can perform the regression of bounding boxes and object scores at each
location. The proposal regions would be sent to a classifier to determine the object type. RPN can
be trained according to the type of application for generating detection proposals. Hong et al. [35]
proposes a deep but lightweight architecture with Concatenated Rectified Linear Unit (C. ReLU) and
inception modules that improve accuracy and reduce computational cost. Based on the Faster-RCNN
pipeline, Lin et al. [13] produces region proposals with different levels of feature maps in the network.

2.3. One-Stage Detectors

One stage detectors [17,18,36–38] are an analogy of the human perception system. When people
view images, they immediately know the objects in the image, where they are and how they interact
with each other. The human visual system is fast and accurate, allowing us to perform complex tasks,
such as driving cars or locating the objects without much conscious thought. A fast and accurate target
detection algorithm allows the computer to drive the cars without a dedicated sensor, enabling the
auxiliary device to transmit real-time scene information to the user and dig the potential of generic
purpose in response to the robot system.

You Only Look Once (YOLO) and its descending elements [16,18] reframe object detection pipeline
into a single regression problem, which encodes image pixels to bounding box coordinates and class
probabilities at one inference. It divides the input image into an S × S grid. The grid cell is responsible
for detecting the object if the center of an object falls into this grid cell. A single CNN simultaneously
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predicts multiple bounding boxes and class probabilities for each box. YOLO [16,18] is trained on
entire images and optimized for detection performance. This unified model has several benefits
compared to the regional-based methods of object detection. YOLO is [16,18] extremely fast compared
to Faster-RCNN. Since it frames detection as a regression problem, no complex pipeline is needed
for the system. To simply run CNN on an image predict detections for testing, YOLO runs at 45fps
on a modern graphics processing unit (GPU) device and the fast version runs at more than 150fps,
which means that it can process streaming video in real-time specification with less than 30 milliseconds
of latency. Besides the improvement of speed, YOLOv2 [18] reaches comparable mean average precision
(mAP) with the Faster-RCNN system on publicly available database [39]. Although YOLO [16,18]
provides an efficient way for inferencing, its single path design makes it hard to detect various scales
of objects, especially small objects.

3. Proposed Model with Task-Specific Bounding Box Regressors (TSBBRs) and Conditional Back-
Propagation Mechanism

3.1. Overview of the Proposed Model

This paper proposes an accurate and uncomplicated convolutional neural network for simultaneously
detecting various objects of different scales. With a dual-path convolutional network design and conditional
back-propagation, the proposed architecture can detect various scales of common object on the roads in
real-time and it is robust to different driving environments with a single camera input.

As shown in Figure 2, the proposed algorithm can be divided into three parts namely, backbone
feature extractor, object detection modules, and NMS. Initially, an input image would be passed
through a simple pre-processing procedure, which subtracts every pixel with global mean values.
The global mean values are calculated pixel wise from the large-scale image classification database,
ImageNet-1 k [40]. Then, a less complex, shared computation feature extraction backbone follows.
It encodes the features of an image into a generic and compact representation followed by a task-specific
sub-module performing object detection in parallel. Finally, all detection results are processed with
NMS to eliminate highly overlapped boxes.

In this algorithm, the ratio of the short side and its corresponding image dimension of an object
are used to distinguish between a tiny object from that of a larger one. It is empirically found that when
setting the criterion near the reciprocal of the dimension of network output of detecting tinier objects,
the model can be made to converge easily which in the given method is 1/14 = 0.0714. The impact of
this criterion is briefly described in Section 3.5.

3.2. Mechanisms of Bounding Box Regressors

Since our focus is object detection in the mobile systems that require low power consumption and
have restricted memory capacities, one-stage detectors are employed in the proposed method instead
of regional based object detectors in order to reduce the complexity. One-stage detection systems like
YOLO [16] take the detection as a regression problem. The entire image is fed into the network. On top
of the extracted features produced by the backbone, the bounding box regressors (BBRs) predict the
object’s bounding boxes in the image by dividing the image into multiple grids and each predicts
the bounding box co-ordinates with x and y as object center and w, h denoting its spatial dimensions,
objectness prior, and vector that contains class probabilities. If there were no object center located
within the grid box, the objectness prior would be set as 0 and otherwise set as 1. The final object scores
P in grid box (i, j) would be calculated using Equation (1)

P(i, j) = max(pi j ×Ci j) (1)

where pij is the objectness prior of the grid box (i, j) and Cij is the vector with probabilities of each class.
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3.3. Bounding Box Regressors with Large Receptive Field

The YOLO [16] system splits the input image into 8× 8 grid boxes in order to detect the larger
objects. The graphical demonstration of this case in a real driving environment is as shown in Figure 3a.
The grid annotated in red is an example of the grid containing larger objects and the yellow grid
denotes the smaller objects. It can be observed that when the objects are small and located near to
each other, one grid box can be filled with more than one object as in the yellow grid. This results in
detection degradation when there are many tiny objects in the training database. The BBRs permit
the detection of only one object in each grid box, which would make ambiguous back-propagation
in the training stage. For example, in Figure 3a, the object B in the yellow box would be treated as
background because the object A has a slightly larger bounding box compared to the object B. However,
in human perception, the feature of the object B is undoubtedly a car. As a result, the model would
produce an imprecise and low confidence score for these types of objects, which in turn leads to lower
recall rate and mAP in the detection stage.
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Figure 3. Visual analysis of different settings of bounding box regressors (BBRs). (a) Tiny objects
(A and B) would locate in the same grid box. Ambiguous back-propagation results in lower recall
rate. (b) Large objects (A, B, C and D) that cross the boundary of many grid boxes, makes a numerical
unstable phenomenon during the training stage.

3.4. Bounding Box Regressor with Small Receptive Field

To remedy the defect of BBRs with large receptive field, this paper up-scales the number of grid boxes
by nearly two times, as shown in Figure 3b, which increases grid boxes from 8× 8 to 14× 14. The smaller
objects are now relocated to different grids. This prevents the ambiguous back-propagation for tiny objects
in the training stage since each grid box has its own propagation target. However, naively scaling up the
number of grid box raises another issue. The BBRs with 14 × 14 grid boxes are numerically unstable
in the training phase. The loss spread within an unreasonable range implies that it lowers the network
performance compared to employing 8× 8 grid boxes. It is experimentally found that this phenomenon
is the impact of detecting the larger objects. In Figure 3b, the object cropped in the red box crosses the
boundaries of four grid boxes, which means that each grid box contains part of the information of this
object. As BBR only back-propagates for the box in which the center of an object resides, grid box A is the
only one treated as a positive instance. The grid boxes B, C and D will be regarded as background no
matter how much an object is spread in it. This causes another ambiguous issue because the network
forces the confidence scores of grid boxes near the center, but not located at 0.

3.5. Conditional Back-Propagation Mechanism

The setting of different numbers of grid boxes has its pros and cons; BBRs set with a larger number
of grid boxes enhance the performance by detecting the smaller objects but encounter numerical
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instability due to the ambiguous back-propagation. By contrast, although BBRs set to a smaller number
of grid boxes are numerically more stable, they encounter difficulty while detecting smaller objects.
Since the goal of this work is to meet the requirement of detecting all kinds of objects in the driving
environments, this algorithm tries to explore the advantages of different kinds of BBR settings and try
to get rid of the negative impacts.

To detect various scales of object at the same time, one probable solution is to separate the small
and large objects in the database, and then train the corresponding configuration of architectures
independently. This can prevent the ambiguous back-propagation and produce high accuracy bounding
boxes. However, running different detection modules separately causes intensive computation and
memory cost during both training and testing stages. In the training stage, the divided database
takes at least double the disk space to store the separated data and each set of weights is to be trained
separately as well, making the training procedure tedious and time-consuming. On the other hand,
it takes more than twice the usual memory cost in the testing stage. All models perform forward
passing independently without sharing computation. The restricted memory size and bandwidth
make the parallelism of models almost impossible when it is realized on mobile systems. Since our goal
is to make the algorithm run on the systems that can be mounted on unrestrained vehicles, separating
models will not be an ideal design choice. It is also needed to reduce the complexity of the proposed
system as far as possible.

To incorporate different specialties of module in a unified framework, this paper proposes a
conditional back-propagation mechanism as shown Figure 4. In the training and testing stages,
the computations of the backbone layers are shared among different settings of BBRs. The BBRs
are designed in a task-specific manner, that is, each BBR has its own target to detect according
to the previously described criterion. These kinds of BBRs are called task-specific bounding box
regressors (TSBBRs).
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(2)

Figure 4. Proposed conditional back-propagation mechanism. According to the ratio of the object
short side and corresponding frame side of the ground-truth, TSBBRs would only produce losses on
their prior set targets. These losses would be collected and summed up. Based on the summed losses,
weights in model would be updated simultaneously.
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The training of TSBBRs optimizes the following multi-part loss function as shown in Equation (2).

Ccoord
I∑

i=0

J∑
j=0

Oi j
[
(xi j − x̂i j)

2 + (yi j − ŷi j)
2
]

+Ccoord
I∑

i=0

J∑
j=0

Oi j

[
(wi j − ŵi j)

2 + (hi j − ĥi)
2
]

+Cobj
I∑

i=0

J∑
j=0

Oi j
[
(Pi j − P̂i j)

2]
+Cnoobj

I∑
i=0

J∑
j=0

(1−Oi j)
[
(Pi j − P̂i j)

2]
+

I∑
i=0

J∑
j=0

Oi j‖(Ci j − Ĉi j‖2

(2)

where Ccoord, Cobj and Cnoobj denotes the weighing factors of coordination and objectness prior scores,
(x, y, w, h) is spatial dimension of bounding box, Pij is objectness prior, Cij is an hot vector that contains
class probabilities, and Oij = 1 if the center of object in matched criterion appears in cell (i, j) and
0 otherwise.

The conditional back-propagation mechanism is in the criterion of the short side of the bounding
boxes. If the ratio of the short side of an object and its corresponding image side is less than the pre-set
criterion mentioned in 0, it is considered as a tiny object, otherwise, as a large object. The objects
that fail to meet the criterion of TSBBR would be seen as background in the forward-propagation
stage. In the proposed model, two TSBBRs are used to detect different scales of objects concerning
accuracy and efficiency. The TSBBR for tiny objects has a smaller receptive field. It splits the input
image into 14× 14 grid boxes. On the other hand, the TSBBR for large objects is configured with a
larger receptive field that splits the given image into 8 × 8 grid boxes. It should be noted that this
loss function penalizes the classification error only if a center of the matched object is located in that
grid cell and it only penalizes the coordinate error of bounding boxes if the matched object center is
located inside. In practical terms, the empty grids dominate the number of cells in an image. As the
result, the confidence scores of grid boxes tend to be 0 for the over powering of gradient from the
empty boxes. We set Ccoord = 5, Cnoobj = 0.5 and Cobj = 5 in both TSBBRs. In the end-to-end training
procedure, the balance of the loss function would also affect the model performance. To collect the
overall loss of the model in forward-passing, it is experimentally found by setting the weighing loss
for small TSBBRs twice that of the large ones, which results in the most stable training progress.

3.6. Configuration of TSBBRs

The configuration details of the backbone layer is as shown in Figure 5 and the corresponding
details along with both TSBBRs used in the proposed algorithm are listed in Tables 1–3, respectively.
The TSBBRs consist of two parts. The first part is to fetch and encode the task-relative information
from features extracted by backbone layers. The second part is convolutional kernels for the prediction
of each grid box. The encoding part is built with stacking 3 × 3 convolutional kernels in depth of
1024. In order to shield the computation and enrich the solution space, S× S convolutional kernels
with a depth of 512 are inserted. The influence of the value of K is discussed in Section 4. The last
convolutional layer with a size of 3× 3 in a depth of B× 5 + C plays the role of information decoder.
It performs regression operation for predicting bounding boxes information. The parameter B indicates
the number of boxes per grid that should be predicted and C is the number of classes. In the iVS
database comprising of cars, pedestrians and motorbikes illustrated in Appendix A, C is set to 3 and for
the Pascal VOC 2007 car [39] database, C is set to 1. For tiny objects, B = 3, and for large objects B = 5
are employed based on the experiments conducted and to which the best performance is observed.
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In addition, the batch normalization [41] for convergence and regularization consideration is used and
PReLU [19] as the activation function in both TSBBRs.
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Table 1. Configuration of backbone layers.

Type Filters Size/Stride Output

Convolutional 32 3 × 3 224 × 224

Max-pooling 2 × 2/2 112 × 112

Convolutional 64 3 × 3 112 × 112

Max-pooling 2 × 2/2 56 × 56

Convolutional 128 3 × 3 56 × 56

Convolutional 64 1 × 1 56 × 56

Convolutional 128 3 × 3 56 × 56

Max-pooling 2 × 2/2 28 × 28

Convolutional 256 3 × 3 28 × 28

Convolutional 128 1 × 1 28 × 28

Convolutional 256 3 × 3 28 × 28

Max-pooling 2 × 2/2 14 × 14

Convolutional 512 3 × 3 14 × 14

Convolutional 256 1 x 1 14 × 14

Convolutional 512 3 × 3 14 × 14

Convolutional 256 1 × 1 14 × 14

Convolutional 512 3 × 3 14 × 14

Max-pooling 2 × 2/2 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 512 1 × 1 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 512 1 × 1 7 × 7

Convolutional 1024 3 × 3 7 × 7
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Table 2. Configuration of TSBBR for tiny objects.

Type Filters Size/Stride Output

Convolutional 1024 3 × 3 14 × 14

Convolutional 512 S × S 14 × 14

Convolutional 1024 3 × 3 14 × 14

Convolutional 512 S × S 14 × 14

Convolutional 1024 3 × 3 14 × 14

Convolutional 18 3 × 3 14 × 14

Table 3. Configuration of TSBBR for large objects.

Type Filters Size/Stride Output

Max-pooling 2 × 2/2 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 512 S × S 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 512 S × S 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 28 3 × 3 7 × 7

3.7. Training of Deep Network

The network in the proposed algorithm is trained for about 120 epochs on the training split of the
objective database. The Pascal VOC 2007 Car database consists of around 1963 samples where the iVS
database has around 1383 samples. The datasets are randomly split in the ratio of 4:1 implying 80% of
the data are used for training and the remaining 20% are used for testing. Throughout the training,
a batch size of 100, a momentum of 0.9 and a decay of 0.0005 is employed. The learning procedure
scheduled is as follows: For the first epoch, the learning rate of 10−3 is used. If it is initialized with
large learning rates, unstable gradients make the trained model diverge. The model training with
the learning rate 10−2 for 70 epochs is continued followed by using the learning rate 10−3 to train
for 30 epochs, and finally, the learning rate 10−4 is employed to train for 20 epochs. To enhance the
robustness of the trained model, a run-time data augmentation technique is applied during training.
For data augmentation, a customized layer to perform random color transformation, dropout, cropping
and rotation for all databases is implemented. The samples are color transformed in the range of [−20%,
+20%] in the respective red, green and blue (RGB) channels, rotated randomly in range of [−30◦, +30◦]
and randomly cropped in the range of 70–100% of the original image and at random object locations as
shown in Figure 6. All the training and inference is built upon the Caffe framework [42].
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3.8. Inference

The prediction on an input image only requires single forward passing. In the iVS database,
the network predicts 833 bounding boxes per image and class probabilities for each grid box. Figure 2
shows the proposed system’s flow of detection. The proposed model is fast during testing process
since it only requires a single network passing unlike regional based methods. The computation cost
of backbone layers is shared for both TSBBRs and task-specific encoders pass forward in parallel.
The input images would be resized to the size of 448 × 448 and subtracted with global mean value
calculated from the ImageNet-1 k [40] database. The large objects or the objects near the border of
multiple cells would be localized well in multiple grid boxes. Finally, the non-maximum suppression for
all boxes predicted from both TSBBRs at same time to acquire the ‘real-maximum’ boxes is performed.

4. Discussion

4.1. Ablation Experiments

All the ablation experiments and analysis on the iVS database are conducted in order to evaluate
the significance of each of the designing factors. The mAP, AP and IoU are all calculated as per [43].
Average precision (AP) is the most commonly used metric to measure the accuracy of object detection
by various CNN, and image-processing methods. The AP computes the average precision value for
recall value. Precision measures how accurate the predictions are, by a method, i.e., the percentage
of correct predictions whereas, Recall measures the extent to which the predicted positives are good.
Equation (3) is employed in this paper to estimate the AP where r refers to recall rate and r̂ refers
to the precision value for recall. The interpolated average precision [44] was used to evaluate both
classification and detection. The intention in interpolating the precision/recall curve in this way is
to reduce the impact of the wiggles in the precision/recall values, caused by small variations in the
ranking. Similarly, the mean average precision (mAP) is the average of AP.

AP =
∑
(rn+1 − rn) pinterp (rn+1)

pinterp(rn+1) = max
r̂≥rn+1

p(r̂) (3)

4.1.1. Impact of the Backbone

To explore the impact of feature extraction networks, a single BBR is trained and tested with
different backbone layers. For fair comparisons, exactly the same configuration of each BBR is applied.
The images are split into 8 × 8 grids and each grid predicts 5 boxes (B = 5) at the same time.
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The experimental results are listed in Tables 4 and 5. It proves the fact that more powerful
the backbone layers, higher the mAP. The trade-off for the mAP increase is the computational cost.
However, by replacing the GoogleNet with the powerful ResNet-152, only a marginal improvement
in the mAP is achieved but there is 5 × longer forward time. This shows that the performance of the
backbone layers does matter in the final detection quality whereas, the gain will be saturated as the
ability and complexity go up. For accuracy and speed considerations, DarkNet-19 is employed in the
proposed backbone layers for the remaining experiments.

Table 4. The mean average precision (mAP) of different backbone layers.

Model mAP (%) Vehicle AP (%) Bike AP (%) Pedestrian AP (%) FPS

Alexnet + BBR 28.0 37.7 36.7 9.5 330.9

GoogleNet + BBR 48.6 69.5 65.8 10.4 94.3

Darknet-19 + BBR 51.9 61.7 36.1 57.7 92.3

ResNet-152 + BBR 52.1 62.1 39.6 54.7 18.6

Table 5. The mAP of different overlapping criterion of conditional back-propagation mechanism,
where nov denotes the non-overlapping case, ov denotes the overlapping case, and ext denotes the
extreme case.

Model mAP (%) Vehicle AP (%) Bike AP (%) Pedestrian AP (%) FPS

TSBBRs-nov 72.8 81.0 75.5 61.8

66.7TSBBRs-ov 75.6 81.9 75.9 68.9

TSBBRs-ext N/A N/A N/A N/A

4.1.2. Overlapping Criterion in Conditional Back-Propagation

To train the TSBBRs, it is necessary to set the prior criterion of each TSBBR for the conditional
back propagation mechanism. It is found that when faceted value is set as criterion by the reciprocal of
output dimension of 1/14 = 0.0714 the tiny object network, the model fails to detect the objects with
the size near the criterion boundary. To overcome this issue, the back-propagation criterion in the
proposed method is slightly overlapped. By extensive experiments, the upper bound criterion of 0.08
to the BBR for tiny objects and lower bound of 0.07 for larger one are chosen. For extreme cases, a
lower bound of 1.0 for tiny objects and 0.0 for the larger objects are chosen and the model diverges in
training time as discussed in Section 3.

4.1.3. Shielding Computation Layers of TSBBRs

In Tables 1 and 2, one of the convolutional kernels with half the number of filters between the
original layers is inserted. This not only reduces the theoretical cost of computation between large
convolutional kernels but also provides a richer solution spaces of weights. In this paper, overlapping
criterion described in a previous study for the experiment is used. Ideally, K = 0 (no shielding layers)
and K = 3 cases in Tables 1 and 2 should have the same computational costs, but when the overhead of
data synchronization of previous layers is considered, shielding computation layers still increase the
forward time by about 6.7% and mAP by 5.2%, as seen in Table 6.
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Table 6. Results of different settings of shielding computation.

Model mAP (%) Vehicle AP (%) Bike AP (%) Pedestrian AP (%) FPS

K = 0 75.6 81.9 75.9 68.9 66.7

K = 1 77.1 84.2 77.0 70.0 71.9

K = 3 80.8 86.0 74.4 81.9 62.5

4.1.4. Pass through

In the field of convolutional neural networks for computer vision, it is a common practice to
fuse the features of lower levels into the higher [5,45], for global information in the higher resolves
what while local information in the lower resolves where. The width and height of the feature maps
produced by the 13th convolutional layer is reshaped into the size of the 19th layer in Darknet-19
followed by the concatenation of them along the depth dimension. Although low-level features
contain richer spatial information, they have some redundant information [46,47] at the same time.
From our experiments, it is found that naive concatenation leads to degraded result as in the first row of
Table 4. It can be argued that this comes from the fully connected specialty via channel-wise direction
of 2-D convolutional operation; the convolutional kernel can be approximated as a channel-wise
fully-connected layer, so it would be harmful if all the concatenated information is adopted for
classification or regression. To simultaneously utilize the spatial and semantic information, a 1 × 1
locally connected convolution layer such as grouped convolutions [48–50] is used to sort out the
unwanted features. The weights in this kernel dynamically tune the importance that is the value of
its connected features during the training stage. The configurations of TSBBRs with pass through
design are shown in Tables 7 and 8. The results are shown in Table 9. It is experimentally determined
that when the concatenated information is divided into 8 groups, the best performance is achieved.
The mAP increases when the number of groups increase from 1 to 8. However, when the input features
are further split into 16 groups, the mAP decreases because the overly-sparse features would make it
hard for TSBBRs to encode the semantic and spatial information of the bounding boxes.

Table 7. Configuration of pass through design for tiny objects.

Type Filters Size/Stride Output

Group Convolutional 512 1 × 1 14 × 14

Convolutional 1024 3 × 3 14 × 14

Convolutional 512 1 × 1 14 × 14

Convolutional 1024 3 × 3 14 × 14

Convolutional 512 1 × 1 14 × 14

Convolutional 1024 3 × 3 14 × 14

Convolutional 18 3 × 3 14 × 14
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Table 8. Configuration of pass through design for large objects.

Type Filters Size/Stride Output

Group Convolutional 512 1 × 1 7 × 7

Max-pooling 512 2 × 2/2 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 512 1 × 1 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 512 1 × 1 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 28 3 × 3 7 × 7

Table 9. The mAP of different groups of pass through.

Number of Groups mAP (%) Vehicle AP (%) Bike AP (%) Pedestrian AP (%) FPS

1 77.2 82.3 76.1 73.2 64.1

4 78.4 86.5 76.5 72.2 67.1

8 82.4 86.8 78.5 82.0 67.3

16 73.8 83.8 72.4 59.2 66.0

5. Results

The effectiveness of the proposed TSBBRs and conditional back-propagation mechanism is
evaluated on the iVS database and publicly available Pascal VOC 2007 car [39] database. Furthermore,
CarSim [51] simulation software is also used to validate the model’s ability of detecting the vehicles at
faraway distances. The end of the section lists a comparison of the performances of our model on the
portable devices to validate the efficiency of the proposed system.

5.1. Performance Comparison on the iVS Database

Some of the state-of-the-art models along with their corresponding datasets on which they are
trained, tested, and respective comparison with the proposed method are as in Table 10. In order
to compare the proposed model with that of the other state-of-the-art models, the other real-time
object detectors were trained with the iVS database. The experiments are repeated with the released
procedure of training on the respective official websites. The results of the same are as shown in
Tables 11 and 12.

Table 10. Comparison of the proposed method with the state-of-the-art methods.

Models Input Dataset(s) FPS mAP (%)

YOLOv2 416 [18] 416 × 416 Imagenet, COCO 67 76.8

YOLOv2 608 [18] 608 × 608 Imagenet, COCO 40 78.6

YOLOv3 [36] 320 × 320 Open Images Dataset, COCO X 28.2

SSD 300 [17] 300 × 300 PASCAL VOC, COCO, ILSVRC 59 74.3

SSD 512 [17] 512 × 512 PASCAL VOC, COCO, ILSVRC 59 76.9

Proposed TSBBRs K = 1,
pass through (group = 8) 448 × 448 PASCAL VOC, iVS Database 67.03 77.1

Proposed TSBBRs K = 3,
pass through (group = 8) 448 × 448 PASCAL VOC, iVS Database 67.03 80.8
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Table 11. Comparison of computational cost.

Models Multiply and Accumulate (MAC) (G/frame) FPS

YOLOv2 416 [18] 16.56 68.5

YOLOv2 608 [18] 30.49 37.4

YOLOv3 [36] 28.12 35.0

SSD 300 [17] 30.53 46.0

SSD 512 [17] 87.84 19.0

Proposed TSBBRs K = 1, pass through (group = 8) 14.83 78.2

Proposed TSBBRs K = 3, pass through (group = 8) 16.89 67.3

Table 12. Comparison of the proposed design to other models on the iVS database.

Models mAP (%) Vehicle AP (%) Bike AP (%) Pedestrian AP (%)

YOLOv2 416 [18] 69.6 68.2 74.1 66.6

YOLOv2 608 [18] 77.9 80.7 73.4 79.7

YOLOv3 [36] 84.8 86.8 80.3 87.1

SSD 300 [17] 65.1 77.3 73.1 44.9

SSD 512 [17] 79.2 93.8 72.5 71.3

Proposed TSBBRs K = 1, pass through (group = 8) 79.0 86.8 78.5 71.8

Proposed TSBBRs K = 3, pass through (group = 8) 82.4 86.6 78.5 82.0

Besides YOLOv3 [36], the proposed model with K = 1 and K = 3 outperform other one-stage
detectors as the ability to detect tiny objects still remains efficient. Even though there is a marginal
mAP reduction of 2.4% compared to YOLOv3 [36], the inference of our models requires only 60% of the
computation cost in the testing stage. The timing results are measured on NVIDIA 1080TI GPU device.

5.2. Experiments on Pascal VOC 2007 Car Database

The proposed algorithm is evaluated on the publicly available Pascal VOC 2007 car dataset [39]
Based on the descriptions in [6], 1434 images containing cars in the trainval and test sets in the Pascal
VOC 2007 dataset are extracted to evaluate the proposed method. For fair comparison, the same exact
evaluation criterion of Pascal evaluation metrics with intersection over union (IoU) set as 0.7 to assess
the correctness of localization mentioned in [6,7] is employed. For data augmentation, besides the
aforementioned strategies, more data augmentation methods when training on the Pascal VOC 2007
car trainval split are used. Moreover, to enhance the robustness of both TSBBR for tiny and the large
objects on such small dataset, the input frames are randomly resized into a smaller scale and patched
on a three-channel canvas initialized with random noises in the original size to make the proposed
architecture invariant to scales and noises. Table 13 tabulates the experimental results on the Pascal
VOC 2007 dataset, where the information is partially adopted from [6,7]. The models of [7] are trained
on an even larger-scale database called CompCars [52]. This contains more than 100,000 web-nature
data as the positive training samples that are annotated with tight 2-D bounding-boxes. The proposed
model still achieves a better result even on limited amount of training data. To strive for a better
performance, we also compare the model that is initially pre-trained on the iVS database and then
fine-tuned on the Pascal 2007 car trainval split. With this initialization procedure, the performance is
boosted by almost 20% from 66.83% to 86.54% in AP perspective, as shown in Table 11. Figure 7 shows
some of the results of the proposed algorithm on the Pascal VOC 2007 car dataset. Our method detects
the cars that are occluded, located near the border and those hidden within other vehicles that are in
analogous appearance.
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Table 13. Experiment results of the Pascal VOC 2007 car dataset.

Methods Training Data Average Precision (AP) Processing Speed (FPS)

RCNN [30] VOC07 car trainval 38.52 % 0.08

Fast RCNN [32] VOC07 car trainval 52.95 % 0.5

Faster RCNN [32] VOC07 car trainval 59.82 % 6

RV-CNN [6] VOC07 car trainval 63.91 % -

FVPN [48] CompCars dataset [52] 65.12 % 46

Proposed
(TSBBRs K = 3, pass through, group = 8) VOC07 car trainval 66.83 % 67.3

Proposed
(TSBBRs K = 3, pass through, group = 8)

The iVS database
+

VOC07 car trainval
86.54 % 67.3
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5.3. Evaluation of Far Distance Object Detection on Simulation Software

Simulation software is commonly used in quantitative experiments as it provides accurate and
quantitatively available mutual information between vehicles and environment without manual
labeling. In this paper, CarSim [51] simulation software is used to test the maximum detection distance
of the proposed models. The proposed model (K = 3, pass through, group = 8) is compared with
YOLOv2, both trained on the iVS database. As shown in Figure 6, the proposed model is able to
detect the car from a distance 124 m away while the counterpart can only detect the object within
45 m if the detected box that has IoU > 0.5 of the ground is regarded as the true prediction. However,
if the IoU criterion is set to 0.3, the objects at 200 m away with the short side object of 13 pixels can
be detected. Figure 8 shows the results of the object detection by proposed algorithm on the CarSim
simulation software.
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Figure 8. Detection results on CarSim simulation software. (a) the result of the proposed model,
detecting a vehicle 124 m (intersection over union (IoU) > 0.5) and 200 m (IoU > 0.3) away. (b) the
result of YOLOv2, detecting the vehicle within 45 m (IoU > 0.5).

5.4. Performance Evaluation on Portable Devices

Besides accuracy, the efficiency of the proposed method is also crucial in order to be employed in
real-world applications. To verify the performance of the proposed mechanism, it is implemented and
tested on low-power mobile platforms. The two platforms chosen for verification are NVIDIA Drive
PX2 and Jetson TX2. NVIDIA Drive-PX2 platform is a preferred system for ADAS applications due to
its low power consumption and its processing efficiency. The Jetson TX2 is a low power platform for
embedded systems designed to support multi-core processing and GPU acceleration. The quantitative
results of efficiency on these two platforms are listed in Table 14.

Table 14. Performance of the proposed design on two portable platforms.

Model Platform Frames Per Second (FPS)

Proposed model (TSBBRs K = 3, pass through, group = 8)
NVIDIA Drive-PX2 19.4

NVIDIA Jetson TX2 8.9

YOLOv3
NVIDIA Drive-PX2 8.5

NVIDIA Jetson TX2 3.2

6. Conclusions and Future Works

This paper proposed an efficient multiple path fully convolutional neural network to detect objects
of various scales, ranging from tinier to larger objects, simultaneously. The proposed conditional back
propagation mechanism makes each detection module learn without any performance degradation.
The proposed shielding computation design and data augmentation also improves the robustness of
BBRs (bounding box regressors). The proposed multiple path network design yields mAP of 82.4%
on the iVS database and 86.54% mAP on a combined publicly available Pascal VOC database and
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iVS database. The proposed design can detect an object with roughly 13 pixels in the short side, at a
distance 200 m away on CarSim simulation software. In the future, additional object types can be
added in the proposed design to provide more object-detection information for self-driving cars.

The proposed method can be extended to detect other objects in real traffic environments such
as traffic signs, road-dividers, road humps and other obstacles on the road such as rocks that have
fallen on the road, roads dug up for maintenance works, and so on. Additionally, a further analysis
can be carried to investigate a furthermore efficient network architecture that is also compatible with
low-power and restricted memory applications.
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Appendix A

The iVS database consists of real driving environments in different conditions. It collects almost
all kinds of driving experience at different times of day, weather conditions, and driving scenarios,
as shown in Figure 1.

The iVS database is a large scale, human annotated 2-D object detection dataset based on real
driving environments. It consists of over 350 K high definition (1920 × 1080) frames captured by
camcorders. The dataset annotates three commonly seen object types on the road namely, vehicles,
pedestrians, road signs, and bikes. Unlike Pascal VOC series datasets, there are on average more than
five objects in a frame appearing in all size scales and aspect ratios, which means that the ability of
detectors to detect various size of the objects simultaneously is crucial for reaching higher mAP.

With regard to the annotation rules, machines with wheels (especially 4-wheeled) and an engine,
used for transporting people or goods on land are defined as “Vehicle”, such as sedans, vans, trucks,
and buses. The “Pedestrian” class is defined as people on the road exclusive of motorbikes and cyclists.
For the third class “Bike”, it is a joint set of the tight bounding boxes on motorbikes and bicycles.
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