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Abstract: A theoretical study on the feasibility of global navigation based on three different
types of gravity data was performed. A computer simulation of gravity-aided navigation was
performed for three models of sections of the Earth’s surface with gravity anomalies distributed as
specified. For navigation, three types of data sources were used, e.g., the gravity vector magnitude,
three orthogonal projections of the gravity vector, and five independent components of the full gravity
tensor. For each data source, when searching a specified route, the dependencies of the number of the
identified true and false points were determined in accordance with the measurement error specified.
The problem of determining the true route on the set of the identified points is briefly reviewed.
General conclusions are presented regarding the practical applicability of the reviewed data sources
to the problem of global navigation.
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1. Introduction

Global navigation systems are an important element for the functioning of the majority of modern
transport systems, from civilian vehicles and nuclear submarines to autonomous drones. Delivery of
cargo by water and air, passenger transport, and space missions are barely conceivable without
location tools, without the use of satellite and radar systems, or without hybrid solutions that combine
various tools into a single navigation system. However, any navigation system has its limitations and
operational features.

For example, satellite navigation tools, even taking into account open access to satellite networks
and high positioning accuracy, fail to function in polar regions and during strong magnetic storms [1].
In addition, at any time and in any territory, the system owners can disable them, and satellite signal
scan can be suppressed or distorted [2]. If satellite systems are unavailable, ground navigation aids can
be used for global navigation. However, ground-based systems are characterized by limited coverage
and insufficient accuracy and depend on the state of the ionosphere [3]. One promising direction for the
creation of alternative systems for independent global navigation is the use of the Earth’s gravity field [4–6].

A feature of a global navigation system based on tracking according to gravity field data is its
independence from external auxiliary systems and its immunity from interference and distortion of a
useful signal. A topographic map can be used for navigation with the characteristics of the gravity
field referenced. Requirements for the referenced point density, total area of the map, and the period
of relevance of the information presented depend on the characteristics of the gravity field selected
for navigation.

The aim of this study was theoretical research on the problems of gravity navigation based on
various types of gravity data. Using an open database of gravity anomalies, we have built three
virtual models of the Earth’s surface, for which we calculated values sets of three types of initial data
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and developed a simple navigation algorithm to demonstrate the general and specific problems of
gravitational navigation.

To simulate the process of global gravity-aided navigation, we have defined three sets of
characteristics [7,8] that represent the state of the Earth’s gravity field at a referenced point: (1) the
gravity vector magnitude

∣∣∣g∣∣∣; (2) three projections of the acceleration vector on the orthogonal axes
gx, gy, gz; and (3) five independent components of the gravity tensor Txx, Txy, Txz, Tyy, Tyz [9]. For all
datasets, the maximum permissible errors in the measurements of the Earth’s gravity field have been
defined where the method of navigation gives the correct result (that is, among the potential solutions
found, the desired route can be guaranteed).

The navigation problem was simulated in the author’s computer simulation environment for
three variants of the distribution of the gravity field, arbitrarily divided by the level of the gravity
gradient from relatively low to high. Publicly available data from the Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) satellite mission (2009–2013) [10] provided the realistic prototypes
for the selected distributions. On the basis of the information generated from satellite gravimetric
surveys, digital copies of these regions have been formed, consisting of virtual geological objects
specifically located and mass which, in aggregate, reflect the gravity effect, and generally correspond
to the prototypes.

The computer simulation was based on an algorithm designed for searching a fixed-length route
among points on a base map, with the referenced values of gravity components of the gravity field
tensor. The algorithm resulted in a set of potential solutions to the problem of navigation in the form
of points comprising the desired route. The number and characteristics of the distribution of the
obtained solutions varied with the simulation environments. The characteristics of the route built to
demonstrate the main problems of gravitational navigation (such as route length and the number of
points) are determined as a result of the series of computer experiments to show the features in the
accumulation of basic errors while using the selected type of gravity data. In addition, in order to
simplify the basic navigation algorithm, the actual distance between points of the route was added into
the basic simulation conditions (in practice, this information can be received using Inertial Navigation
Systems (INS)).

According to the simulation results, a general analysis of the features of application of various
characteristics of the gravity field for navigation was conducted.

It should also be noted that the task of this article was to overview the immediately possible
approaches to the implementation of gravity navigation without taking into account the nuances
of technical implementation of navigation devices on the principles described. For that reason,
we deliberately “idealize” conditions for navigation signal acquisition and do not consider the
possibility of integration of gravity navigation in existing navigation systems in detail. This material is
planned as a topic for further research by the authors.

2. Simulation

To serve as virtual polygons, three-dimensional plots of the Earth’s interior (200 × 200 × 40 km2)
simulated and divided by the nature of the gravity anomalies that was based on data from satellite
gravimetric surveys (Table 1):
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Table 1. Prototypes of the sites for building models and the corresponding distributions of the
gravity potential. 1—LON [73–77.5]–LAT [64.5–66.5]. Western Siberia, Russia. 2—LON [70–74.5]–LAT
[64–66]. Western Siberia, Russia. 3—LON [58–61]–LAT [48.3–50.3]. Mugodzhary Mountains with the
Alabasskaya Basin, Kazakhstan.

No. Prototype
(Distribution gz, mGal) [10]

Model (Distribution gz,
mGal) Model (Gravity Potential, m2/s2)

1
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(1) A smooth field with uniformly distributed gravity heterogeneities, characteristic of the Nadym
lowland, located on the immature West Siberian platform.

(2) A field with distinct local heterogeneities and gravity gradients corresponding to the transition
from the Nadym lowland to the Poluy highland (zone of the Poluy anticlinorium).

(3) A field with contrasting anomalies of the folded belt (the Mugodzhary Mountains, the southern
spur of the Ural Mountains, Kazakhstan).

For the sake of brevity, the regions defined will be referred to as regions with low- (gradients on
the order of 0.1 mGal/km), medium- (gradients of 1 mGal/km), and high-amplitude (gradients of
10 mGal/km) anomalies, respectively.

For the calculation of gravity anomalies, we used n = 21 mass points mi in the range of
1·1012–2·1016 kg, distributed over an area of 200 × 200 km2 at depths of 12–40 km. Coordinates of the
mass points are denoted by (xi, yi, zi). The grid spacing was 8 km for all model regions.

Data arrays for the three characteristics of the gravity field were calculated:
(1) gravity vector magnitude,

∣∣∣g∣∣∣.
(2) three projections of g onto the corresponding Cartesian axes, gx, gy, gz.
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(3) five independent components of the full gravity tensor, Txx, Txy, Txz, Tyy, Tyz.
For the calculation of the components of the full gravity tensor, the calculated distance between

the arms of the virtual gravity gradiometer was 5 m.
For all regions specified, three components of the gravity acceleration vector from this set of mass

points, this vector amplitude, and 5 independent components of the full gravity tensor were calculated
at a height of z = 0 km.

gx =
∑n

i=1

Gmi∆xi

r3
i

(1)

gy =
∑n

i=1

Gmi∆yi

r3
i

(2)

gz =
∑n

i=1

Gmi∆zi

r3
i

(3)

∣∣∣g∣∣∣ = √
g2

x + g2
y + g2

z (4)

Txx =
∑n

i=1

Gmi

r5
i

(
−3(x− xi)

2 + r2
i

)
(5)

Txy =
∑n

i=1

Gmi

r5
i

(−3(x− xi)(y− yi)) (6)

Txz =
∑n

i=1

Gmi

r5
i

(−3(x− xi)(z− zi)) (7)

Tyy =
∑n

i=1

Gmi

r5
i

(
−3(y− yi)

2 + r2
i

)
(8)

Tyz =
∑n

i=1

Gmi

r5
i

(−3(y− yi)(z− zi)) (9)

where

G = 6.67408·10−11 m3
·kg−1

·s−2, the gravitational constant [11],
∆xi = x− xi, ∆yi = y− yi, ∆zi = z− zi, the Cartesian projections of the distances between the grid node
and the i-th mass,
r2

i = ∆x2
i + ∆y2

i + ∆z2
i , the distance between a grid node and the i-th mass.

We consider the features of the distribution of these characteristics for the calculated regions
(Figures 1–3). Distributions for gy, gz, Tyy, and Tyz are not provided because they are close
(considering the opposing signs) to the distributions with respect to gx,

∣∣∣g∣∣∣, Txx and Txz, respectively.
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The nature of the distributions of values
∣∣∣g∣∣∣ and of projections g changes with the magnitude of

the anomalies for the region under study: the greater the anomalies are, the more asymmetric and
non-monotonic the distributions become (Figure 1), which can be explained by the peculiarities of the
mass distributions over various areas of the map. Thus, the distribution of the gx component for the
foothills and the mountainous region actually reflects the shape of the anomalies on the map.

As the amplitude of the anomalies increases, variations in the values
∣∣∣g∣∣∣ and projections

∣∣∣g∣∣∣ also
increase (Figures 1 and 2), and the number of grid points corresponding to the specified interval of
these values decreases. Therefore, with the same measurement error for regions with high-amplitude
anomalies, on average, fewer points will be found that correspond to the value

∣∣∣g∣∣∣ or projection
g specified.

For example, for the values of gx ≈ 0 for the region with low-amplitude anomalies,
approximately 250 points can be distinguished, while for the regions with medium- and high-amplitude
anomalies 100 and 35 points, respectively, can be distinguished (Figure 2). In the areas of local extreme
points, a deviation from this rule can be observed. Therefore, for gx ≈ − 50 mGal, the number of points
in the region with high-amplitude anomalies (50 points) is greater than in the medium-amplitude
anomalies region (15 points) due to the maximum of the first distribution and the minimum of the
second distribution.

The distributions by tensor components have a more pronounced non-monotonic nature (Figure 3)
than those by modules and by acceleration projections, i.e., the former is more sensitive to local
anomalies. Thus, local maxima corresponding to the mass points specified in the model are clearly
visible in the distributions by Txx and Txz. In this case, the distributions of the same tensor components
for regions with different anomaly amplitudes coincide qualitatively, with allowances being made
for the amplitudes. In addition, the distributions of grid points by all tensor components are not
shifted with respect to zero (like the distribution by

∣∣∣g∣∣∣ and gz), and most of the points have a zero
tensor value (unlike the distribution by

∣∣∣g∣∣∣ and components g). This finding suggests that navigation
equipment based on data from the components of the gravity tensor designed even for theregions with
high-amplitude gravity anomalies would have small zero drift levels and high sensitivity.

The test navigation route included 7 points on a broken line running across the map from southwest
to northeast. The height of the route points is taken as z = 0 m. For the sake of simplicity, the points
belong to the global grid nodes containing the calculated gravity characteristics for the entire area
(which are the benchmark for all virtual measurements). Reference data also have been calculated for a
height of z = 0 m.

We denote the route points in the sequence order as d =0, d =1 . . . d =D. Table 2 shows the route
points referenced to the coordinates of the grid with a spacing of 8 km on the area X ∈ [−100,000;100,000],
Y ∈ [−100,000;100,000], Z= 0 m.

Table 2. True coordinates of the desired route points.

d X, m Y, m Z, m

0 −92,000 −92,000 0

1 −84,000 −76,000 0

2 −52,000 −60,000 0

3 −44,000 36,000 0

4 −28,000 4000 0

5 −12,000 −12,000 0

6 84,000 84,000 0
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3. Method of Searching the Route Points

The basic condition for gravitational navigation is sufficient detailing of the gravitational anomalies
captured on the ground. The navigation method should include the step of finding points with gravity
characteristics close to those of the observer’s location points (route points) and the processing of the
resulting data (screening the points, combining them into a route, and validating the route).

The values of the calculated gravity characteristics for the route points are shown in Tables 3–5.

Table 3. Route points characteristics for the region with low-amplitude anomalies.

Point
Number Accelerations, mGal Tensor Components, E

d
∣∣∣g∣∣∣ gx gy gz Txx Tyy Txy Txz Tyz

0 10.6 7.0 0.8 −7.9 0.10 1.76 0.74 3.74 −1.02
1 8.9 4.6 −0.5 −7.6 1.88 −0.96 0.56 1.61 −1.22
2 6.4 −0.9 0.5 −6.3 −0.05 0.32 0.19 −1.25 0.22
3 3.7 0.8 −0.2 −3.6 −0.06 −0.46 −0.05 −0.02 −0.14
4 3.7 0.1 0.2 −3.7 −0.47 0.00 −0.44 −0.26 0.17
5 3.2 0.1 0.1 −3.1 −0.14 −0.51 −0.07 −0.03 0.11
6 7.8 0.1 0.4 −7.8 0.48 0.96 −1.49 1.65 1.70

Table 4. Route points characteristics for the region with medium-amplitude anomalies.

Point
Number Accelerations, mGal Tensor Components, E

d
∣∣∣g∣∣∣ gx gy gz Txx Tyy Txy Txz Tyz

0 25.8 15.8 19.3 −6.7 −0.19 −1.65 −2.10 1.02 1.62
1 33.2 19.4 24.3 −11.8 0.56 −2.20 −2.43 1.82 3.67
2 41.0 20.6 27.0 −23.0 −3.30 0.37 2.60 2.09 3.00
3 54.8 23.1 −6.4 −49.3 −1.37 −2.91 −7.97 0.80 −5.80
4 56.5 7.1 25.9 −49.7 −9.00 5.08 −6.50 −2.10 6.90
5 47.4 7.3 28.8 −37.0 0.51 −6.95 0.00 0.90 6.45
6 83.5 −64.0 −24.3 −47.8 −8.71 9.37 −2.97 −20.59 −3.01

Table 5. Route points characteristics for the region with high-amplitude anomalies.

Point
Number Accelerations, mGal Tensor Components, E

d
∣∣∣g∣∣∣ gx gy gz Txx Tyy Txy Txz Tyz

0 94.4 57.1 65.4 −37.2 −2.21 −5.53 −10.46 9.25 10.73
1 135.8 77.3 82.6 −75.2 −1.63 −3.58 −11.40 22.38 23.84
2 207.1 18.2 5.5 −206.2 17.10 63.87 36.74 0.63 −18.28
3 48.2 24.3 2.6 −41.5 0.83 −9.35 −4.96 3.45 6.46
4 40.4 9.2 −14.2 −36.7 −4.24 −7.31 −7.10 0.44 −0.72
5 41.5 3.4 −12.9 −39.3 −4.84 −8.12 −9.81 0.12 −1.74
6 56.2 −36.5 −40.4 −14.1 −1.40 −4.07 −4.64 −2.55 −2.74

We assign the following coordinates to the first point of the route: x0= 0, y0= 0, z0= 0.
Assuming that in addition to the values of gravity, the distances between the route points are

also known, we can calculate the coordinates of the following points of the route relative to the origin
(points d = 0 (0, 0, 0)).

Accordingly, we can define a route that does not refer to the global area as a polygonal line with
D vertices (xd, yd).

Depending on the source data type selected for the navigation, for each route point d, there are
the following data arrays:

(1) the gravity acceleration vector magnitude,
∣∣∣g∣∣∣d
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(2) the gravity vector projections on the axis, gx,d, gy,d, gz,d
(3) the five tensor components, Txx,d, Tyy,d, Txy,d, Txz,d, Tyz,d
We then have a matrix of the route that is not referenced to the map, and the measured values of

the gravity field characteristics are presented in Table 6.

Table 6. Matrix of the non-referenced route.

Rout
Point
Number

Route Point
Coordinates Not

Referenced to
the Map

Values of the Gravity Field Characteristics Measured at the Route Points

d xd yd zd
∣∣∣g∣∣∣d gx,d gy,d gz,d Txx, d Tyy, d Txy, d Txz, d Tyz, d

0 x0 y0 0
∣∣∣g∣∣∣0 gx,0 gy,0 gz,0 Txx, 0 Tyy, 0 Txy, 0 Txz, 0 Tyz, 0

1 x1 y1 0
∣∣∣g∣∣∣1 gx,1 gy,1 gz,1 Txx, 1 Tyy, 1 Txy, 1 Txz, 1 Tyz, 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D xD yD 0

∣∣∣g∣∣∣D gx,D gy,D gz,D Txx, D Tyy, D Txy, D Txz, D Tyz, D

We denote the known values of the gravity acceleration vector amplitude and the projections of
the acceleration vector and the components of the gravity tensor at the vertices of the grid as

∣∣∣g∣∣∣, gx, gy,
gz and Txx, Tyy, Txy, Txz, Tyz.

Let ε be the standard deviation of measurements by a virtual instrument, designed as a criterion
for referencing a measured point on a route to points of the base map.

For the d point of the route, several (or zero) points on the map are found. To distinguish these
points, we introduce the sequence numbers, j ∈ [1, Jd].

We denote the membership function of point d of the route for the region with the calculated
values of the acceleration vector magnitude as MFMd, j; for the region with the values of the projections
of the acceleration vector as MFPx,d, j, MFPy,d, j, MFPz,d, j; and for the region with the calculated values
of the components of the tensor as MFTxx,d, j, MFTyy,d, j, MFTxy,d, j, MFTxz,d, j, MFTyz,d, j.

Thus,

MFMd, j =


1, i f

(∣∣∣g∣∣∣− ∣∣∣g∣∣∣d, j

)2
≤ ε2

0, i f
(∣∣∣g∣∣∣− ∣∣∣g∣∣∣d, j

)2
> ε2

(10)

where ∆
∣∣∣g∣∣∣d, j =

√(∣∣∣g∣∣∣− ∣∣∣g∣∣∣d, j

)2
−acceleration amplitude discrepancy.

For the projection of the acceleration vector, gx, the membership function is

MFPx,d, j =

 1, i f
(
gx − gx,d, j

)2
≤ ε2

0, i f
(
gx − gx,d, j

)2
> ε2

(11)

where ∆gx,d, j =

√(
gx − gx,d, j

)2
− acceleration vector projection discrepancy.

For the tensor component Txx, the membership function is

MFTxx,d, j =

 1, i f
(
Txx − Txx,d, j

)2
≤ ε2

0, i f
(
Txx − Txx,d, j

)2
> ε2

(12)

where ∆Txx,d, j =

√(
Txx − Txx,d, j

)2
−xx tensor component discrepancy.

Similarly, let us construct MFPy,d, j, MFPz,d, j for the two other acceleration projections, gy and gz,
as well as MFTyy,d, j, MFTxy,d, j, MFTxz,d, j, MFTyz,d, j for the remaining four tensor components, Tyy, Txy,
Txz, Tyz.
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Let us consider that a point in the region belongs to the route if it is within the error of the gravity
acceleration, or three projections g, or five independent components of the gravity tensor coincide.

We define the membership function of a point on the map grid for the designed route:

• for the acceleration amplitude:

MFd, j = MFMd, j (13)

• for the acceleration projection:

MFd, j = MFPx,d, j ·MFPy,d, j ·MFPz,d, j (14)

• for the tensor:

MFd, j = MFTxx,d, j ·MFTyy,d, j ·MFTxy,d, j ·MFTxz,d, j ·MFTyz,d, j (15)

If MFd, j= 1, then the point is considered to conditionally belong to the route (i.e., used for further
analysis), if MFd, j = 0, then the point is not used.

For the points selected by the criterion MFd, j= 1, we also calculate the totals of the discrepancies
of the vector projection:

∆gd, j = ∆gx,d, j + ∆gy,d, j + ∆gz,d, j (16)

and of the tensor:
∆Td, j = ∆Txx,d, j + ∆Tyy,d, j + ∆Txy,d, j + ∆Txz,d, j + ∆Tyz,d, j (17)

We enter the found points of the map, for which MFd, j= 1, into a separate matrix, Res_MF, as
shown in Table 7.

Table 7. Point searching results.

Route Point
Number

Sequential Number
of the Point Found on

the Map,
Corresponding to the
Route Point d by the

Criterion MFd,j= 1

Coordinates of the Points Found by the
Criterion MFd,j= 1 for Route Point d, jd

in Succession for Point d

Acceleration Magnitude
Discrepancies, or Total of

Vector Projection
Discrepancies, or Total of

Tensor Mismatch
Discrepancies for the

Route Point

d jd xMF,d, jd yMF,d, jd zMF,d, jd ∆
∣∣∣g∣∣∣d, jd

or ∆gd, jd or ∆Td, jd

0 1 xMF,0, j1 yMF,0, j1 0 ∆
∣∣∣g∣∣∣0, j1

or ∆g0, j1 or ∆T0, j1

0 2 xMF,0, j2 yMF,0, j2 0 ∆
∣∣∣g∣∣∣0, j2

or ∆g0, j2 or ∆T0, j2
. . . . . . . . . . . . . . . . . .

0 J0 xMF,0,J0 yMF,0,J0 0 ∆
∣∣∣g∣∣∣0,J0

or ∆g0,J0 or ∆T0,J0

1 1 xMF,1, j1 yMF,1, j1 0 ∆
∣∣∣g∣∣∣1, j1

or ∆g1, j1 or ∆T1, j1

1 2 xMF,1, j2 yMF,1, j2 0 ∆
∣∣∣g∣∣∣1, j2

or ∆g1, j2 or ∆T1, j2
. . . . . . . . . . . . . . . . . .

1 J1 xMF,1,J1 yMF,1,J1 0 ∆
∣∣∣g∣∣∣1,J1

or ∆g1,J1 or ∆T1,J1

. . . . . . . . . . . . . . . . . .

D JD xMF,D,JD yMF,D,JD 0 ∆
∣∣∣g∣∣∣D,JD

or ∆gD,JD or ∆TD,JD

During the simulation, the Res_MF tables were calculated for different ε values over a wide
alternating range: ±(0.01–100) mGal for the values

∣∣∣g∣∣∣, gx, gy, gz and ±(0.1–20) E for the values of the
full gravity tensor components.

After determining the number Jd of potential route points found and their positions relative to
each other, the desired route among possible alternatives can be sought.
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The desired route is an aggregate of the found points with minimal differences in distances between
adjacent points and the corresponding distances between points of the desired route (which can be
considered to be obtained during movement between points). In this case, the route points should
be as close as possible to the corresponding points of the reference region. If a route is found that is
shifted in parallel by one or several steps of the grid relative to the real route, then it is an alternative
route, as shown in Figure 4.
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Figure 4. Potential route points found in the regions with low-, medium-, and high-amplitude anomalies
with measurement errors of 0.2, 1, and 1 mGal, respectively, in the lines from top to bottom, respectively.
The left column corresponds to the intersection of three projections of g, while the right column
corresponds to

∣∣∣g∣∣∣. The solid line denotes the true route. Points with the same d are denoted by the
same markers.

Thus, in the Res_MF matrix, we find such a set of points, D, the displacements between which
RMF, x,d+1,d and RMF,y,d+1,d along the X and Y axes correspond, within an error δ, to the displacements
Rx,d+1,d and Ry,d+1,d between the non referenced route.
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In other words, we check the following:

RMF, x,d+1,d−Rx,d+1,d ≤ δ
RMF,y,d+1,d−Ry,d+1,d ≤ δ

(18)

where
Rx,d+1,d = xd+1 − xd
Ry,d+1,d = yd+1 − yd

RMF, x,d+1,d = xMF,d+1, jd+1
− xMF,d, jd

RMF,y,d+1,d = yMF,d+1, jd+1
− yMF,d, jd

(19)

Since in the simulation that we performed the route points corresponded to the grid points of
the simulated region, δ = 0. The assumption of a zero error in movement detection between route
points in our model is based on two factors. Firstly, 8 km grid spacing is too large compared to the real
error in such measurements. Secondly, we wanted to focus on the analysis of gravity navigation errors
associated with errors during the measurement of different characteristics of the gravity field.

An indicator of the effectiveness of the navigation algorithm is the number of routes built on the
basis of points found in a given region for a given gravity characteristic.

If the search is conducted at the intersection of sets of the found points simultaneously for several
characteristics (for example, for the projections g or tensor components), the points will be absent if
for at least one of the characteristics, no values were found (based on the corresponding membership
functions).

However, a more common case is the correspondence of several points at once to a single range of
error. The more evenly the gravity characteristics are distributed, the more points and local regions of
their distribution on the map will be found (Figure 4).

4. Simulation Results and Discussion

With a measurement error specified, the number of map points found by the criterion MFd, j = 1
for a given route point depends on both the overall distribution of anomalies on the map and on
the anomaly amplitude at this point. However, the type of gravitational data used has the greatest
influence on the number of points found.

4.1. Searching a Route by
∣∣∣g∣∣∣

Thus, when searching a route by
∣∣∣g∣∣∣, all route points were correctly found if the standard deviation

of the virtual instrument did not exceed 0.1 mGal.
An increased standard deviation ε will result in new points with close values of

∣∣∣g∣∣∣. Since the field∣∣∣g∣∣∣ does not have discontinuities, the found points will be grouped first around the true point of the
route and, with a further increase in error, in other regions of the map with similar values of the field,
as shown in Figure 4. Therefore, when searching a route according to the data from

∣∣∣g∣∣∣, regardless of the
increase in the standard deviation of the virtual instrument, there are a priori correct points amongthe
found points.

We denote Ntrue, Nfalse,and Npotential as the numbers of true, false, and potential points of the route
found by the algorithm, corresponding to one point of the route, where Npotential = Ntrue + Nfalse.
In general, Ntrue can be 0 or 1, and Npotential can be 0 or any natural number.

The number Npotential, when navigating by
∣∣∣g∣∣∣, is large enough. Thus, in areas with weak, medium,

and strong gravitational anomalies, a linear increase in the Npotential(ε) dependence was observed with
standard deviations of the virtual instrument up to 3, 8, and 20 mGal, respectively (Figure 5). At the same
time, the slopes of Npotential(ε) on the linear section were approximately 100, 20, and 10 points/mGal,
respectively, for the indicated regions of anomalies, as shown in Figure 5.



Sensors 2020, 20, 5859 12 of 17

Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 

 

If the search is conducted at the intersection of sets of the found points simultaneously for 
several characteristics (for example, for the projections �̅� or tensor components), the points will be 
absent if for at least one of the characteristics, no values were found (based on the corresponding 
membership functions). 

However, a more common case is the correspondence of several points at once to a single range 
of error. The more evenly the gravity characteristics are distributed, the more points and local 
regions of their distribution on the map will be found (Figure 4). 

4. Simulation Results and Discussion 

With a measurement error specified, the number of map points found by the criterion 𝑀𝐹 , =1 for a given route point depends on both the overall distribution of anomalies on the map and on 
the anomaly amplitude at this point. However, the type of gravitational data used has the greatest 
influence on the number of points found. 

4.1. Searching a Route by |�̅�| 
Thus, when searching a route by |�̅�|, all route points were correctly found if the standard 

deviation of the virtual instrument did not exceed 0.1 mGal. 
An increased standard deviation 𝜀 will result in new points with close values of |�̅�|. Since the 

field |�̅�| does not have discontinuities, the found points will be grouped first around the true point 
of the route and, with a further increase in error, in other regions of the map with similar values of 
the field, as shown in Figure 4. Therefore, when searching a route according to the data from |�̅�|, 
regardless of the increase in the standard deviation of the virtual instrument, there are a priori 
correct points amongthe found points. 

We denote 𝑁 , 𝑁 ,and 𝑁  as the numbers of true, false, and potential points of the 
route found by the algorithm, corresponding to one point of the route, where 𝑁 =  𝑁 +𝑁 . In general, 𝑁  can be 0 or 1, and 𝑁  can be 0 or any natural number. 

The number 𝑁 , when navigating by |�̅�|, is large enough. Thus, in areas with weak, 
medium, and strong gravitational anomalies, a linear increase in the 𝑁 𝜀  dependence was 
observed with standard deviations of the virtual instrument up to 3, 8, and 20 mGal, respectively 
(Figure 5). At the same time, the slopes of 𝑁 𝜀  on the linear section were approximately 100, 
20, and 10 points/mGal, respectively, for the indicated regions of anomalies, as shown in Figure 5. 

 
Figure 5. Dependence of the number of found potential points on the 𝑁  route on the 
measurement error (mGal) for one route point when navigating by |�̅�| for the case of regions with 
low-, medium-, and high-amplitude gravity anomalies. 

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

Figure 5. Dependence of the number of found potential points on the Npotential route on the measurement
error (mGal) for one route point when navigating by

∣∣∣g∣∣∣ for the case of regions with low-, medium-,
and high-amplitude gravity anomalies.

For example, with a standard instrument deviation of 0.1 mGal, for each point of the route in
areas with low-, medium-, and high-amplitude anomalies, Npotential = 10, 2, and 1 points will be found
on average, respectively.

Since, as indicated above, the correct points always belong to the set of found points, the
route based on the data from

∣∣∣g∣∣∣ will be always found. However, with a relatively low value of ε,
a cloud of false points will be found around each true point, which leads to the appearance of many
alternatives to the true route, as shown in Figure 4. To distinguish the true route from the alternatives,
additional comparisons of discrepancies by route points are required.

4.2. Searching a Route by g
(
gx, gy, gz

)
If a route is searched by the condition of the intersection of three projections of the vector

g
(
gx, gy, gz

)
, this situation will change. If a point is not found for at least one of the projections

g, then it will not be found at the whole intersection (according to the criterion MFd, j = 1).
This condition will result not only in a decrease in the number of possible points of the route
being found (approximately 10 times when compared with navigation by

∣∣∣g∣∣∣) but also to a decrease in
the number of true route points found.

The linearity of the Npotential(ε) dependence when navigating by three projections of g was observed
to be in almost the same range as for navigation by

∣∣∣g∣∣∣, up to the instrument standard deviation of 1, 4,
and 20 mGal, for the regions of low-, medium-, and high-amplitude anomalies, respectively (Figure 6).
However, the slopes of the Npotential(ε) curve were approximately 10, 2, and 1 points/mGal, respectively,
i.e., 10 times less than when navigating by

∣∣∣g∣∣∣.
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Figure 6. Dependence of the number of found potential points on the Npotential route on the measurement
error (mGal) for one route point when navigating by the intersection of three projections of the g vector
for the case of regions with low-, medium-, and high-amplitude gravity anomalies.
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For example, when simulating navigation using data from the three projections of the vector
g, and with a virtual instrument standard deviation of 0.1 mGal, one route point contained on
average approximately 1 to 2 potential route points in the regions with low-amplitude anomalies and
approximately 1 potential point in the regions with medium- and high-amplitude anomalies.

The number Ntrue of the true route points decreased inversely with the standard deviation
(Figure 7). In the linear approximation, the number of true points found for the entire route
from 7 points decreases with increasing ε as 4, 0.5, and 0.25 points/mGal, for the low-, medium,
and high-amplitude anomalies, respectively.
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Figure 7. Dependence of the number Ntrue of the correctly found route points on the measurement
error (mGal) for a route containing 7 points when navigating by the intersection of the three projections
of the g vector. Regions with low-, medium-, and high-amplitude gravity anomalies.

For the threshold criterion for the virtual device standard deviation, we can take its value at which
at least half of the route points will be found. For the anomaly regions studied, the threshold values of
ε were 1, 20, and 20 mGal, respectively.

4.3. Searching a Route by Ti j (Txx, Txy, Txz, Tyy, Tyz)

Navigation using the intersection of five independent tensor components sets an even more
stringent criterion, that is, the desired route point must be found simultaneously for all five components.
For this reason, with this type of navigation, false route points were generally absent in all simulated
anomaly regions and for any standard deviation of the virtual instrument.

The number of found true route points decreases when navigating by the projections g and
is inversely proportional to the standard deviation of the virtual instrument. Using the linear
approximation, for the entire route from 7 points, the average decrease in the number Ntrue with
increasing ε is 12, 3, and 2 points/E for regions with low-, medium, and high-amplitude anomalies,
respectively (Figure 8).

Such a sharp decrease in the number of the true route points found with an increase in the standard
deviation suggests that navigation based on the intersection of the tensor components places high
demands on measurement errors since no algorithm that can find a route if its points are found.

When navigating using the tensor components, we take the value for which half of the true points
of the route are lost for the limiting value of the standard deviation of the virtual instrument. For low-,
medium-, and high-amplitude anomalies, these values were 0.2, 1, and 2 E, respectively (Figure 8).
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Figure 8. Dependence of the number Ntrue of the correctly found route points on the measurement
error (E) for a route containing 7 points when navigating using the intersection of five independent
components of the gravity tensor. Regions with low-, medium-, and high-amplitude gravity anomalies.

4.4. Alternative Routes

The number of alternative routes is directly related to the number of potential points found,
which grows with an increase in the standard deviation of the virtual instrument and with a decrease
in the magnitude (gradient) of the gravity anomalies, as shown in Figures 5, 6 and 9.
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Figure 9. Distribution of the points found for the midpoint of the route by
∣∣∣g∣∣∣ distributions with

different anomalies depending on the measurement error (indicated in mGal). The desired point is
highlighted by the white square.

With the search algorithm based on
∣∣∣g∣∣∣, true points of the route are found for any measurement

error, i.e., a threshold value of the standard deviation is absent, but for generality of reasoning,
a standard deviation of the instrument of 1 mGal for this algorithm is used.

With the method of gravity navigation by
∣∣∣g∣∣∣ with a virtual instrument standard deviation of

1 mGal in regions with low-amplitude anomalies, no more than a two dozen independent alternative
routes with lengths of 2 to 4 points were simultaneously found (Figure 4). These routes are immediately
eliminated when the full-length (7 points) route is docked, i.e., they do not interfere with the
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determination of the true route. In regions with medium- and high-amplitude anomalies for this value
of ε, alternative routes were completely absent.

When modeling the navigation using the three projections of the acceleration (with ε being equal
to 1mGal), only a few alternative routes that were 2 points long were found in the low-amplitude
anomaly region, and there were no alternative routes for regions with medium- and high-amplitude
anomalies (Figure 4). These point-to-point routes can also be easily eliminated when building a
full-length route.

For the method of gravity navigation by the five tensor components (with ε = 0.2 E), there were
no alternative routes for all regions with different amplitudes of anomalies, because of the lack of false
points of the route.

4.5. Features of Implementation of Gravity-Aided Navigation Based on Different Data Sources

(1) The method of navigating using the components of the field tensor is the most theoretically
demanding in terms of hardware.

As has been mentioned above, in the regions with low-amplitude anomalies, this method will
find half of the true points of the route if the standard deviation of the virtual instrument is not worse
than 0.2 E (Figure 8). A gravity gradiometer, whose sensors are separated by a distance l =10 m,
should have an accuratemeasurement of accelerations of at least 2 × 10−4 mGal.

For temperature drift on the order of 10 µg/◦C [12] at a specified value of ε = 2 × 10−4 mGal,
the arms of the gradiometer should be heat-stabilized to better than 2 × 10−5 ◦C, and the time drift and
noise of the equipment should be maintained at this level. In addition, the accuracy of stabilization of
the spatial position of the device must be at least 4”.

It is established by our simulation, with medium- and high-amplitude anomalies, the requirements
for accuracy can be reduced by a factor of 5 to 6, but the hardware requirements remain notably high.

(2) When navigating using the three projections of vector g, the requirements for the permissible
measurement error are considerably lower. Therefore, for smooth gravity fields, half of the true points
of the route will be found with an error of 1 mGal with a grid spacing of 8 km (Figure 7). If the
permissible navigation error is assumed to be 100 m, then the measurement errors of the g components
should be approximately 0.01 mGal. Requirements for the temperature stability of the sensors are on
the order of 10−3 ◦C. Spatial stabilization of the instrument is also needed, but its accuracy can be
reduced to 30”.

Since for the regions with low-amplitude gravity anomalies the number of Npotential points found
for a single route point according to the data from the three projections of g increases with an increase in
the standard deviation of the virtual instrument as 10 points/mGal with a grid spacing 8 km (Figure 6),
then with a grid spacing 100 m and accuracy of 0.01 mGal, the number of points found will be
approximately 10 × 802

× 0.01 = 640.
If, however, the requirement for navigation accuracy is reduced to 1 km, then a measurement

accuracy of 0.1 mGal is sufficient; the temperature stabilization requirement is 10−2 ◦C, and the
spatial stabilization requirement is 100”, while for one point of the route, there will be approximately
10 × 82

× 0.01 ≈ 10 points.
(3) The method of navigating by the value of

∣∣∣g∣∣∣ has the simplest hardware implementation since
spatial stabilization of the position of the sensors is not required. Regardless of the position of the
three orthogonal sensors, the vector g magnitude

∣∣∣g∣∣∣ can always be determined by measuringthe three
projections. Only the requirements for temperature stabilization of the accelerometer sensors, as in the
three projection method g (for example, 10−2 ◦C with a standard deviation of 0.1 mGal and navigation
accuracy of 1 km), remain unchanged.

The issue with this method is the extremely high number of possible points found (Figure 5).
Since the number of points found on an 8-km grid increases with an increase in the error in regions of
low-amplitude anomalies as 100 points/mGal, then with an error of 0.1 mGal, 100 × 82

× 0.1 = 640
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points for one route point will be found on a 1-km grid. On a grid of 100 m with an error that is 10 times
smaller, 10 times as many points will be found.

5. Conclusions

The simulations conducted show that global navigation based on gravimetric data is possible even
when the largely imperfect route searching algorithm described in this report is applied. The choice of
the data source is determined by both the measurement conditions and the accuracy of the positioning
requirements. Nevertheless, the main strengths and weaknesses of each of the sources considered can
be identified.

Thus, navigation by use of the full gravity tensor can provide the best positioning accuracy
(up to tens of meters) with a minimal number of alternative solutions compared to navigation by the
gravity acceleration magnitude or by the three orthogonal acceleration gravity projections. At the same
time, navigation by tensor imposes the greatest demands on the measuring unit (the measurement
accuracy should be sufficient to calculate the gravity gradient) and requires highly accurate spatial
stabilization of the measuring equipment, which impedes the development and large-scale production
of such systems.

Navigation based on the orthogonal projections of gravity imposes fewer requirements on the
accuracy of the source data, while also requiring spatial stabilization. However, lower positioning
accuracy with a significantly larger number of alternative found route points makes this method
ineffective compared to tensor navigation.

Navigation based on the gravity acceleration magnitude with an efficiency at the level of navigation
based on orthogonal projections does not require spatial stabilization and, in theory, makes it possible
to rely on a considerably more compact hardware implementation than for the case of systems based on
the gravity tensor. In theory, this approach makes it possible to consider this type of navigation as an
auxiliary mechanism for unmanned aerial vehicles and other systems that require periodic validation
for the operation of standard global navigation equipment.
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