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Abstract: A two-step fifth and a multi-step 5 + 3r order iterative method are derived, r ≥ 1 for
finding the solution of system of nonlinear equations. The new two-step fifth order method requires
two functions, two first order derivatives, and the multi-step methods needs a additional function
per step. The performance of this method has been tested with finding solutions to several test
problems then applied to solving pseudorange nonlinear equations on Global Navigation Satellite
Signal (GNSS). To solve the problem, at least four satellite’s measurements are needed to locate the
user position and receiver time offset. In this work, a number of satellites from 4 to 8 are considered
such that the number of equations is more than the number of unknown variables to calculate
the user position. Moreover, the Geometrical Dilution of Precision (GDOP) values are computed
based on the satellite selection algorithm (fuzzy logic method) which could be able to bring the best
suitable combination of satellites. We have restricted the number of satellites to 4 to 6 for solving
the pseudorange equations to get better GDOP value even after increasing the number of satellites
beyond six also yields a 0.4075 GDOP value. Actually, the conventional methods utilized in the
position calculation module of the GNSS receiver typically converge with six iterations for finding
the user position whereas the proposed method takes only three iterations which really decreases
the computation time which provide quicker position calculation. A practical study was done to
evaluate the computation efficiency index (CE) and efficiency index (IE) of the new model. From the
simulation outcomes, it has been noted that the new method is more efficient and converges 33%
faster than the conventional iterative methods with good accuracy of 92%.
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MSC: 65H05

1. Introduction

Numerical analysis is a comprehensive subject which is interconnected with applied mathematics,
various fields of science and engineering, medical, etc. The most elemental and primal problem in
this subject is to find the efficient and precise approximate solution x(∗) ∈ D of a systems of nonlinear
F(x) = 0, where F : D ⊂ Rn → Rn, and this type of problem will be solved by the famous Newton’s
method (2ndNR) which has second order convergence [1] by

y(x(n)) = x(n) − [F′(x(n))]−1F(x(n)), n = 0, 1, 2, ... (1)
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where F′(x(n)) is the Jacobian matrix of the function and requires the evaluation of one F, one F′

per iteration. Traub [2] gave suggestion a multi-point schemes are best one to increase the order of
convergence when absent of second derivatives, such methods have given in the literature; see [3–7].
Traub [2] gave a double-step Newton’s type method (3rdTM) having convergence order 3 by two F,
one F′ evaluations

z(x(n)) = y(x(n))− [F′(x(n)))]−1F(y(x(n))), (2)

where y(x(n)) is given in Equation (1). The two-step Newton’s method (4thNR) with convergence
order four

x(n+1) = y(x(n))− [F′(y(x(n)))]−1F(y(x(n))), (3)

was reconstructed by Noor et al. [6], where F and F′ are evaluated two times each. Abad et al. [3]
suggested the Newton type methods to get a 3-step 4th order method (4th ACT), where two evaluations
of F, two F′ are used

x(n+1) = y(x(n))− [F′(z(x(n)))]−1F(y(x(n))). (4)

where z(x(n)) is given in Equation (2). Sharma et al. [7] presented a two-step 4th order method (4thSGS),
where 1 time F and 2 times F′ are evaluated per cycle, and it is given here

x(n+1) = x(n) −
(
− 1

2
I +

9
8
[F′(y1(x(n)))]−1F′(x(n)) +

3
8
[F′(x(n))]−1F′(y1(x(n)))

)
u(x(n)),

y1(x(n)) = x(n) − 2
3

u(x(n)), u(x(n)) = [F′(x(n))]−1F(x(n)).
(5)

Babajee et al. [8] gave a two-step 4th order scheme (4thBCST), where 1 time F, 2 time F′ are evaluated
per cycle and its given below

x(n+1) = x(n) −W(x(n))
(1

2
(F′(x(n)) + F′(y(x(n))))

)−1
F(x(n)),

W(x(n)) = I − 1
4
(τ(x(n))− I) +

3
4
(τ(x(n))− I)2, τ(x(n)) = F′(x(n))−1F′(y(x(n))).

(6)

Abad et al. [3], a different combination was used to get a three-step fifth order method, where three
functions, two Jacobian matrices and their inverses were evaluated, and it is given below

x(n+1) = z(x(n))− [F′(y(x(n)))]−1F(z(x(n))). (7)

Madhu et al. [9] improved double step Newton’s method and also developed its multi-step version are
given below

x(n+1) = y(x(n))− H1(x(n))[F′(x(n))]−1F(y(x(n))),

H1(x(n)) = 2I − τ(x(n)) +
5
4
(τ(x(n))− I)2, τ(x(n)) = [F′(x(n))]−1F′(y(x(n))).

(8)

Literature Survey

Yang [10] implemented an algebraic high compatible positioning via non iterative method
employing direct solution of the double-difference pseudorange equations for solving the GPS
double-difference pseudorange equations if two or more GPS receivers operate simultaneously.
Pachter et al. [11] improved the performance of estimation under high geometric dilution of precision
(GDOP) conditions. In this work, the stochastic modeling algorithm for the GPS pseudorange
equations is derived and compared with the conventional ILS algorithm. In order to achieve optimality
when the trilateration system of equations becomes over-determined, Li et al. [12] proposed an
algorithm which uses the direct linearization technique to reduce the computation time overhead.
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Similarly, to investigate land-based radio positioning, Kwang-Soob et al. [13], mathematically derived
two-dimensional positioning based on GPS Pseudorange linearized state equation in which the
geometry model with respect to triangles are formed using unit-vectors. GPS navigation solution
using iterative least absolute deviation approach has been described by Jwoa et al. [14] based on the
Least Absolute Deviation (LAD) criterion for estimating navigation solutions since the least square
technique is very much sensitive to accuracy and the performance for mitigating GPS multipath errors.
In Awange et al. [15], an alternative closed form GPS pseudo-ranging four-point problem P4P in
matrix form using multi polynomial resultant and Groebner basis has been implemented in algebraic
software such as MATHEMATICA and MAPLE to solve the nonlinear GPS pseudo-ranging four-point
equations. In general, the positioning module of the GNSS receiver use conventional Taylor series
and Bancroft algorithms for solving non-linear pseudorange equations. Elnaggar [16] presented a
modified Taylor series method which linearizes the pseudorange equation by considering four satellite
coordinates and pseudorange values for improving the positioning. On the other hand, Abad et al. [3]
described a solution for GPS pseudorange equations by solving different iterative methods for four
visible satellites.

In this work, we have considered four or more than four visible satellites scenario for linearizing
the pseudorange equations for obtaining better GDOP value and one can notice that the computational
order calculation is not matching with the theoretical order when we increased the number of satellites
more than four, most of the iterative methods does not match with the theoretical order but the new
multistep iterative method described here approximately matches with the order and still preserves
the accuracy. Initially the set of nonlinear problems are solved using various iterative methods and
then the GNSS pseudorange nonlinear equations are solved in the next section. The input GNSS signal
simulated from OROLIA simulator has been given as an input to the software based GNSS receiver to
find the user position. The proposed iterative technique used in the position calculation module of the
GNSS receiver is depicted in Figure 1.

Figure 1. Flowchart of GNSS of positioning.

The input signal is acquired and the number of visible satellites are passed on to the tracking
module to lock the code and carrier phase. Further, in the position calculation module the iterative
methods are used to find the user position. The conventional way of solving GPS pseudorange
equations involve Taylor series and iterative methods which typically take more than 6 iterations if
the number of visible satellites are considered to be 4 but in the proposed work, the user position is
computed within 3 iterations that significantly reduce the computation time in the position calculation
module of the GPS receiver.
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The content of the paper is formulated as follows: a new method of 5th order and their multi-step
scheme with 5 + 3r order, and its convergence analysis are presented in Section 2. In Section 3,
numerical test problems are given and it is theoretical convergence order is analyzed and the results
are validated through MATLAB simulation. The efficiency index and computational efficiency index
are given in Section 4. The GNSS application problem is carried out for new methods and few existing
methods are described in Section 5. Test problems and application problem results are discussed in
Section 6. The final section is concluded with extending this work on solving position calculation of
GNSS multi-constellation receiver.

2. Mathematical Description of New Method and Its Convergence Analysis

2.1. A Two-Step Fifth-Order Method

We present here a new fifth order method (5thPM), derived from combining of Traub’s method
(2) and weight functions. It is given as follows

x(n+1) = y(x(n))− H1(x(n))[F′(x(n))]−1F(y(x(n))),

H1(x(n)) = τ(x(n)) +
1
4
(τ(x(n))− I)2, where τ(x(n)) = [F′(y(x(n)))]−1F′(x(n)), (9)

y(x(n)) is given in Equation (1), and I is the identity matrix by n× n.

2.2. A Multi-Step (5 + 3r)th-Order Method

Further, we improved the 5th order method to 5 + 3r order method by additional one function
per each step. It is shown below

x(n+1) = (5 + 3r)thPM(x(n)) = ψr(x(n)),

ψm(x(n)) = ψm−1(x(n))− H2(x(n))[F′(x(n))]−1F(ψm−1(x(n))),

H2(x(n)) = τ(x(n)) +
1
2
(τ(x(n))− I)2,

ψ0(x(n)) = 5thPM(x(n)), m = 1(1)r.

(10)

Note that, the spacial case r = 0 is the 5thPM method is given in (9). It is noted that the 5thPM is
Cordero et al. [17] they used three arbitrary parameters for obtaining the method. However, we have
used the Taylor series technique to propose the 5thPM method (9). We can say that the method 5thPM
is reconstructed of Cordero et al. [17] method.

2.3. Convergence Analysis

Theorem 1. Let F be sufficiently differentiable in an open convex set D, x(∗) ∈ D, the roots of the problem
F(x) = 0. F′(x) is continuing function and nonsingular in x(∗). Then the method (9) converging to the x(∗)

with convergence order at least five,

ε(n+1) = 5thPM(x(n))− x(∗) = M1ε(n)
5
+ O(ε(n)

6
), ε(n) = x(n) − x(∗)

M1 = 2C4
2 − C2C3C2, where Ch = (1/h!)[F′(x(∗))]−1F(h)(x(∗)), h ≥ 2(1)n.

(11)

Proof. Expanding F and F′ around x(∗) at the point x(n), we obtain

F(x(n)) = F′(x(∗))
[
ε(n) + C2ε(n)

2
+ C3ε(n)

3
+ C4ε(n)

4
+ C5ε(n)

5]
+ O(ε(n)

6
), (12)

and
F′(x(n)) = F′(x(∗))

[
I + 2C2ε(n) + 3C3ε(n)

2
+ 4C4ε(n)

3
+ 5C5ε(n)

4]
+ O(ε(n)

5
). (13)
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We have

[F′(x(n))]−1 = [F′(x(∗))]−1
[

I + X1ε(n) + X2ε(n)
2
+ X3ε(n)

3
+ X4ε(n)

4]
+ O(ε(n)

5
), (14)

here X1 = −2C2, X2 = −3C3 + 4C2
2 , X3 = +6C2C3 − 8C3

2 − 4C4 + 6C3C2 and X4 = −5C5 + 9C2
3 +

8C2C4 + 8C4C2 + 16C4
2 − 12C2

2C3 − 12C3C2
2 − 12C2C3C2.

Then

[F′(x(n))]−1F(x(n)) = ε(n) − C2ε(n)
2
+ (2C2

2 − 2C3)ε
(n)3

+
(
− 3C4 − 4C3

2 + 4C2C3 + 3C3C2

)
ε(n)

4

+
(

6C2
3 + 8C4

2 − 8C2
2C3 − 6C2C3C2 − 6C3C2

2 + 6C2C4 + 4C4C2 − 4C5

)
ε(n)

5
+ O(ε(n)

6
).

(15)

In addition, we have

y(x(n)) = x(∗) + C2ε(n)
2
+
(
− 2C2

2 + 2C3

)
ε(n)

3
+
(

3C4 − 4C2C3 + 4C3
2 − 3C3C2

)
ε(n)

4

+
(
− 6C2

3 − 8C4
2 + 8C2

2C3 + 6C2C3C2 + 6C3C2
2 − 6C2C4 − 4C4C2 + 4C5

)
ε(n)

5
.

(16)

Expanding F and F′ around x(∗) at y(x(n)) in Taylor series respectively given below

F(y(x(n))) = F′(x(∗))
[
(y(x(n))− x(∗)) + C2(y(x(n))− x(∗))2 + C3(y(x(n))− x(∗))3 + ...

]
= F′(x(∗))

[
C2ε(n)

2
+ 2(−C2

2 + C3)ε
(n)3

+
(

3C4 + 5C3
2 − 4C2C3 − 3C3C2

)
ε(n)

4
(17)

+
(
− 6C2

3 − 12C4
2 + 10C2

2C3 + 8C2C3C2 + 6C3C2
2 − 6C2C4 − 4C4C2 + 4C5

)
ε(n)

5]
,

F′(y(x(n))) = F′(x(∗))
[

I + P1ε(n)
2
+ P2ε(n)

3
+ P3ε(n)

4]
+ O(ε(n)

5
), (18)

where
P1 = 2C2

2 , P2 = 4C2C3 − 4C3
2 , P3 = 8C4

2 + 6C2C4 − 8C2
2C3 + 3C3C2

2 − 6C2C3C2.

Using (14) and (18), we have

[F′(y(x(n)))]−1F′(x(n)) = I + 2C2ε(n) +
(
− 2C2

2 + 3C3

)
ε(n)

2
+
(
− 4C2C3 + 4C4

)
ε(n)

3

+
(

5C5 + 2C2
2C3 − 2C2C3C2 − 3C3C2

2 + 4C4
2 − 6C2C4

)
ε(n)

4
+ O(ε(n)

5
).

(19)

Then

H1(x(n)) = I + 2C2ε(n) −
(

C2
2 − 3C3

)
ε(n)

2
+
(
− C2C3 − 2C3

2 + 4C4

)
ε(n)

3
+ O(ε(n)

4
). (20)

Using (14) and (17), we have

[F′(x(n))]−1F(y(x(n))) = C2ε(n)
2
+
(

2C3 − 4C2
2

)
ε(n)

3
+
(

13C3
2 − 8C2C3 − 6C3C2 + 3C4

)
ε(n)

4

+
(
− 6C2

3 − 10C4
2 + 8C2

2C3 + 7C2C3C2 + 6C3C2
2 − 6C2C4 − 4C4C2 + 4C5

)
ε(n)

5
+ O(ε(n)

6
).

(21)

Then

H1(x(n))[F′(x(n))]−1F(y(x(n))) = C2ε(n)
2
+ (2C3 − 2C2

2)ε
(n)3

+ (3C4 + 4C3
2 − 4C2C3 − 3C3C2)ε

(n)4

+
(
− 6C2

3 + 4C5 − 6C2C4 − 4C4C2 − 22C4
2 +

11
2

C2C3C2 + 8C2
2C3 +

39
2

C3C2
2 − 12C2

2C3

)
ε(n)

5
+ O(ε(n)

6
).

(22)
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Using (16) and (22) in (9), thus the error is calculated as

ε(n+1) = (2C4
2 − C2C3C2)ε

(n)5
+ O(ε(n)

6
).

Thus, the above equation conform the fifth-order convergence.

Theorem 2. Let F be sufficiently differentiable in an open convex set D, x(∗) ∈ D, the roots of the problem
F(x) = 0. F′(x) is continuing function and nonsingular in x(∗). Then the method (10) converging to the x(∗)

with convergence order at least 5 + 3r.

Proof. A Taylor expansion of F(ψm−1(x(n))) around x(∗) yields

F(ψm−1(x(n))) = F′(x(∗))
[
(ψm−1(x(n))− x(∗)) + C2(ψm−1(x(n))− x(∗))2 + ...

]
(23)

In addition, let

H2(x(n)) = I + 2C2ε(n) + 3C3ε(n)
2
+
(

2C2C3 − 4C3
2 + 4C4

)
ε(n)

3
+ ... (24)

Using (14) and (24), we have

H2(x(n))F(x(n))−1 =
[

I + M2 ε(n)
3
+ ...

]
[F′(x(∗))]−1, M2 = 2C2C3 − 4C3

2 (25)

Using (23) and (25), we obtain

ψm(x(n))− x(∗) = ψm−1(x(n))− x(∗) − H2(x(n))F(x(n))−1F(ψm−1(x(n)))

= ψm−1(x(n))− x(∗) −
[

I + M2 ε(n)
3
+ ...

] [
(ψm−1(x(n))− x(∗)) + C2(ψm−1(x(n))− x(∗))2 + ...

]
= −M2 ε(n)

3
(ψm−1(x(n))− x(∗)) + ...

(26)

Proceeding by mathematical induction of (26) and using (11), we obtain

ψr(x(n))− x(∗) = M1(−M2)
r (ε(n)

(5+3r)
) + O(ε(n)

(3r+6)
), r ≥ 1.

Thus, the proposed method conform that 5 + 3r order of convergence.

3. Numerical Examples

In this section, numerical results are carried out using MATLAB software. The contribute methods
are used to approximate the solution of some nonlinear system of equations and they are compared
with the results obtained for some existing methods.

errmin = ‖x(n+1) − x(n)‖2 < 10−100. (27)

In addition, approximated computational order of convergence pc is used, see ([18])

pc ≈
log (‖x(n+1) − x(n)‖2/‖x(n) − x(n−1)‖2)

log (‖x(n) − x(n−1)‖2/‖x(n−1) − x(n−2)‖2)
. (28)

The following test problems are considered: Test Problem 1 (TP1) (see [9])

F(x) =

{
x1 + exp(x2)− cos(x2) = 0,
3x1 − x2 − sin(x2) = 0.
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Here initial points are x(0) = (1.5, 2)T , and the solution is x(∗) = (0, 0)T .
Test Problem 2 (TP2) (see [9])

F(x) =


x2x3 + x4(x2 + x3) = 0,
x1x3 + x4(x1 + x3) = 0,
x1x2 + x4(x1 + x2) = 0,
x1x2 + x1x3 + x2x3 = 1.

Here initial points are x(0) = (0.5, 0.5, 0.5,−0.2)T .
The solution is x(∗) ≈ (0.577350, 0.577350, 0.577350,−0.288675)T .
Test Problem 3 (TP3) (see [9])

F(x) =

{
xixi+1 − 1 = 0, i = 1, 2, ...15,
x15x1 − 1 = 0.

Here x(0) = (1.5, 1.5, 1.5, ..., 1.5)T , and x(∗) = (1, 1, 1, ..., 1)T .
Table 1, shows the results for the above test problems, where M represents the number iterations

required for convergence. Here the conventional method 2ndNR is converging with 10, 8, and 9
iterations for TP1, TP2 and TP3 respectively, whereas the proposed method 11thPM, r = 2 is
converging with 4, 3, and 4 iterations for TP1, TP2 and TP3 respectively. All other compared methods
are converging slower than the new 11thPM, r = 2 method. Hence, we conclude that 11thPM, r = 2
method is the efficient one compared with other methods.

Table 1. Numerical results on different iterative methods.

Methods TP1 TP2 TP3
M errmin pc M errmin pc M errmin pc

2nd NR 10 1.03× 10−103 1.99 8 3.92× 10−145 2.00 9 8.96× 10−179 1.99
3rdTM 7 9.65× 10−104 2.99 6 8.87× 10−236 3.01 6 5.79× 10−142 2.99
4th NR 6 5.38× 10−207 3.99 5 2.98× 10−291 4.03 5 8.96× 10−179 3.99

4thBCST 6 5.05× 10−139 3.99 5 3.49× 10−238 4.03 5 1.61× 10−142 3.99
4th ACT 6 2.80× 10−309 3.99 5 3.86× 10−283 4.03 5 2.03× 10−203 3.99
4thSGS 6 2.22× 10−170 3.99 5 8.89× 10−257 4.03 5 6.08× 10−155 3.99

5thPM, r = 0 5 2.41× 10−114 4.85 4 1.46× 10−131 5.30 5 0.00× 10−0 4.99
8thPM, r = 1 5 0.00× 10−0 7.99 4 0.00× 10−0 7.99 4 1.60× 10−301 7.99
11thPM, r = 2 4 2.37× 10−191 10.96 3 1.89× 10−118 11.65 4 0.00× 10−0 10.99

4. Efficiency of the Methods

We utilize the efficiency index (EI), EI = p
1
d ([1]), p represent that the order, d represent the

total functional evaluations. This is the foremost utilized record, and another one we utilize is the
computational efficiency index (CE) characterized as CE = p1/(d+op) ([5]), where op is the operations
cost per cycle. We review that the number of items and remainders that to be solved using LU
factorization ( 1

3 n3 + mn2 − 1
3 n), where n is the system size for m linear systems with the same matrix

of the coefficient.
Table 2 gives the result of EI and CE expression for the methods discussed above. Figure 2 shows

the execution of diverse methods with regard to EI and CE. It is identified that the new methods
perform better than other methods for n ≥ 2. Figure 3 displays the performance of the proposed
(5 + 3r)PM method with respect to EI and CE where r ≥ 1. When the size of system n and step size r
increase then the EI and CE decrease respectively, we noted here, that new methods yield good EI
and CE with n ≤ 6 and r ≤ 3.
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Table 2. Comparison of EI and CE.

Method EI CE

2nd NR 2
1

n+n2 2
1

1
3 n3+2n2+ 2

3 n

3rdTM 3
1

2n+n2 3
1

1
3 n3+3n2+ 5

3 n

4th NR 4
1

2n+2n2 4
1

2
3 n3+4n2+ 4

3 n

4thBCST 4
1

n+2n2 4
1

2
3 n3+5n2+ 1

3 n

4th ACT 4
1

2n+2n2 4
1

2
3 n3+5n2+ 4

3 n

4thSGS 4
1

n+2n2 4
1

2
3 n3+5n2+ 4

3 n

5thPM 5
1

2n+2n2 5
1

2
3 n3+5n2+ 4

3 n

8thPM 8
1

3n+2n2 8
1

2
3 n3+6n2+ 7

3 n

11thPM 11
1

4n+2n2 11
1

2
3 n3+7n2+ 10

3 n
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5. Applications on Global Positioning System (GPS)

5.1. Basics on GPS

The worldwide coverage of all satellites has been provided by the space-based navigation systems
like GPS around the clock to the users. There are minimum of 24 satellites positioned in a circular
orbital constellation with an approximate altitude of 20,000 km above from the earth surface. To solve
the user position from the satellite constellation, the nonlinear pseuorange equations need to be solved
with higher precision. The methods like linearization and point iteration technique are used to solve
the pseudorange equations. Actually, the solutions for these nonlinear equations are in the Cartesian
coordinate system, especially in the ECEF format. However, the Earth is not in the shape of a perfect
sphere, therefore, once the position of the user is calculated, the coordinates have to be changed into
a spherical system that is suitable for latitude, longitude, and altitude form at to integrate the user
position in to a MAP application. The position of an unknown point (user position) in the space can be
determined by measuring the distance from the known position in space i.e., satellite position to the
unknown user position.

In the two-dimensional case of user position determination, as shown in Figure 4, the three
distances xsat1, xsat2, xsat3 are required from the three satellites (s1, s2 and s3) center point of the trace of
a circle. Two possible solutions can be obtained from two satellites with two distances that create at
two points the two circles together will intersect.

Figure 4. Two dimensional user position.

However, from this the user position cannot be determined uniquely. Therefore, one can use
four satellites with four distances to proceed with a three-dimensional case. As shown in Figure 5,
in a three-dimensional case, the centred point in an earth sphere forms an equal-distance trace.
The transmitted ephemeris data of the satellite information gives the orbital information from this,
one can determine the distance of the satellite easily. For more information refer to the literatures [19].

Figure 5. Three dimensional user position ([20]).
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5.2. Measurement of Pseudorange

The common bias is known as pseudorange which is measured by a receiver from the ranges
to GPS satellites. The distance between the user and the satellite geometric range multiplied by the
velocity of light (c) is known as pseudorange (ρi) that is the difference in time required between
the transmitted and the received signal which is calculated on the L1 frequency signal is written as
(see [19])

ρi = Ri + c.∆t− dsat + diono + dtropo + drel + dins (29)

where Ri—Geometric range,
c.∆t—Unknown distance caused by the receiver clock offset,
dsat —Advance of the satellite clock with respect to system time,
diono—Ionospheric delay,
dtropo—Tropospheric delay,
drel—Relativistic delay, and
dins—Instrumental delay.

The various correction models need to be used to minimize the errors, however, in this case,
we assumed that the errors are negligible to some extent. In this case, the pseudorange equations can
be given as

ρi = Ri + c.∆t. (30)

The geometric range can be written as

Ri =
√
(xsati − xuser)2 + (ysati − yuser)2 + (zsati − zuser)2. (31)

where ρi, xsati, ysati, zsati are known and xuser, yuser, zuser, ∆t are unknown, a minimum of four satellites
coordinates are enough to find out the solution that is the user position values for i = 1, 2, 3, 4 as given
by Equation (4) (see [19])

ρ1 =
√
(xsat1 − xuser)2 + (ysat1 − yuser)2 + (zsat1 − zuser)2 + c∆t,

ρ2 =
√
(xsat2 − xuser)2 + (ysat2 − yuser)2 + (zsat2 − zuser)2 + c∆t,

ρ3 =
√
(xsat3 − xuser)2 + (ysat3 − yuser)2 + (zsat3 − zuser)2 + c∆t,

ρ4 =
√
(xsat4 − xuser)2 + (ysat4 − yuser)2 + (zsat4 − zuser)2 + c∆t,

...

ρn =
√
(xsatn − xuser)2 + (ysatn − yuser)2 + (zsatn − zuser)2 + c∆t.

(32)

5.3. Solving Nonlinear Pseudorange Equations

In simplified form, the pseudorange equations can be written in general for solving the above
system of equations as

ρi =
√
(xsati − xuser)2 + (ysati − yuser)2 + (zsati − zuser)2 + buser, i = 1(1)n (33)

where buser is the user clock bias error expressed in distance, by differentiating the above equation,
we have

δρi =
(xsati − xuser)δxuser + (ysati − yuser)δyuser + (zsati − zuser)δzuser

ρi − buser
+ δbuser. (34)



Sensors 2020, 20, 5976 11 of 16

The variables xuser, yuser, zuser, buser are termed as known quantities and the initialization values of
these variables can be assumed as center of the earth. A new set of values δxuser, δyuser, δzuser, δbuser

can be calculated from the initial values. The new set of values calculated from the previous step are
utilized to add with the present values xuser, yuser, zuser, buser for finding next new set of solutions.
To get a desired solution as the final value of δxuser, δyuser, δzuser, δbuser, the procedure is continued
until the absolute values of δxuser, δyuser, δzuser, δbuser are obtained very small within the predefined
values. The above procedure is generally known as linearization of iteration method of fixed point.
The expression of above equation becomes a set of linear equations that can be written in matrix form
as (see [19]) 

δρ1

δρ2

δρ3

δρ4

 =


α11 α12 α13 1
α21 α22 α23 1
α31 α32 α33 1
α41 α42 α43 1




δxuser

δyuser

δzuser

δbuser

 , (35)

where
αi1 =

xsati − xuser

ρi − buser
, αi2 =

ysati − yuser

ρi − buser
, αi3 =

zsati − zuser

ρi − buser
. (36)

The solution of (35) is 
δxuser

δyuser

δzuser

δbuser

 =


α11 α12 α13 1
α21 α22 α23 1
α31 α32 α33 1
α41 α42 α43 1


−1

δρ1

δρ2

δρ3

δρ4

 . (37)

This process noticeably does not give the required solutions straightforwardly. In any case, the desired
results can be obtained from it. In order to determine the required user position solution, an iterative
way could be utilized repetitively to solve this technique. A measure is often used to determine
whether the desired result is achieved, and this quantity can be defined as (see [19])

δv =
√

δx2
user + δy2

user + δz2
user + δb2

user, (38)

where δv is lower than a certain predetermined threshold, the iteration will stop. Sometimes, the clock
bias buser is not included in (38). In this work, we use the norm ‖x(k+1) − x(k)‖2 for the stopping
criterion because it is stronger than (38). In this GNSS problem, we set the stopping criteria in such a
way that the error errmin = ‖x(k+1) − x(k)‖2 < 10−10 should be less than the predefined value within
the number of iterations(‘M’) required for reaching the minimum residual value.

6. Results and Discussion

The test problems are solved using the above-mentioned iterative methods. The second order
Newton method (2ndNR) takes longer iteration to converge the error when compared to all methods.
The methods like 3rdTM, 4thNR, 4thBCST, 4th ACT, and 4thSGS converge within five or six iterations to
solve the test problems with lower bound error. Finally testing with proposed (5thPM, 8thPM, 11thPM)
methods achieved the solution within 4 iterations. So, this could be the optimal choice for solving
non-linear equations.

Next, the iterative methods are tested for solving GPS pseudo-range equations. The satellite
coordinates and the pseudorange information are collected from the OroIia GNSS simulator in which
the location has been set as ETS, Montreal as shown in Figure 6 .
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(a) (b)

Figure 6. (a) Coordinates used in simulation (Map with skyplot). (b) Coordinates used in simulation
(Map with spectrum of GPS signal).

To carry out the problem of finding the user position, the following coordinates of satellites and its
pseudorange values are obtained from the Orolia GNSS simulator workbench installed in LASSENA
lab is given in Table 3.

Table 3. Coordinates of observed satellite and pseudorange.

X Y Z ρ

5,731,058.70224 14,489,833.1300 21,212,629.60495 20,626,320.6953
14,647,763.94672 6,275,922.21243 21,269,863.31368 22,047,954.0019
2,505,594.09552 20,672,767.43360 16,516,258.99994 21,238,160.1101
21,359,664.8576 12,371,174.84498 10,076,109.65011 252,188.013893

15,520,711.16562 1,047,695.53474 21,458,920.6173 23,317,558.30921
12,374,316.48857 23,533,071.9923 1,008,701.68425 23,125,967.55620
14,253,263.56829 4,103,289.05642 21,789,614.16879 23,747,495.1073
15,759,895.08320 5,849,736.59321 20,805,729.39674 24,788,995.2855

In Tables 4–6 we compare the proposed method with other iterative methods used in GPS receiver,
where M represents the number iterations required for convergence. We recall that the coordinates of
the center of the Earth and buser = 0 gives x(0) = (0, 0, 0)T is usually used as starting value. We denote
x(∗) = (1266370.3895,−4279711.6757, 4446203.8082)T as the solution of the nonlinear system which
gives the user position on the Earth. Thus, we conclude that 5thPM method is the most efficient
method compared to other methods. In general, our proposed scheme converges in lesser iterations
than other tested methods with least error and less cpu time. The results indicate that higher-order
multi-point iterative methods are simple, fast, and more efficient than other compared methods.

Table 4. Comparison of iterative methods for GPS problem with 4 satellites scenario.

Method M ‖x(k−1)− x(k−2)‖2 ‖x(k)− x(k−1)‖2 ‖x(k+1)− x(k)‖2 CPU(sec) pc GDOP

2nd NR 6 0.2271 × 100 1.9087 × 10−9 1.3480 × 10−25 0.695 2.00
3rdTM 4 2.6206 × 104 0.0495 × 100 3.3212 × 10−19 0.774 3.00
4th NR 4 2.4777 × 103 1.9087 × 10−9 2.4095 × 10−32 0.772 2.09

4thBCST 6 21.1858 × 100 3.3216 × 10−5 8.1651 × 10−17 1.137 2.00 0.5265
4th ACT 4 1.9374 × 103 7.1420 × 10−10 2.7733 × 10−32 0.903 2.06
4thSGS 6 21.3566 × 100 3.3754 × 10−5 8.4317 × 10−17 1.157 2.00
5thPM 3 6.2946 × 106 3.3716 × 103 1.6324 × 10−12 0.853 4.23
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Table 5. Comparison of iterative methods for GPS problem with 5 satellites scenario.

Method M ‖x(k−1)− x(k−2)‖2 ‖x(k)− x(k−1)‖2 ‖x(k+1)− x(k)‖2 CPU(sec) pc GDOP

2nd NR 6 0.2577× 100 2.8677× 10−6 1.3444×10−11 0.795 2.00
3rdTM 5 0.3489× 100 2.0554×10−6 9.6836×10−12 0.974 2.96
4th NR 4 2.5209×103 2.8677 ×10−6 6.3505× 10−17 0.838 2.27

4thBCST 7 3.6589× 10−4 2.6656× 10−9 1.6758× 10−14 1.406 2.00 0.4654
4th ACT 4 1.9676×103 1.0730× 10−7 2.4238× 10−18 1.014 2.12
4thSGS 7 2.8345× 10−4 1.6174× 10−9 7.6224× 10−15 1.460 2.00
5thPM 3 6.3604× 106 2.6147× 103 1.2351× 10−11 0.754 4.23

Table 6. Comparison of iterative methods for GPS problem with 6 satellites scenario.

Method M ‖x(k−1)− x(k−2)‖2 ‖x(k)− x(k−1)‖2 ‖x(k+1)− x(k)‖2 CPU(sec) pc GDOP

2nd NR 6 0.4495× 100 1.4550× 10−8 1.4317× 10−16 0.866 2.00
3rdTM 4 7.8259× 103 0.0064× 100 5.6447× 10−11 0.957 2.85
4th NR 4 2.3459× 103 1.4550× 10−8 9.1394× 10−26 0.954 2.23

4thBCST 6 54.5307× 100 4.8575× 10−4 5.6948× 10−12 1.413 1.99 0.4075
4th ACT 4 2.0707× 103 1.0053× 10−8 5.6676× 10−26 1.107 2.10
4thSGS 6 54.7063× 100 4.8898× 10−4 4.2930× 10−12 1.428 1.99
5thPM 3 6.3604× 106 2.5886× 103 3.3911× 10−11 0.831 4.09

In addition, the initial points x(0) = (106, 106, 106)T and x(0) = (−104,−104,−104)T are used
here to find the user position. For the first initial point, the user position is found exterior of the
space solution, that is x(d) = (785566.9552, 8099956.9218,−19562198.7778)T . For the second point,
it converges to the user position with six iterations whereas centre of the earth point converges
within three iterations. Hence, centre of earth is always efficient one to use as initial point to find the
user position.

The available satellites are kept as eight; out of these, initially, we have considered only four
satellites for finding the user position. From the comparison results plotted in Figure 7, it has been
observed that the 5th order PM method converged quickly and took les computation with fewer
iterations when compared to the other methods. Similarly, the error is also computed for all other
iterative methods, while finding the solution for test problems, the 5th order, 8th order and 11th order
PM methods almost converged within fourth or fifth iterations with lesser computation time; that is
the reason we have chosen only 5thPM only and later two higher order methods are not included in
solving GPS pseudo range equations.

2nd NR 3rd TM 4th NR 4th BCST 4th ACT 4th SGS 5th PM
0
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8
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lu

e
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Figure 7. Comparison of various iterative methods.

We increased the satellites count from four to eight. The GDOP value is computed for three cases,
among all the methods, 5th order proposed method converges within three iterations with least error
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of 1.6324× 10−12. The Fuzzy 2 based satellite selection algorithm [21] is used here for selecting the best
‘n’ combinations of visible satellites. The GDOP value remains same as 0.40563 after increasing the
satellites count beyond six. Moreover, for different inputs of all visible satellites, the user position is
computed. For instance, from 6 to 8 satellites are considered for computing the user position, the family
of iterative methods yield very good performance in terms of lesser iterations and computation time
when compared to the traditional Taylor series and Bancraft methods.

The comparison of position fix error for iterative method mentioned in the open source [22] and
the proposed method for each iteration is calculated as shown in Tables 7–9 and it has been observed
that the error in each iteration for four, five and six satellite scenarios, the proposed method converged
quickly within three iterations.

Table 7. Results of error calculation in 5thPM and GPS tool box [22] with four satellites scenario.

Iterative Method (GPS Tool Box) Proposed Method (5thPM)

M Error M Error

1 6.3675× 106 1 6.2946× 106

2 2.0978× 105 2 3.3716× 103

3 1.2709× 103 3 1.6324× 10−12

4 0.0460
5 2.8649× 10−8

6 7.7721× 10−8

7 0

Table 8. Results of error calculation in 5thPM and GPS tool box [22] with five satellites scenario.

Iterative Method (GPS Tool Box) Proposed Method (5thPM)

M Error M Error

1 1.3363× 106 1 6.3604× 106

2 6.7220× 104 2 2.6147× 103

3 168.6654 3 1.2351× 10−11

4 0.0011
5 1.7198× 10−8

6 1.4639× 10−8

7 1.1727× 10−8

8 1.4233× 10−8

9 2.7819× 10−8

10 0

Table 9. Results of error calculation in 5thPM and GPS tool box [22] with six satellites scenario.

Iterative Method (GPS Tool Box) Proposed Method (5thPM)

M Error M Error

1 1.9700× 106 1 6.3604× 106

2 1.1879× 104 2 2.5886× 103

3 441.8016 3 3.3911× 10−11

4 0.0064
5 2.0352× 10−8

6 1.0844× 10−8

7 1.9246× 10−8

8 9.4634× 10−9

9 1.7549× 10−8

10 3.0064× 10−9

11 5.3703× 10−8

12 0
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7. Concluding Remarks

In the foregoing article, we have analyzed the order of convergence and numerical results of new
two-step fifth and multi-step iterative methods. Consequently, we are getting a better results than other
existing discussed methods. The most useful benefit of the new scheme as they don’t utilize second
order Frechet derivative. For practical applications, it is found that all the iterative methods converge to
the user position measured from the center of the earth. Among the methods tested, 5th PM method is
converged to the user position with a smaller number of iterations and having less CPU time and error
for solving both numerical problems and GNSS pseudorange equations. In the future, it is possible
implement the position calculation module with multi constellation GNSS receivers that employ GPS,
GLONASS, GALELIO, BEIDOU, QZSS and IRNSS satellite navigation systems. At present more
than 70 satellites are already in view and once all major four navigation systems (BeiDou + Galileo +
GLONASS + GPS) are put in to orbit then more than 120 satellites will be available to the users. At any
point of time an average around 30 satellites are visible from most locations around the world. If any
one of the navigation systems fails then we rely on other satellite navigation systems. The recently
developed GNSS receivers, a maximum of 54 channels can be allotted to different satellite navigation
systems. The number of visible satellites can be chosen from the signals of opportunity then one can
select more than four visible satellites (mixed GNSS Satellites) for computing better GDOP values
and thus by using our proposed higher-order multi-point iterative methods, the user position can be
determined more accurately with a lesser number of iterations in lower computation time.
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