
sensors

Article

City-Wide Traffic Flow Forecasting Using a Deep
Convolutional Neural Network

Shangyu Sun, Huayi Wu and Longgang Xiang *

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China; shangyu_sun@whu.edu.cn (S.S.); wuhuayi@whu.edu.cn (H.W.)
* Correspondence: geoxlg@whu.edu.cn; Tel.: +86-186-2712-7510

Received: 25 November 2019; Accepted: 9 January 2020; Published: 11 January 2020
����������
�������

Abstract: City-wide traffic flow forecasting is a significant function of the Intelligent Transport System
(ITS), which plays an important role in city traffic management and public travel safety. However, this
remains a very challenging task that is affected by many complex factors, such as road network
distribution and external factors (e.g., weather, accidents, and holidays). In this paper, we propose
a deep-learning-based multi-branch model called TFFNet (Traffic Flow Forecasting Network) to
forecast the short-term traffic status (flow) throughout a city. The model uses spatiotemporal traffic
flow matrices and external factors as its input and then infers and outputs the future short-term traffic
status (flow) of the whole road network. For modelling the spatial correlations of the traffic flows
between current and adjacent road segments, we employ a multi-layer fully convolutional framework
to perform cross-correlation calculation and extract the hierarchical spatial dependencies from local
to global scales. Also, we extract the temporal closeness and periodicity of traffic flow from historical
observations by constructing a high-dimensional tensor comprised of traffic flow matrices from three
fragments of the time axis: recent time, near history, and distant history. External factors are also
considered and trained with a fully connected neural network and then fused with the output of
the main component of TFFNet. The multi-branch model is automatically trained to fit complex
patterns hidden in the traffic flow matrices until reaching pre-defined convergent criteria via the
back-propagation method. By constructing a rational model input and network architecture, TFFNet
can capture spatial and temporal dependencies simultaneously from traffic flow matrices during model
training and outperforms other typical traffic flow forecasting methods in the experimental dataset.

Keywords: city-wide traffic flow forecasting; multi-branch prediction network; deep learning;
external factors fusion; taxicabs GPS trajectories

1. Introduction

City-wide traffic flow forecasting is a significant function of the Intelligent Transport System (ITS),
which plays an important role in city traffic management and public travel safety. In addition, this
type of forecasting can help people make better daily travel plans and optimize the allocation of public
transport resources. Several mainstream online map websites (e.g., Google Maps, Baidu Maps, Tencent
Maps) provide real-time traffic status and traffic status forecasting functions, which have contributed
greatly to easing traffic pressure, by receiving a large amount of sensor data.

Predicting the future state of the traffic system is always a challenging task, especially for city-wide
traffic flow forecasting, which is related to many complex factors both inside and outside the complex
system. City-wide forecasting involves estimation of the overall traffic status of the urban road
network compared with single road segment forecasting. Prediction accuracy is prone to be affected
by road network distribution but also by weather, accidents, holidays, etc. The urban road network
consists of numerous segments and usually covers the entire urban and suburban area. The traffic

Sensors 2020, 20, 421; doi:10.3390/s20020421 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9022-6991
http://www.mdpi.com/1424-8220/20/2/421?type=check_update&version=1
http://dx.doi.org/10.3390/s20020421
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 421 2 of 15

flow of a specific road segment is simultaneously influenced by the upstream and downstream road
segments, as well as adjacent road segments. Thus, city-wide forecasting cannot ignore the complex
topological relationships of this urban road network. Furthermore, city-wide forecasting is a typical
time series prediction problem, and the long-term temporal dependency of historical observations is
hard to capture with traditional forecasting approaches, especially when modelling periods and trends.
Moreover, external factors like torrential rain, traffic accidents, important festivals, etc., impact urban
traffic conditions. Unfortunately, traditional prediction models cannot solve the above challenges.
These models usually treat traffic flows as sequential data and forecast future states based on specific
hypotheses but neglect the fact that a traffic system is a non-linear system. Furthermore, they tend to
suffer from some limitations, such as their ineptitude in processing outliers, noisy data, or missing
values, and their incompetence in handling the problem of dimensionality [1]. Thus, how to improve
prediction accuracy is worthy of further discussion.

Statistical methods and neural networks are two typical approaches for traffic flow forecasting.
Both of these methods have dominated mainstream research methods in recent years.

Statistical methods are widely used in traffic flow forecasting research. According to the periodicity
of traffic state evolutions, some nonparametric models, such as k-nearest neighbours (KNNs), have
been utilized to predict traffic speeds and volumes [2–4]. Support vector machines (SVMs) [5] and
their various extensions [6–8] have promoted the improvement of prediction accuracy by capturing
the complexity within traffic systems. Some researchers have tried to combine multiple models to
enhance model performance and improve traffic flow prediction accuracy for a single road segment [9].
Recognizing the correlations in the successive observations of traffic state evolutions, some researchers
brought time-series prediction models into the traffic prediction problem. Autoregressive integrated move
average (ARIMA) is a typical method and incorporates several essential characteristics of traffic flow, such
as internal correlation (via a moving average) and its effect on short-term future (via autoregression) [10–13].
Although statistical methods have been widely adopted, they cannot effectively extract inherent spatial
and temporal dependencies and remain limited to a single road segment scenario. To predict city-wide
traffic flow volume, a large number of independent models must be constructed. This limits the further
application of statistical methods in the city-wide traffic flow prediction problem.

Neural networks (NNs) are also employed in the traffic flow prediction problem, due to their strong
non-linear fitting ability [1]. For example, the study in [14] combined an ANN with Bayes’ theorem to
predict the short-term traffic flow volume on a freeway. The study in [15] designed a statistical and ANN
mixed model to forecast traffic flow volume in an urban area. However, ANNs have not been widely used
because of their poor generalization ability caused by their inherently shallow architecture. At present,
several advanced and powerful deep learning models have been introduced into the academic community
to solve traffic flow prediction problems. For example, the work in [16] utilized deep learning methods
to predict the traffic status of a local region. The researchers in [17] were the first to adopt Deep Belief
Networks (DBNs) into the traffic forecasting field and achieved favourable results. The study in [18]
introduced an RBM-RNN model that combined deep restricted Boltzmann machines (RBMs) with a
recurrent neural network (RNN), which inherited the advantages of the above two models. The work
in [19] constructed a deep-learning-based prediction model and utilized a stack auto-encoder (SAE) to
extract local spatiotemporal features. Deep learning models have achieved better results than traditional
methods because they possess much deeper and more complicated structures. However, few studies
have involved city-wide traffic prediction problems and especially lack enough consideration of both
spatiotemporal dependencies and the complex external influences hidden in the traffic system.

This paper proposes a deep-learning-based approach that is applicable to the city-wide traffic
prediction problem. This method simultaneously considers the spatial correlation and temporal
dependencies of traffic flows in a road network and takes external factors into account. Our contributions
can be summarized as follows:

We propose a deep-learning-based city-wide traffic flow forecasting model. This model feeds on
the traffic status of the urban road network and can simultaneously extract spatial and temporal features

Sensors 2020, 20, 421 3 of 15

during model training. With the help of multi-branch fusion, this model effectively integrates external
factors with the model’s main component, which, to some extent, improves prediction accuracy.

We introduce a novel data pre-processing method, which calculates the traffic flow volume of the
entire urban and suburban area based on taxicab GPS trajectories. This method converts the research area
into a spatial lattice and produces traffic flow matrices that represent the traffic status of an urban road
network. This smaller granularity can precisely reflect a realistic traffic flow volume compared to a single
road segment.

We propose an encoding method for external factors, which encodes weather, accidents,
and holidays into one-hot encoded alike vectors. The input vectors are embedded into a hidden layer
through a two-layer fully connected neural network and expanded to a high-dimensional vector with
the same size as the input traffic flow matrix. Both of these vectors together comprise the model input.

2. Methodology

2.1. Traffic Flow Matrix Generation

Many studies have employed sensor data (e.g., from loop sensors, cameras, and taxicab GPSs) to
extract the average speed and traffic flow volume of a road segment and integrated those data with
other information to estimate the future traffic status [20–23]. However, the sensors’ data coverage is
limited by the cost of placing these sensors. Here, we adopt taxicab GPS trajectory data to construct
the model input. This type of data source provides as much coverage as the number of probe vehicles
allows and can provide a realistic sampling of an urban road network’s distribution. Moreover, the cost
of obtaining these data is greatly reduced.

Traditional GPS trajectory processing methods focus on a vector road segment and take the road
segment as a single processing unit to calculate its average speed or traffic flow volume. Unlike these
routines, we process and output raster format traffic flow matrices or images. Each pixel value in the
image represents the traffic flow volume of the road segment with smaller granularity, which retains
more useful information from the source data. For example, each small component of a road segment
actually has different traffic flow volumes at all times. Thus, vehicles sequentially move onto the main
road from other roads over a period of time, and the front end occupies the greatest proportion of traffic
flow volume. Inspired by this phenomenon, we utilize a lattice to split the source data and calculate
each pixel value—the traffic flow volume of each small component of a road segment. The traffic flow
matrix can be generated as follows:

(1) We first split the GPS trajectory data of each day into 96 slices; then, all these slices form a
collection of cubic spatiotemporal trajectories, as shown in Figure 1a.

(2) We then match all these GPS trajectory points to the most suitable locations using the Hidden
Markov Model (HMM) technique introduced in [24], as shown in Figure 1b.

(3) For each slice of the cube, we concatenate the sampling points of each taxi into a complete
geometry termed a “path” that acts as a processing unit in the following procedure.

(4) We connect all these paths into a specific spatial resolution grid. Each grid unit represents the
traffic flow volume of a small area during a 15 min time interval, as shown in Figure 1c.

Let T be a group of trajectories at the ith time interval. For a grid unit C(i, j) located at the ith row
and the jth column, the traffic flow volume at time interval t is defined as

Xi j
t =

∑
Tr

∣∣∣∣{k > 1
∣∣∣pk−1 < C(i, j) ∧ pk ∈ C(i, j)

}∣∣∣∣, (1)

where Tr : p1 → p2 → · · · → p|Tr | is a trajectory in T, and pk is the geographical coordinates (e.g.,
the projected coordinates);pk ∈ C(i, j) means that point pk lies within grid unit C(i, j) and vice versa; |·|
denotes the cardinality of a finite set.

Sensors 2020, 20, 421 4 of 15

Sensors 2020, 20, x FOR PEER REVIEW 4 of 15

Figure 1. Data pre-processing procedure. (a) GPS trajectory slicing; (b) matching trajectory maps; (c)
spatial intersection operation.

At the 𝑖 ℎ time interval, traffic flow volume in all 𝐼 × 𝐽 regions can be denoted as a tensor 𝑋 ∈
ℝ

× . A sample traffic flow matrix of the research area is shown in Figure 2.

Figure 2. Sample traffic flow matrix. (a) Traffic flow volume at 12:00, 5 January 2015; (b) detailed view
of the traffic flow matrix of (a).

2.2. Model Structure of TFFNet

The Deep Convolutional Neural Network (DCNN) has been proven to be a state-of-the-art
technique in many computer vision tasks, such as image recognition, object detection, image
segmentation, etc. In this paper, we construct a DCNN model based on the Residual Network
architecture, which can effectively model the spatiotemporal dependencies for traffic status evolution
and incorporate external factors (e.g., weather, accidents, holidays) into the model.

Convolutional layers, pooling layers, and fully connected layers comprise the conventional
convolutional neural network (CNN) model. The convolutional layer utilizes a large number of
convolutional kernels to extract feature maps from the previous layer. The pooling layer is introduced
to diminish the spatial dimensions of the current feature map by using average or max-pooling
computation. The fully connected layers are the final part of a CNN model. Usually, the feature map
and the fully connected layer are further filtered via an activation function [24–26]. Activation
functions are helpful for improving a model’s non-linear fitting ability and effectively speeding up
the convergence of the training process and greatly enhancing the model’s generalization ability.

Due to the existence of the vanishing-gradient problem, the network parameters cannot be tuned
properly by the optimization algorithm, so deep models cannot achieve better performance than
shallow ones [27]. Traditional CNN models only stack a few convolutional layers due to a lack of
sufficient computing power. Deep residual learning allows CNNs to have a very deep structure of

Figure 1. Data pre-processing procedure. (a) GPS trajectory slicing; (b) matching trajectory maps;
(c) spatial intersection operation.

At the ith time interval, traffic flow volume in all I × J regions can be denoted as a tensor Xt ∈ RI×J.
A sample traffic flow matrix of the research area is shown in Figure 2.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 15

Figure 1. Data pre-processing procedure. (a) GPS trajectory slicing; (b) matching trajectory maps; (c)
spatial intersection operation.

At the 𝑖 ℎ time interval, traffic flow volume in all 𝐼 × 𝐽 regions can be denoted as a tensor 𝑋 ∈
ℝ

× . A sample traffic flow matrix of the research area is shown in Figure 2.

Figure 2. Sample traffic flow matrix. (a) Traffic flow volume at 12:00, 5 January 2015; (b) detailed view
of the traffic flow matrix of (a).

2.2. Model Structure of TFFNet

The Deep Convolutional Neural Network (DCNN) has been proven to be a state-of-the-art
technique in many computer vision tasks, such as image recognition, object detection, image
segmentation, etc. In this paper, we construct a DCNN model based on the Residual Network
architecture, which can effectively model the spatiotemporal dependencies for traffic status evolution
and incorporate external factors (e.g., weather, accidents, holidays) into the model.

Convolutional layers, pooling layers, and fully connected layers comprise the conventional
convolutional neural network (CNN) model. The convolutional layer utilizes a large number of
convolutional kernels to extract feature maps from the previous layer. The pooling layer is introduced
to diminish the spatial dimensions of the current feature map by using average or max-pooling
computation. The fully connected layers are the final part of a CNN model. Usually, the feature map
and the fully connected layer are further filtered via an activation function [24–26]. Activation
functions are helpful for improving a model’s non-linear fitting ability and effectively speeding up
the convergence of the training process and greatly enhancing the model’s generalization ability.

Due to the existence of the vanishing-gradient problem, the network parameters cannot be tuned
properly by the optimization algorithm, so deep models cannot achieve better performance than
shallow ones [27]. Traditional CNN models only stack a few convolutional layers due to a lack of
sufficient computing power. Deep residual learning allows CNNs to have a very deep structure of

Figure 2. Sample traffic flow matrix. (a) Traffic flow volume at 12:00, 5 January 2015; (b) detailed view
of the traffic flow matrix of (a).

2.2. Model Structure of TFFNet

The Deep Convolutional Neural Network (DCNN) has been proven to be a state-of-the-art
technique in many computer vision tasks, such as image recognition, object detection, image
segmentation, etc. In this paper, we construct a DCNN model based on the Residual Network
architecture, which can effectively model the spatiotemporal dependencies for traffic status evolution
and incorporate external factors (e.g., weather, accidents, holidays) into the model.

Convolutional layers, pooling layers, and fully connected layers comprise the conventional
convolutional neural network (CNN) model. The convolutional layer utilizes a large number of
convolutional kernels to extract feature maps from the previous layer. The pooling layer is introduced
to diminish the spatial dimensions of the current feature map by using average or max-pooling
computation. The fully connected layers are the final part of a CNN model. Usually, the feature map
and the fully connected layer are further filtered via an activation function [24–26]. Activation functions
are helpful for improving a model’s non-linear fitting ability and effectively speeding up the convergence
of the training process and greatly enhancing the model’s generalization ability.

Due to the existence of the vanishing-gradient problem, the network parameters cannot be tuned
properly by the optimization algorithm, so deep models cannot achieve better performance than
shallow ones [27]. Traditional CNN models only stack a few convolutional layers due to a lack of
sufficient computing power. Deep residual learning allows CNNs to have a very deep structure of
over 100 layers (with as many as 1000 layers) [28]. This method has been used in many modern DCNN
frameworks and has produced state-of-the-art results for many challenging computer vision tasks.
Formally, a residual unit with an identity mapping function can be defined as follows:

Sensors 2020, 20, 421 5 of 15

X(l+1) = X(l) +F
(
X(l)

)
, (2)

where X(l) is input of the lth residual unit; X(l+1) is the output of the same residual unit; and F is
a learnable residual function, such as the bundle of 3 × 3 convolutional layers in [28]. The goal of
residual learning is to learn an additive residual function F with respect to X(l).

Figure 3 presents the architecture of the traffic flow forecasting network (TFFNet), which is
comprised of two components modelling spatiotemporal dependencies and external influences,
respectively. As illustrated in the bottom part of Figure 3, we first transform the traffic flow volume for
the whole city at each time interval into a 1-channel image-like matrix using the approach introduced
in Section 2.1. Then, we organize those matrices along the time axis and divide the time axis into three
fragments, denoting recent time, near history, and distant history. The traffic flow matrices representing
the traffic status of the intervals in each time fragment are then extracted and concatenated and fed into
the TFFNet to automatically learn hierarchical spatiotemporal dependencies. For example, to predict Xn,
we extract the matrices from historical observations {Xt|t = 0, · · · , n− 1}, including the above three time
fragments, to model temporal properties, including temporal closeness, period, and trend, and then
concatenate those matrices to construct a new high-dimensional tensor Xin ∈

(
lc + lp + lq

)
× I× J, where

lc, lp and lq represent the length of the temporally dependent sequence. We feed the input data into
the first convolutional layer to extract the intensive shallow and local features hidden in a temporally
dependent sequence using a small-size convolution kernel. Next, we stack a series of residual units
to extract deeper and multi-scale spatiotemporal features. Finally, we stack another convolutional
layer to extract deeper and more global features and denote the model output as tensor XRes. We then
summarize the above three procedures as embedding, extraction, and prediction. These procedures
constitute a complete prediction process. Inspired by ResNet [27,28], we add a shorter connection to
the framework and concatenate the output feature maps from the first convolutional layer and the
residual units together. This architecture alleviates the vanishing-gradient problem, strengthens feature
propagation, and substantially supplements the local spatial structure information lost in stepwise
forward computation. As illustrated in the top part of Figure 3, we adopt a two-layer fully-connected
neural network to embed external factors into the hidden layer. The model feeds the one-hot alike
feature vector and outputs a structured encoded tensor XExt with the same dimensions as XRes. XRes is
further fused with XExt, and the final output is XFinal.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 15

over 100 layers (with as many as 1000 layers) [28]. This method has been used in many modern
DCNN frameworks and has produced state-of-the-art results for many challenging computer vision
tasks. Formally, a residual unit with an identity mapping function can be defined as follows: 𝑋() = 𝑋() + ℱ(𝑋()) , (2)

where 𝑋() is input of the 𝑙 ℎ residual unit; 𝑋() is the output of the same residual unit; and ℱ is
a learnable residual function, such as the bundle of 3×3 convolutional layers in [28]. The goal of
residual learning is to learn an additive residual function ℱ with respect to 𝑋().

Figure 3 presents the architecture of the traffic flow forecasting network (TFFNet), which is
comprised of two components modelling spatiotemporal dependencies and external influences,
respectively. As illustrated in the bottom part of Figure 3, we first transform the traffic flow volume
for the whole city at each time interval into a 1-channel image-like matrix using the approach
introduced in Section 2.1. Then, we organize those matrices along the time axis and divide the time
axis into three fragments, denoting recent time, near history, and distant history. The traffic flow
matrices representing the traffic status of the intervals in each time fragment are then extracted and
concatenated and fed into the TFFNet to automatically learn hierarchical spatiotemporal
dependencies. For example, to predict 𝑋 , we extract the matrices from historical observations 𝑋 |𝑡 = 0, ⋯ , 𝑛 − 1 , including the above three time fragments, to model temporal properties,
including temporal closeness, period, and trend, and then concatenate those matrices to construct a
new high-dimensional tensor𝑋 ∈ 𝑙 + 𝑙 + 𝑙 × 𝐼 × 𝐽, where 𝑙 , 𝑙 and 𝑙 represent the length of
the temporally dependent sequence. We feed the input data into the first convolutional layer to
extract the intensive shallow and local features hidden in a temporally dependent sequence using a
small-size convolution kernel. Next, we stack a series of residual units to extract deeper and multi-
scale spatiotemporal features. Finally, we stack another convolutional layer to extract deeper and
more global features and denote the model output as tensor 𝑋 . We then summarize the above
three procedures as embedding, extraction, and prediction. These procedures constitute a complete
prediction process. Inspired by ResNet [27,28], we add a shorter connection to the framework and
concatenate the output feature maps from the first convolutional layer and the residual units
together. This architecture alleviates the vanishing-gradient problem, strengthens feature
propagation, and substantially supplements the local spatial structure information lost in stepwise
forward computation. As illustrated in the top part of Figure 3, we adopt a two-layer fully-connected
neural network to embed external factors into the hidden layer. The model feeds the one-hot alike
feature vector and outputs a structured encoded tensor 𝑋 with the same dimensions as 𝑋 . 𝑋
is further fused with 𝑋 , and the final output is 𝑋 .

Figure 3. TFFNet architecture. Conv: convolution layer; FC: fully-connected layer.

The main component (the bottom part of Figure 3) of TFFNet is composed of two sub-
components: the convolution and residual unit. More details are described in the following section.

Figure 3. TFFNet architecture. Conv: convolution layer; FC: fully-connected layer.

The main component (the bottom part of Figure 3) of TFFNet is composed of two sub-components:
the convolution and residual unit. More details are described in the following section.

Convolution. A city’s road network usually consists of road segments of a very large size with
inherent topological relationships. The traffic flow volume in each road segment may be affected by
nearby and distant traffic status, which can be effectively handled by CNNs, which have shown their
powerful ability to hierarchically capture spatial structure information [29]. The spatial dependencies
of nearby road segments can be captured by applying shallow convolutional operations, whereas the

Sensors 2020, 20, 421 6 of 15

distant ones must adopt a very deep architecture to capture global correlations. Thus, we build a model
with many layers based on ResNet, which satisfies the actual demand for extracting the hierarchical
spatial dependencies of road segments. Unlike a traditional CNN, TFFNet only uses convolutions and
consumes more training time, but this makes for a much simpler architecture than traditional CNNs.

We extract the matrices from the recent time, near history, and distant history fragments of the
historical observations to construct three temporal dependent sequences (Xc, Xp and Xq, respectively).
Then we concatenate Xc, Xp, Xq into one high-dimensional tensor Xin =

[
Xc, Xp, Xq

]
. The mathematical

formulations of Xc, Xp, Xq can be denoted as follows:

Xc =
[
Xt−lc , Xt−(lc−1), · · · , Xt−1

]
, (3)

Xp =
[
Xt−lp·p, Xt−(lp−1)·p, · · · , Xt−p

]
, (4)

Xq =
[
Xt−lq·q, Xt−(lq−1)·q, · · · , Xt−q

]
, (5)

where lc, lp, and lq denote the lengths of the three temporally dependent sequences, and p and q
represent two different types of periods. In our detailed implementation, p is set to one day to describe
daily periodicity, and q is set to one-week revealing the weekly trend.

Spatial correlation can be calculated by moving the convolutional kernel in the traffic flow matrix,
and a different band of input tensor Xin can be merged by applying weighted summation. The first
layer output of TFFNet can be represented as follows:

X(1) = f
(∑lc+lp+lq

j=1 W(1)
j ∗X j + b(1)

)
, (6)

where ∗ denotes the convolution operator, and f is a non-linear activation function (e.g., f (z) :=
max(0, z)) [24]; W(1)

j , b(1) are the learnable parameters of the first layer, and Xj ∈ Xin, j = 1, 2, . . . , lc + lp + lq.
Analogously, the subsequent layer output of TFFnet can be deduced by applying similar operations.

At the end of the TFFNet framework, the convolutional layer output is denoted as XRes.
Residual unit. A DCNN model with a large number of layers will problematize the training

process, though we can use the activation function and regularization techniques to ameliorate such
problems [24,30,31]. However, we still require a very deep architecture to extract global spatial dependencies
or city-wide spatial correlations. To overcome this problem, we introduce residual learning [27] in our
model, which has been demonstrated to be very powerful for training a DCNN model with more than
1000 layers.

In our implementation, we mainly employ a residual unit that contains two combinations of
‘ReLU + Convolution (3× 3 kernel)’. We also attempt to deploy batch normalization (BN) [30] before
the activation function, ReLU. This combination has demonstrated its effectiveness among different
ResNet derivatives [28]. Formally, we stack L residual units upon the first convolution layer—the final
output X(l+1) can be denoted as follows:

X(l+1) = X(l) +F
(
X(l);θ(l)

)
, (7)

where F is the residual function, and θ(l) are the parameters of the lth (l = 1, 2, . . . , L) residual unit.
External components. Traffic flows in the road network can be influenced by many complex

external factors, such as weather and events [20]. The city’s transportation system behaves differently
between weekdays and the weekend, especially during holidays. Severe weather also affects people’s
travel behavior and can advance or postpone morning or evening rush-hour. Traffic accidents can lead
to unexpected traffic jams, yielding changes in the surrounding road conditions. Let Et be the external
factor feature vector at the predicted time interval t. In our implementation, we mainly consider holiday
events and metadata (i.e., days of the week and weekday/weekend). As shown in Figure 3, we use two
fully-connected layers to process the external factor feature vector Et. The first layer is an embedding
layer and is followed by an activation function. The second layer is a mapping layer aimed at converting

Sensors 2020, 20, 421 7 of 15

the feature vector from a low-dimension to a high-dimension. Finally, the high-dimensional feature
vector will be reshaped to the same size of the main component output XRes. The output of the external
component is denoted as XExt, whose learnable parameters are represented as θExt.

Fusion. Before outputting the final predicted value, we need to fuse the output of the above
two components together. We directly add the output of the above two parts using matrix addition,
as shown in Figure 3. The predicted value X̂t can be defined as

X̂t = tanh(XRes + XExt), (8)

where tanh(·) is the hyperbolic tangent activation function.
TFFNet must be trained to predict the traffic flow volume at the tth time interval (i.e., Xt) from

temporally dependent sequences and the external factor feature vector by minimizing the loss function.
In our implementation, we use the mean squared error (MSE) as the optimization target:

L(θ) = ‖Xt − X̂t‖
2
2, (9)

where θ represents all parameters learned during the training process.

2.3. Training Process of TFFNet

Algorithm 1 summarizes the training process of TFFNet. We first construct training instances
from the original dataset (e.g., traffic flow matrices and external factors). Then, we train the model via
gradient-descent based back-propagation and an Adam stochastic optimization algorithm [32]. Given the
temporal dependent sequences Xc, Xp, Xq, the external factor feature vector Et, and the target value
Xt for any time interval t (1 ≤ t ≤ n− 1), we construct a training instance

({∣∣∣Xc, Xp, Xq
∣∣∣, Et

}
, Xt

)
and put

it into a finite set S. During TFFNet’s training process, we initialize each model parameter θ using a
uniform distribution with default values. Afterwards, we randomly select a batch of training instances Sb
from finite set S, and repeatedly feed them into the neural network training process. This optimization
algorithm tries to find an optimal set of parameters θ by minimizing the objective functionL(θ), until the
predefined stopping criteria is satisfied. After finishing the above iterative computation, we obtain the
useable prediction model,M.

Algorithm 1 Training process for TFFNet
Input: traffic flow matrices: {Xt|t = 0, · · · , n− 1};

external factors: {Et|t = 0, · · · , n− 1};
lengths of temporally dependent sequences: lc, lp, and lq;
period parameter: p; trend parameter: q.

Output: TFFNet modelM.
1
2
3
4
5
6
7
8
9
10
11
12
13
14

S← ∅
for all available time intervals t (1 ≤ t ≤ n− 1) do

Xc =
[
Xt−lc , Xt−(lc−1), · · · , Xt−1

]
Xp =

[
Xt−lp·p, Xt−(lp−1)·p, · · · , Xt−p

]
Xq =

[
Xt−lq·q, Xt−(lq−1)·q, · · · , Xt−q

]
// Xt is the target value at time interval t
put a training instance

({∣∣∣Xc, Xp, Xq
∣∣∣, Et

}
, Xt

)
into S

initialize model parameters θ
repeat

randomly select a batch of training instances Sb from S
find θ by minimizing the objective L(θ) with Sb

until the stopping criteria is satisfied
output the learned TFFNet modelM

Sensors 2020, 20, 421 8 of 15

3. Empirical Study

3.1. Experiment Settings

Datasets. A private dataset for Wuhan, China, was used to evaluate our proposed model
(Figure 4). This dataset contains trajectory, weather, and holidays information originating from
government departments. Trajectories were provided by the transportation bureau, which contains
information on 7000 vehicles’ trajectories from 1 April to 30 June 2017. The weather conditions and
holidays information were acquired from open-access official websites (e.g., www.weather.com.cn and
www.gov.cn). The dataset was separated into two parts: trajectories and external factors. More details
can be found in Table 1.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 15

14 output the learned TFFNet model ℳ

3. Empirical Study

3.1. Experiment Settings

Datasets. A private dataset for Wuhan, China, was used to evaluate our proposed model (Figure
4). This dataset contains trajectory, weather, and holidays information originating from government
departments. Trajectories were provided by the transportation bureau, which contains information
on 7000 vehicles’ trajectories from 1 April to 30 June 2017. The weather conditions and holidays
information were acquired from open-access official websites (e.g., www.weather.com.cn and
www.gov.cn). The dataset was separated into two parts: trajectories and external factors. More details
can be found in Table 1.

Table 1. Original dataset details (holidays include adjacent weekends).

Dataset Details

Wuhan dataset

Part I: Trajectories

Part II: External Factors

Figure 4. Location of the urban area in Wuhan, China.

Preprocessing. Trajectories were pre-processed and converted into traffic flow matrices
according to the method mentioned in Section 2.1 before further processing. We acquired 8640 slices
of the traffic flow matrix altogether. All of these data were used to construct training instances or
training samples. A group of traffic flow matrices for the local region are illustrated in Figure 5.

We continue to construct the training instances from the traffic flow matrices and external factors
according to the algorithm introduced in Section 2.3. To predict the traffic flow volume at 𝑡, a training
instance 𝑋 , 𝑋 , 𝑋 , 𝐸 , 𝑋 can be assembled as follows:

Figure 4. Location of the urban area in Wuhan, China.

Table 1. Original dataset details (holidays include adjacent weekends).

Dataset Details

Wuhan dataset
Time span 1 April to 30 June 2017
Trajectories From a government-sponsored program

External factors From open-access official websites

Part I: Trajectories

Sampling rate 60 s
Floating cars 7 thousand

Floating car types Taxi, Bus, and Private car
Trajectories 14 million

Trajectory points 14 billion

Part II: External Factors

Weather conditions 16 types (e.g., Sunny, Rainy)
Weekdays 65 days
Weekends 26 days
Holidays 9 days

Preprocessing. Trajectories were pre-processed and converted into traffic flow matrices according
to the method mentioned in Section 2.1 before further processing. We acquired 8640 slices of the traffic
flow matrix altogether. All of these data were used to construct training instances or training samples.
A group of traffic flow matrices for the local region are illustrated in Figure 5.

We continue to construct the training instances from the traffic flow matrices and external factors
according to the algorithm introduced in Section 2.3. To predict the traffic flow volume at t, a training
instance

({∣∣∣Xc, Xp, Xq
∣∣∣, Et

}
, Xt

)
can be assembled as follows:

(1) For the temporal closeness sequence Xc, we extract the last three slices before the predicted time
interval, i.e., lc = 3 and Xc = [Xt−3, Xt−2, Xt−1].

www.weather.com.cn
www.gov.cn

Sensors 2020, 20, 421 9 of 15

(2) For period sequence Xp, we only utilize one slice of the traffic flow matrices, the same time
interval as the previous day, i.e., lp = 1 and Xp = [Xt−96].

(3) Trend sequence Xq has a similar structure to Xp, and the same time interval for the same day as
the previous week is used, i.e., lq = 1, and Xq = [Xt−672].

(4) Then, we transform the external factors into a 1-dimensional feature vector Et using one-hot
encoding, e.g., Et = [1, 0, 0, 0, 0, 0, 0, 1] for 1 May 2015.

(5) Xc, Xp, Xq, Et, and the target value Xt constitute a training instance or training sample, which will
be placed into a finite set S and fed into the neural network training.

All traffic flow matrices will be pre-processed following the above steps. Altogether, we achieved
7968 training instances derived from the original dataset. Afterwards, these instances can be directly
fed into TFFNet for further training procedures. More details can be found in Table 2.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 15

Table 7. Comparison of the different input structure of TFFNet.

Models
Input Data Structure

RMSE Training Time (Minutes)
Temporal Closeness Period Trend

TFFNet_16 14.07 135.0
TFFNet_16_CP 18.29 132.7
TFFNet_16_C 19.64 130.2

Figure 5. Traffic flow matrices of Hongshan Square on 1 May 2017.

We also carried out another experiment to test and verify the model’s generalization ability
when applied to other research areas. Before predicting the future status of a traffic system, we
constructed a few new training instances using the method introduced in Section 3.1 and continued
to train the output prediction model ℳ for several epochs by utilizing the transfer learning policy,
which greatly improves the performance of learning by avoiding many expensive data-labelling
efforts [34]. Then, we output the final prediction model. We acquired a similar prediction result in

Figure 5. Traffic flow matrices of Hongshan Square on 1 May 2017.

Sensors 2020, 20, 421 10 of 15

Table 2. Training dataset details.

Dataset Details

Wuhan training dataset

Time span 90 days
Time interval 15 min

Traffic flow matrices 8640 (90 days × 96/day)
Training instances 7968 (8640 − 7 × 96/day)

Traffic flow matrix size (200, 200)
External factor feature vector size (1, 8)

Hyperparameters. The deep learning library PyTorch (a popular deep learning programming
framework) is used to build and train TFFNet. The learnable parameters of TFFNet are initialized
using a uniform distribution with default parameters in PyTorch. TFFNet mainly uses 64 filters of
3× 3 and 128 filters of 1× 1. Table 3 provides the detailed structure of TFFNet, with four residual units.
The Adam stochastic optimization algorithm is used to automatically adjust the model parameters
during the neural network training procedure. In order to save GPU video memory, the batch size is
set to a smaller value of 8. There are several extra hyperparameters in TFFNet, of which p and q are
empirically set to one-day and one-week, respectively [21]. We set the lengths of the three temporally
dependent sequences as lc = 3, lp = 1, and lq = 1. We select 80% of the training data for neural network
training, and the rest (20%) are used for validating the model, which is applied to the early-stop
training algorithm based on the best validation score. Subsequently, we continued to train TFFNet
with the full training data for a fixed number of epochs (e.g., 100 epochs).

Table 3. Detailed structure of TFFNet with 4 residual units.

Layer Name Input Size Output Size Filter Size

Conv 1 200× 200, 5 200× 200, 64 3× 3, 64

ResUnit 1 200× 200, 64 200× 200, 64
[

3× 3, 64
3× 3, 64

]
× 1

ResUnit 2 200× 200, 64 200× 200, 64
[

3× 3, 64
3× 3, 64

]
× 1

ResUnit 3 200× 200, 64 200× 200, 64
[

3× 3, 64
3× 3, 64

]
× 1

ResUnit 4 200× 200, 64 200× 200, 64
[

3× 3, 64
3× 3, 64

]
× 1

Conv 2 200× 200, 128 200× 200, 1 1× 1, 128

Test Environment. The experiments are mainly run on a workstation with a Tesla M60 GPU,
Xeon E3 CPU, and 32 GB RAM. The deep learning library PyTorch 0.4 is used to build and train TFFNet.
NVIDIA CUDA and cuDNN are both version 8.0.

Evaluation Metric. We measure our method by the Root Mean Square Error (RMSE) as

RMSE =

√
1
z

∑
i

(xi − x̂i) (10)

where x̂i and xi are the predicted value and the ground truth, respectively, and z is the number of all
predicted values.

3.2. Evaluation of Prediction Accuracy

In order to evaluate the effectiveness of TFFNet, we conducted some experiments to compare our
method with four other typical methods. The historical average value (HA) is the simplest way to
predict traffic flow. For example, the traffic flow for 12:45–13:00 on Monday could be predicted by
computing all historical time intervals from 12:45 to 13:00 on Monday. As a typical time series problem,

Sensors 2020, 20, 421 11 of 15

traffic flow can be predicted by the autoregressive integrated moving average (ARIMA), which is
an effective tool for predicting future values. SAE is a neural network comprising multiple layers of
autoencoders, where model inputs are encoded into dense or sparse representations before being fed
into the next layer [19]. LSTM is an extension of recurrent neural networks (RNN) and has become
popular because the architecture can deal with long-term memory and avoid the vanishing-gradient
problem that traditional RNNs suffer from [33].

Table 4 shows the experimental results of the above four comparative methods versus TFFNet
when applied to the testing dataset in a one-step prediction task. The results show that, in almost
all circumstances, our proposed model outperforms the others in the testing dataset, suggesting that
TFFNet can more effectively learn spatiotemporal dependencies from training instances, with a strong
non-linear fitting ability for traffic prediction problems.

Table 4. Comparison of the different methods in the testing dataset.

Models RMSE

HA 48.77
ARIMA 24.88

SAE 32.66
LSTM 20.38

TFFNet 18.34

Note: There are 4 residual units in standard TFFNet. The external fusion component is used. The model input
incorporates 3 dependent sequences: temporal closeness, period, and trend.

Both HA and ARIMA focus on each road segment of the whole road network. Hence, to predict
network-wide traffic flows, a large number of independent models have to be built. In contrast,
SAE and LSTM can yield network-wide traffic flows in one model with one or multi-step outputs.
Regarding the ability to learn spatial dependencies, the above four methods all treat road segments
independently and cannot effectively learn the topological relationships within the road network.
This may be one possible reason why HA, ARIMA, SAE, and LSTM’s performance is inferior to that of
TFFNet for the tested dataset. These models neglect the spatial correlations of traffic flows in different
road segments (e.g., a traffic accident that occurs in one road segment will affect adjacent segments
over a long period of time).

3.3. Results of Different TFFNet Variations

3.3.1. Impact of Model Depth

To further explore the effectiveness of different depths of TFFNet, we test eight variations of
TFFNet with different depths, and the experimental results are shown in Table 5. For example,
TFFNet_16 has 16 residual units and fuses with external factors. To avoid GPU video memory overflow,
we only test TFFNet_4 to TFFNet_34 in this paper.

Table 5. Comparison of the different model depths of TFFNet.

Models Description RMSE Training Time (Minutes)

TFFNet_4 4 Residual Units 18.34 67.5
TFFNet_8 8 Residual Units 17.69 88.0

TFFNet_12 12 Residual Units 14.20 109.8
TFFNet_16 16 Residual Units 14.07 135.0
TFFNet_20 20 Residual Units 14.06 166.5
TFFNet_24 24 Residual Units 14.12 201.3
TFFNet_30 30 Residual Units 14.56 238.9
TFFNet_34 34 Residual Units 15.09 279.5

Note: TFFNet_* represent how many residual units are stacked in constructing the TFFNet model.

Sensors 2020, 20, 421 12 of 15

We observe that all of these models are superior to the previous comparative methods. This further
proves the effectiveness of the spatiotemporal dependency modelling approach introduced by
TFFNet. Compared with the best comparative methods, TFFNet_16 reduces the RMSE to 14.07,
which significantly improves prediction accuracy. Although TFFNet_20 achieves even better results
than TFFNet_16, it consumes much more training time after stacking four more residual units.
Significantly, TFFNet_24, TFFNet_30, and TFFNet_34 do not surpass TFFNet_16 during the test, which
demonstrates that the deeper architecture still leads to a network degradation phenomenon and affects
the model’s prediction performance. A much deeper architecture will consume more training time but
will only gain limited improvement in prediction accuracy. Therefore, we consider the depth of the
model in practice and make a trade-off between depth and performance.

3.3.2. Impact of Fusion Policy

To check the effects of external fusion on the prediction results, we slightly adjust the structure
of TFFNet and retrain the model. Table 6 shows the experimental results of the different fusion
policies of TFFNet. TFFNet_16 achieves a higher prediction accuracy than TFFNet_16_noFusion,
which demonstrates that external fusion, to some extent, improves model performance. For training
time, TFFNet_16 requires only 6.3 more minutes than TFFNet_16_noFusion but can achieve a higher
prediction accuracy. The city’s transportation system behaves differently between weekdays and the
weekend, especially during holidays. Severe weather also affects people’s travel behaviour and can
advance or postpone morning or evening rush-hour. Traffic accidents can lead to unexpected traffic
jams, yielding changes in the surrounding road conditions. Thus, these factors are worth considering.

Table 6. Comparison of the different fusion policies of TFFNet.

Models Description RMSE Training Time (Minutes)

TFFNet_16 With external fusion 14.07 135.0

TFFNet_16_noFusion Without external fusion 15.77 128.7

3.3.3. Impact of the Input Structure

To evaluate the effects of temporal properties on the prediction results, we fine-tune the input
data structure and feed the results to TFFNet_16 to train another two variations, TFFNet_16_CP and
TFFNet_16_C. Compared with the architecture of TFFNet_16, TFFNet_16_CP does not use trend
data, and TFFNet_16_C only consumes temporal closeness data. The experimental results show that
TFFNet_16 performs best on the tested dataset. TFFNet_16_CP and TFFNet_16_C are inferior because
they lack the necessary temporal properties. This further demonstrates that the temporally dependent
modelling of traffic flow can significantly improve prediction accuracy, especially for coarse-grained
time interval input data. Similar conclusions can be found in studies of the same field (e.g., [20,21],
etc.). The experimental results are shown in Table 7.

Table 7. Comparison of the different input structure of TFFNet.

Models
Input Data Structure

RMSE Training Time (Minutes)
Temporal Closeness Period Trend

TFFNet_16 3 3 3 14.07 135.0
TFFNet_16_CP 3 3 5 18.29 132.7
TFFNet_16_C 3 5 5 19.64 130.2

We also carried out another experiment to test and verify the model’s generalization ability when
applied to other research areas. Before predicting the future status of a traffic system, we constructed a
few new training instances using the method introduced in Section 3.1 and continued to train the output

Sensors 2020, 20, 421 13 of 15

prediction modelM for several epochs by utilizing the transfer learning policy, which greatly improves
the performance of learning by avoiding many expensive data-labelling efforts [34]. Then, we output
the final prediction model. We acquired a similar prediction result in the final experiment. Thus, we can
conclude that TFFNet has a strong generalization ability for similar problems because the deep neural
network has a strong non-linear fitting ability.

Based on the above discussion, useful conclusions can be drawn, as follows:
TFFNet outperforms other typical methods for testing datasets, which implies that it is useful for

learning the spatiotemporal dependencies hidden in traffic flow matrices.
The fusion of external factors remarkably reduced RMSE during the evaluation, which implies

that external factors could be properly fused with the prediction result to improve prediction accuracy.
A deep residual network provides the ability to build a CNN model with over 100 layers, which

provides a good foundation for constructing a model used to extract hierarchical spatial features.
By adopting a transfer learning policy, TFFNet could be transferred and used in other research

areas and shows a strong generalization ability for the traffic flow prediction problem.

4. Conclusions and Future Work

This paper proposes a deep-learning-based traffic flow prediction method that can model
spatio-temporal dependencies by applying a fully convolutional architecture. With deep residual
learning introduced into TFFNet, this method can utilize deep convolutional structures to extract
hierarchical spatial features ranging from shallow to deep, thus allowing it to model spatial dependencies
from near to distant regions. By extracting historical traffic flow matrices from recent times, near history,
and distant history time segments, we can construct temporally dependent sequences and model
temporal closeness, periods, and trends via multi-channel convolution computations. The fusion of
external factors, to some extent, improves traffic flow prediction accuracy, especially for holiday events,
and various metadata (i.e., for days of the week and weekday/weekend) are involved. We evaluate
TFFNet and other baselines on a private dataset and further explore the impacts induced by different
model depths, fusion policies, and input structures. The experimental results show that TFFNet and its
different variations outperform other typical prediction methods on testing the dataset in a city-wide
one-step traffic flow prediction problem, which is especially suitable for image-based format inputs
and outputs.

This model possesses the following advantages: (1) end-to-end training reduces the dependencies
of the existing model and its pre-experience and can yield a complex structured output; (2) the
prediction accuracy can be fine-tuned by increasing or reducing the residual units when considering
different application scenarios; (3) a multi-branch network architecture or ensemble learning policy
makes the fusion of external factors feasible and effective.

However, there are some drawbacks to this method, especially regarding the difficulty in the
model’s interpretability. Many studies concerning model interpretability have been carried out.
Current works focus on the visualization of feature maps in hidden layers, showing that DCNN
can extract hierarchical image features, from abstract to concrete and generalized to specialized
features [35–37].

Real-time prediction is another issue worth discussing. ITS plays an important role in modern
cities and places higher demands on the real-time prediction ability of the available prediction methods.
TFFNet takes traffic flow matrices and external factors as its model input and outputs the future
short-term traffic flow volume of the whole road network in a 15 min time span. When we finish
the training process and output the pre-trained model, the factors affecting the real-time prediction
ability are the traffic flow matrix generation and the encoding of external factors, which converts
trajectories and external factors into model inputs. Before carrying out further predictions, we have
15 min to process the original data by employing a powerful distributed parallel computing platform,
such as Hadoop, Spark, or Flink. In this way, TFFNet will be deployed in a cloud environment,

Sensors 2020, 20, 421 14 of 15

computation resources will be adequately supplied, and the real-time prediction ability of the model
will be guaranteed.

In the future, we will consider a more complicated model architecture, especially for modelling
temporal closeness, periods, and trends to capture temporal dependencies more precisely. In addition,
we will also consider how to handle sparse spatial traffic flow matrix inputs to reduce training
time consumption and preserve topological relationships. Other data sources (e.g., mobile phone
location data and bus credit card data) will be involved, and an appropriate fusion mechanism will
be considered.

Author Contributions: Methodology, S.S., H.W. and L.X.; Writing—Original draft, S.S.; Writing—Review and
editing, L.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partly supported by the National Key Research and Development Project (Grant No.
2018YFB2100603) and the National Science Foundation of China (Grant Nos. 41771474, 41930107).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Karlaftis, M.G.; Vlahogianni, E.I. Statistical methods versus neural networks in transportation research:
Differences, similarities and some insights. Transp. Res. Part C Emerg. Technol. 2011, 19, 387–399. [CrossRef]

2. Davis, G.A.; Nihan, N.L. Nonparametric Regression and Short-Term Freeway Traffic Forecasting.
J. Transp. Eng. 1991, 117, 178–188. [CrossRef]

3. Chang, H.; Lee, Y.; Yoon, B.; Baek, S. Dynamic near-term traffic flow prediction: Systemoriented approach
based on past experiences. IET Intell. Transp. Syst. 2012, 6, 292–305. [CrossRef]

4. Xia, D.; Wang, B.; Li, H.; Li, Y.; Zhang, Z. A distributed spatial-temporal weighted model on MapReduce for
short-term traffic flow forecasting. Neurocomputing 2016, 179, 246–263. [CrossRef]

5. Wu, C.H.; Ho, J.M.; Lee, D.T. Travel-time prediction with support vector regression. IEEE Trans. Intell.
Transp. Syst. 2004, 5, 276–281. [CrossRef]

6. Hong, W.C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm.
Neurocomputing 2011, 74, 2096–2107. [CrossRef]

7. Castro-Neto, M.; Jeong, Y.S.; Jeong, M.K.; Han, L.D. Online-SVR for short-term traffic flow prediction under
typical and atypical traffic conditions. Expert Syst. Appl. 2009, 36, 6164–6173. [CrossRef]

8. Ma, Z.; Luo, G.; Huang, D. Short Term Traffic Flow Prediction Based on on-Line Sequential Extreme Learning
Machine. In Proceedings of the Eighth International Conference on Advanced Computational Intelligence,
Chiang Mai, Thailand, 14–16 February 2016; pp. 143–149.

9. Li, L.; He, S.; Zhang, J.; Ran, B. Short-term highway traffic flow prediction based on a hybrid strategy
considering temporal—Spatial information. J. Adv. Transp. 2017, 50, 2029–2040. [CrossRef]

10. Tran, Q.T.; Ma, Z.; Li, H.; Hao, L.; Trinh, Q.K. A Multiplicative Seasonal ARIMA/GARCH Model in EVN
Traffic Prediction. Int. J. Commun. Netw. Syst. Sci. 2016, 8, 43–49. [CrossRef]

11. Williams, B.M.; Hoel, L.A. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process:
Theoretical Basis and Empirical Results. J. Transp. Eng. 2003, 129, 664–672. [CrossRef]

12. Voort, M.V.D.; Dougherty, M.; Watson, S. Combining kohonen maps with arima time series models to forecast
traffic flow. Transp. Res. Part C Emerg. Technol. 1996, 4, 307–318. [CrossRef]

13. Williams, B. Multivariate Vehicular Traffic Flow Prediction: Evaluation of ARIMAX Modeling. Transp. Res.
Rec. J. Transp. Res. Board 2001, 1776, 194–200. [CrossRef]

14. Zheng, W.; Lee, D.H. Short-Term Freeway Traffic Flow Prediction: Bayesian Combined Neural Network
Approach. J. Transp. Eng. 2006, 132, 114–121. [CrossRef]

15. Moretti, F.; Pizzuti, S.; Annunziato, M.; Annunziato, M. Urban traffic flow forecasting through statistical and
neural network bagging ensemble hybrid modeling. Neurocomputing 2015, 167, 3–7. [CrossRef]

16. Polson, N.; Sokolov, V. Deep Learning Predictors for Traffic Flows. Transp. Res. Part C Emerg. Technol. 2016,
79, 1–17. [CrossRef]

17. Huang, W.; Hong, H.; Li, M.; Hu, W.; Song, G.; Xie, K. Deep Architecture for Traffic Flow Prediction.
In International Conference on Advanced Data Mining and Applications; Springer: Berlin/Heidelberg, Germany,
2013; pp. 165–176.

http://dx.doi.org/10.1016/j.trc.2010.10.004
http://dx.doi.org/10.1061/(ASCE)0733-947X(1991)117:2(178)
http://dx.doi.org/10.1049/iet-its.2011.0123
http://dx.doi.org/10.1016/j.neucom.2015.12.013
http://dx.doi.org/10.1109/TITS.2004.837813
http://dx.doi.org/10.1016/j.neucom.2010.12.032
http://dx.doi.org/10.1016/j.eswa.2008.07.069
http://dx.doi.org/10.1002/atr.1443
http://dx.doi.org/10.4236/ijcns.2015.84005
http://dx.doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)
http://dx.doi.org/10.1016/S0968-090X(97)82903-8
http://dx.doi.org/10.3141/1776-25
http://dx.doi.org/10.1061/(ASCE)0733-947X(2006)132:2(114)
http://dx.doi.org/10.1016/j.neucom.2014.08.100
http://dx.doi.org/10.1016/j.trc.2017.02.024

Sensors 2020, 20, 421 15 of 15

18. Ma, X.; Yu, H.; Wang, Y.; Wang, Y. Large-Scale Transportation Network Congestion Evolution Prediction
Using Deep Learning Theory. PLoS ONE 2015, 10, e0119044. [CrossRef]

19. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction with Big Data: A Deep Learning Approach.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [CrossRef]

20. Zhang, J.; Zheng, Y.; Qi, D. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
4–10 February 2017.

21. Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X.; Li, T. Predicting Citywide Crowd Flows Using Deep Spatio-Temporal
Residual Networks. Artif. Intell. 2018, 259, 147–166. [CrossRef]

22. Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning Traffic as Images: A Deep Convolutional Neural
Network for Large-Scale Transportation Network Speed Prediction. Sensors 2017, 17, 818. [CrossRef]

23. Yu, H.; Wu, Z.; Wang, S.; Wang, Y.; Ma, X. Spatiotemporal Recurrent Convolutional Networks for Traffic
Prediction in Transportation Networks. Sensors 2017, 17, 1501. [CrossRef]

24. Yin, L.; Zhang, C.Y.; Xie, X.; Zheng, Y.; Wang, W.; Huang, Y. Map-Matching for Low-Sampling-Rate GPS
Trajectories. In Proceedings of the 17th ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems (ACM-GIS 2009), Seattle, WA, USA, 4–6 November 2009.

25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks.
Commun. ACM 2017, 60, 84–90. [CrossRef]

26. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models.
In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.

27. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision,
Santiago, Chile, 7–13 December 2015.

28. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

29. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the
European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 11–14 October 2016.

30. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

31. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine
Learning, Lille, France, 6–11 July 2015.

32. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, Haifa, Israsel, 21–24 June 2010.

33. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
34. Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed

prediction using remote microwave sensor data. Transp. Res. Part C 2015, 54, 187–197. [CrossRef]
35. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the

European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, 6–12 September 2014.
36. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative

Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 26 June–1 July 2016.

37. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations
from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vision 2019, 10, 1–24. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0119044
http://dx.doi.org/10.1109/TITS.2014.2345663
http://dx.doi.org/10.1016/j.artint.2018.03.002
http://dx.doi.org/10.3390/s17040818
http://dx.doi.org/10.3390/s17071501
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.trc.2015.03.014
http://dx.doi.org/10.1007/s11263-019-01228-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Traffic Flow Matrix Generation
	Model Structure of TFFNet
	Training Process of TFFNet

	Empirical Study
	Experiment Settings
	Evaluation of Prediction Accuracy
	Results of Different TFFNet Variations
	Impact of Model Depth
	Impact of Fusion Policy
	Impact of the Input Structure

	Conclusions and Future Work
	References

