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Abstract: A plastic filament of poly (methyl methacrylate) (PMMA) was fabricated by extrusion.
The mode confinement was simulated using numerical software. The idea is to study how the light
intensity changes inside the plastic optical fiber (POF) when a bending in multiple directions is
applied. The results obtained from the simulation were compared to the experimental observations.
The non-circular shape of the POF allows sensing a rotation applied as well. The angle of rotation was
obtained processing two images of the end facet of the fiber (one with the fiber in a reference position
and one with the rotated fiber), using an intensity-based automatic image registration. The accuracy
in the rotation calculation was of 0.01°.
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1. Introduction

Fiber-based sensors have played an important role in many recent applications, including bridge
security monitoring [1], biochemical sensing [2], gas detectors [3], and power system monitoring [4],
due to their advantages, such as small size, immunity to electromagnetic interference, remote sensing
capability, and high sensitivity. Novel fiber sensors are implemented by innovating the fiber grating
structure or inscribing gratings in specialty fibers instead of standard single-mode fibers (SMF). These
designs are focused on solving the problem of cross-sensitivity between temperature and strain
and implementing multi-parameter fiber sensors for new measurands. Baiou Guan et al. [5] used a
superstructure fiber Bragg grating (FBG) to simultaneously measure strain and temperature; Maoging
Chen et al. [6] combined a micro extrinsic Fabry—Perot interferometer with an etched FBG for the
simultaneous measurement of strain and magnetic field. Multicore fibers (MCF) have also been used
in the sensing field: David Barrera et al. [7] inscribed a tilted fiber Bragg grating (TFBG) in a seven-core
fiber by Argon-ion laser to measure strain, curvature direction and magnitude, and external refractive
index (RI). Strongly coupled MCF is an alternative to grating-based sensors: [8] reported a strain
sensor implemented with an MCF with cores closer together than in a common MCEF. The interference
between two supermodes excited in the MCF has been used to obtain an interferometric strain sensor.
Multi-parameter sensors for rotation and bending are reported in the literature as well [9-15].

Plastic optical fibers offer a valid cheap alternative to glass fibers in certain applications, since
they are manufactured with low-cost materials and processes and have good mechanical properties.
There are various techniques presented in the literature to use plastic optical fiber (POF) as sensors.
After the inscription of the first FBG in a step index POF in 1999 [16], these fiber-based sensors were
adopted for strain and temperature, demonstrating a sensitivity of 1.48 pm/ue and 55 pm/°C [17,18].
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The inscription of grating in POF with a resonant wavelength in the C-band allows using a commercial
FBG interrogator, coupling a glass fiber connector with the POF using UV resin. In recent works, pulse
wave and blood pressure monitoring were demonstrated using this method [19]. Other techniques
used for glass fiber sensing that have been adopted for POFs are the optical reflectometries in frequency
and time domain. The sensing characteristics of POF with optical time domain reflectometry (OTDR)
were investigated, as mechanical splice, small bend torsional strain, axial strain, and temperature
in [20]. Since then, POF and OTDR were adopted for a wide range of applications, as pH sensing [21]
or long-distance intrusion sensing over 60 km of fiber [22]. All the previous applications required
the use of bulky instrumentation to interrogate the sensors, and it should be taken in account also
that the inscription of gratings in POF required the use of ultra-fast laser [23-25]. Plastic fibers are
preferable in applications in which high levels of mechanical strain are applied to the sensor, since the
Young’s modulus value of bulk poly(methyl methacrylate) is 3.2 GPa (while it is 72 GPa in silica fibers)
and it has high elastic deformation limits (10%). This polymer is also impact and vibration-resistant
and has a lower density (1.195 kg/m~3) than silica [26]. The material most frequently used to make
POFs is poly (methyl methacrylate) (PMMA) thermoplastic polymer, which is commonly known as
Plexiglas®; it has a typical refractive index of 1.492 (Plexiglas® 6N at 589 nm at 23 °C) [27], and it is
generally manufactured in two steps. First, a pre-formed solid cylindrical rod is made approximately
0.5-1 m long and several centimeters in diameter. The structure of this preform determines the core and
cladding refractive index profiles. The second step consists of extruding the preform, which yields a
POF between half a kilometer and several kilometers long [28]. Recent advances in polymer technology
have allowed fabricating plastic optical fiber for sensing. The advantages of optical metrology with
plastic optical fiber have attracted the attention of the scientific community, as they provide lower-cost
systems than conventional technologies [27]. POF-based curvature sensors were developed mostly as
intensity sensors: for example, in [29,30], the core of the fiber is exposed, abrading part of the cladding
to enhance the irradiated light when a bend is applied. These sensors were used to monitor human
joint and spine curvature [31,32], as curvature sensors for structure health monitoring [33], or as a
sensor to monitor breathing [34]; nano displacement was sensed as well using a double core fiber and
an interferometric approach [35].

In this work, a non-circular optical fiber was fabricated, consisting of a three-lobe PMMA fiber
core without cladding. The filament was directly extruded from plastic pellets, and the three-lobe
shape was obtained using a custom-shaped extrusion die. The three-lobe shape was conceived to
achieve a low-cost optical fiber bend direction and rotation sensor. The bend direction sensing principle
is made observing the change in the light field distribution inside the three-lobe core when the plastic
filament is bent. The circular asymmetry of the fiber allows retrieving the direction of bending and
the rotation angle. The sensor is interrogated in transmission using a red LED (645 nm) and a charge
coupled device (CCD) placed in front of the end facet of the fiber.

The paper is structured as follows: the first section contains a brief presentation of the fabrication
process of the POF, together with results of guided mode simulations in the obtained structure.
The second section provides the experimental results obtained from the fiber, while the conclusions are
given in the last section.

2. Fabrication of Three-Lobe Plastic Optical Fiber

A transparent material allows light to be transmitted through the material matrix with minimum
attenuation. In semi-crystalline polymers, such as PMMA, transparency is directly related to the
crystallinity of the polymer [36]. Crystallinity is an intrinsic property of the polymeric material where
molecular chains are aligned and folded together to form ordered regions called lamellae, which
compose larger spheroidal structures named spherulites [37], and the refractive index of crystalline
regions is higher than that of amorphous regions. When a light ray pass through an ordered region
or spherulites with larger size than the wavelength of visible light (0.4-0.7 um), a light scattering is
produced. Therefore, amorphous materials will transmit the light in a higher level compared with



Sensors 2020, 20, 5405 30f9

crystalline or semi-crystalline materials and a decrease in crystallinity in a semi-crystalline polymer
enhances the clarity. The processability of the polymer can modify the polymer crystallinity; however,
a reduction in crystallinity can result in a decrease in strength, stiffness, and resistance to bend.

A scheme of the extrusion system used to fabricate the POF is shown in Figure 1a. The process
begins by melting the polymer using a standard extruder. Generally, barrier flight screws with a
mixer on the end are used to drive the polymer pellet to the screw. The melting process is mostly
accomplished by shear heating from the turning of the screw and by different temperature-controlled
zones placed along the length of the extruder. The extrusion process is controlled by a pump that
controls the speed of the extruder screw to give a constant polymer flow rate. At the end of the spin line,
the spinneret or die is found, which contains one or more holes of a specific geometry and diameter in
order to provide the polymer with the desired shape. Since the filament will be drawn in a further
process, the final diameter will be different than the diameter at this point. Once the filament has been
extruded, the polymer needs to be cooled down in a water bath or air chamber. After the polymer
filament is cooled down, it is collected by a rotating spool. Both the material’s pressure and cooling
temperature influence the PMMA crystallinity, which directly impacts the attenuation of the light
transmitted into the POF. The machinery normally used to draw fiber for textile was employed to
fabricate POF using a custom extrusion die to obtain a three-lobe shape (Figure 1b). The fabrication
parameters were optimized to minimize the POF’s optical losses.

Plastic pellet

4

Feed Hopper Filament Wind Up

Extrusion Die
Heated Chamber
Cool Down
G
[
Turning screw Melted Polymer Extrudate
(a) (b)

Figure 1. (a) Scheme of the extrusion system: screw velocity and velocity of the wind-up machine
were optimized to find the best performance in terms of optical losses. In this case, the filaments were
air-cooled, since poly (methyl methacrylate) (PMMA) is water absorbent. (b) Photo of the cross-sections
of the obtained plastic optical fibers.

Three fiber samples were fabricated with two replicates for each sample. The parameters were
different grades of PMMA (whose main properties are reported in Table 1), modification of the flow
rate by varying pump velocity (rpm), and the draw ratio controlled by the spool speed (m/min) to
obtain samples of constant thickness. The samples were air-dried at room temperature.

Table 1. Properties of Plexiglass 6N and 8N.

Properties: Plexiglass 6N Plexiglass 8N
Tensile modulus (MPa) 3200 3300
Stress @ break (MPa) 67 77
Strain @ break (%) 3 5.5
Refractive index 1.49 1.49
Density (g/cm3) 1.19 1.19

Melt volume rate (cm3/10 min) 12 3
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Table 2 shows the fiber losses measured using the cut-back method [38]. We took one meter of
fiber and we cut off 10 cm for each step of the cut-back measurement. The light source used is an HeNe
(Thorlabs, Netwon, N J, USA) laser emitting at 632.8 nm. We considered two different plastic fiber
samples, since we expect to have a certain variability between the fiber spools due to the fabrication
process. The lowest optical loss was obtained with high draw ratios at high spool speed. The higher
variation for the losses measured for Sample 2 is due to the lower PMMA pump velocity at a higher
spool speed that facilitates the onset of inhomogeneity in the fiber spool.

Table 2. Optical fiber losses (x) for plastic optical fibers (POFs) fabricated with different
extrusion parameters.

Sample ID Sample 1 Sample 2 Sample 3
Material Grade Plexiglass 8N Plexiglass 8N Plexiglass 6N
PMMA pump 12 12 8 8 10 10
velocity (rpm)
Spool speed 18 18 20 20 24 24
(m/min)
« (dB/m) 27.66 28.18 25.29 19.61 21.58 20.28
Mean value 27.92 2245 20.93

(dB/m)

3. Sensor Design and Simulations

The transversal section of the three-lobe fiber was captured with an optical microscope (The Imaging
Source Europe GmbH, Bremen, Germany) (Figure 2a), processed, and then imported into Lumerical
MODE software. Mode simulations were performed to calculate the light field distribution of the
lowest order modes in both the straight and bent fiber. Figure 2b shows the light field intensity of the
lowest order fiber mode simulated in the straight fiber.

(x103Vv/m)

Normalized light field I‘°

2,2 mm

2,2 mm

(a) (b)

Figure 2. (a) Optical microscope image of the cross-section of the three-lobe plastic optical fiber.
(b) Simulated light field intensity of the fundamental mode at 645 nm.

As observed in previous calculations and simulations on bent fibers, bending tends to distort
the fiber modes and causes them to shift away from the center of curvature [39]. In case of a bent
waveguide, Lumerical MODE software will solve for modes of the form:

E(p,0,z) = Ej(p,y)e?i” )

where ; depicts the angular propagation constant of the jy, mode and has units of inverse radian, and
(p, 6, y) represents a cylindrical coordinate system. This constant is proportional to the effective index
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of the mode and the bending radius [40]. The simulated light field intensity for the lowest order modes
under three-directional bending with a radius of 10 m is shown in Figure 3; the scale is the same as in
Figure 2a. The simulations confirmed that the guided modes in the bent three-lobe fiber shifted away
from the center of curvature.

S5 &b &L

Figure 3. Light field intensity at 645 nm of the two lowest order modes calculated in the imported

three-lobe structure cross-section for bending with curvature center placed: (a) on the upper surface of
the fiber; (b) on the lower surface of the fiber; (c) on the right-hand surface of the fiber.

The intensity variation that shifts away from the bend center can be used to estimate the bending
direction. The calculation of the weighted centroid is the algorithm chosen to process the intensity
image and give an estimation of the curvature direction; the centroid is calculated using the intensity
of the pixel as weight. For a 2D image NXM, it is possible to calculate the centroid coordinates using
the formula (with I: intensity and x/y: horizontal/vertical coordinates):

M N N M
B Zj:l Zi:l Ii,jxi_ B Z:i:l ijl Ii,j]/j 2
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4. Experimental Results

The setup used to interrogate the three-lobe fiber in transmission was implemented as follows:
the POF was fixed to a translational stage to allow controlled bending whilst observing the light
intensity distribution inside the core. Sensors based on intensity variation were among the first
detection schemes used in optical fiber sensors and can be considered the simplest method in terms of
operating principle and instrumentation. In general, experimental setups include a light source, the
optical fiber, and a photodetector or an optical spectrum analyzer. Several solutions for miniaturized
solid-state sources and photodetectors are now commercially available, allowing the design and
development of robust and portable acquisition systems. This is a suitable solution for engineering
applications in which the accuracy of the power signal measurement is not critical. The advantages of
this method are its ease of implementation, good price/quality ratio, and simple signal processing [41].
The plastic fiber was interrogated in transmission using an LED emitting at 645 nm (IF-E96 from
Industrial Fiberoptics, Tempe, AZ, USA) and a CCD camera (The Imaging Source Europe GmbH,
Bremen, Germany) (Figure 4a).

In this case, we need to use a two-dimensional light sensor, because the light intensity distribution
has to be monitored—and not only the intensity, as is usual for intensity-based sensors. A sample
of 20 cm was fixed between the two holders and a curvature with a ray of approximately 1 m was
applied (Figure 4b). The constant curvature was obtained using a moving stage, and the curvature was
approximated using the formula [42]:

sin(LC) _ (L- D)C.

- > 3)
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Figure 4. Schematic representation of the experimental setup (a) and method used to obtain constant
curvature (b).

The images were captured before and after bending and then compared on Matlab software.
The resultant images were converted to gray scale, and the weigthed centroids were found. Figure 5
shows three images obtained for bending orientation along the x and y axes (red stars represent the
weighted centroid). A light intensity variation is clearly observable in the exterior of the fiber, which
is caused by the shift of the light field intensity due to the bending applied. The effects of bending
on lower order modes was confirmed observing the light intensity distribution in the experimental
case. It was not possible to observe any variation with the curvature radius, while an analysis of the
effect of bending on higher order modes could provide a quantitative information about the radius of
curvature, but this analysis is out of the scope of this work.

b
@ (b) (c)

Figure 5. Images collected with the charge coupled device (CCD) camera after bending the three-lobe
plastic fiber. Red stars indicate the position of the weighted centroid found from the converted
gray-scale image. The curvature center placed: (a) on the upper surface of the fiber; (b) on the lower
surface of the fiber; (c) on the right-hand surface of the fiber.

Then, the fiber was placed in a rotating clamp and rotated from 0° to 50° degrees in 5°-degree
steps. An intensity-based automatic image registration algorithm was used to retrieve the rotation
angle of the fiber through the images acquired by the camera. Intensity-based automatic image
registration is an iterative process that requires a specified pair of images, a metric, an optimizer, and a
transformation type. The image similarity metric takes two images and returns a scalar value that
describes their similarity. The optimizer defines the method of minimizing or maximizing the similarity
metric. The transformation type defines the type of 2D transformation that aligns the misaligned
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image (known as the moving image) with the reference image (or fixed image) [43]. In this case, a rigid
transformation was chosen, since it includes translation and rotation. Registering the image of the
rotated fiber (moving image) and the image of the fiber in the starting position (fixed image), it was
possible to obtain the rotating angles. Figure 6a shows how the images were processed using the
registration algorithm; the two overlapped images are on the left, and the result of the algorithm
processing is on the right. The rotation measurements were repeated 10 times: Figure 6b shows the
correspondence between the rotating angles and the retrieved angles, using the method described
above, and the average error. It was possible to measure the rotation angle with an accuracy of 0.01°
in our lab condition. The error in the measurement is due to the noise present in the image when
captured, which affects the result of the algorithm used to retrieve the angle.

50
45
40
35
&30
c
225
B
& 20
15
10
5
(a) 5 10 15 20 25 30 35 40 45 50
Estimated angle
(b)

Figure 6. (a) Reference and rotated image superimposed before and after the registration algorithm is
applied. (b) Comparison between the retrieved angles using the registration algorithm and the rotation
angles applied. The error bars show the average error for ten measurements.

5. Conclusions

This paper describes the fabrication, simulation, and experimental validation of a bend direction
and rotation sensor employing a three-lobe fiber. A system normally used for textile fiber fabrication
was employed to fabricate the PMMA filament with a custom-made extrusion die. The extrusion
process was optimized to obtain the lowest optical loss. The guided modes in the obtained plastic fiber
were simulated on Lumerical MODE software. The light field shift due to bending was addressed in
the simulations. This shift was experimentally monitored by interrogating the fiber in transmission.
The circular asymmetry of the fiber allows retrieving the direction of bending in space and also the
rotation angle by processing the images with an intensity-based image registration algorithm.
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