
sensors

Article

A Framework for Off-Line Operation of Smart and
Traditional Devices of IoT Services

Chung-Yen Wu and Kuo-Hsuan Huang *

Department of Computer Science and Engineering, Tatung University, Taipei 104, Taiwan;
d10506001@ms.ttu.edu.tw
* Correspondence: khhuang@gm.ttu.edu.tw

Received: 15 September 2020; Accepted: 21 October 2020; Published: 23 October 2020
����������
�������

Abstract: Recently, with the continuous evolution of information technology, various products such as
Building Information, Internet of Things (IoT), Big Data, Cloud Computing and Machine Learning
have been developed and have created a lifestyle change. A smart Internet of Things (IoT) system is
formed by combining the communication capabilities of the internet with control, monitoring and
identification services to integrate people, things and objects. However, in some IoT environments
that have a weak signal, such as remote areas, warehouses or basements, the network may become
unstable, meaning that the IoT system is unable to provide efficient services. This paper therefore
presents a framework that ensures the reliability of IoT system services so that even if the IoT system
cannot connect to the network, the system can provide the services offline. To avoid increasing the
installation cost or replacing existing traditional devices with modern smart devices, this framework
can also be used to control traditional devices. The system operation is convenient because users
can operate all their smart and traditional devices under the IoT system through voice commands
and/or a handheld microcontroller, thus reducing the manual operation of the user. The framework
proposed in this paper can be applied to various smart scenarios, including smart warehouses,
smart restaurants, smart homes, smart farms and smart factories, to improve people’s quality of life
and convenience, and create a humane and comfortable smart living environment.

Keywords: off-line control; MQTT; smart and traditional devices; internet of things

1. Introduction

With the advancements in wireless network technology and the development of the Internet
of Things (IoT), many devices can now connect to a network to communicate with each other
and provide services. The sensors in the IoT system can be used to integrate smartphones,
tablets and microcontrollers and to provide various applications in the home and business fields [1–5].
The device-to-device connection enables automatic control to improve people’s quality of life. With the
emergence of Industry 4.0, IoT, big data, cloud computing, machine learning and artificial intelligence
can effectively contribute to the industrial field [6,7]. Various devices in the industrial field are connected
to the IoT through wireless sensor networks to produce different applications. These applications have
significantly improved resource management, personnel monitoring and equipment operation in the
industry. According to Statista’s [8] research institutions, there will be 31 billion connected devices by
2020 and 75 billion devices by 2025, which shows that the overall ecological development is rapid.
While many IoT service platforms [9–11] have been developed to integrate these devices in recent
years, most of them are nonstandard service and management architectures, which have potential
security issues.

The network is crucial to the effectiveness of an IoT system’s services. If the network cannot
be successfully connected, the functions of the IoT device will fail. To ensure the IoT system will

Sensors 2020, 20, 6012; doi:10.3390/s20216012 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/20/21/6012?type=check_update&version=1
http://dx.doi.org/10.3390/s20216012
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 6012 2 of 18

operate continuously even in places where the network is unstable (e.g., farms, warehouses, dams and
forests), this research introduces a framework for edge computing [12]. However, the huge amount
of calculations involved in edge computing cannot be used in IoT devices with a low calculation
capacity and storage space and large power consumption. Therefore, in a smart home, smart grid or
smart city environment, the local device transmits data to the gateway via wireless communication,
i.e., edge computing implemented through the computing capabilities of gateways [13–18]. In addition,
the introduction of boundary computing into the IoT system increases the reliability of the IoT system.

This paper also introduces voice services to control local devices and increase the convenience and
usability of the IoT system, which includes smart and traditional devices. Observing [19–21], the use of
gesture and voice recognition technologies has increased. The feedback of sound and vision allows
users to feel that they are no longer just operating products unilaterally, but that they are also enjoying
the products. For visually impaired people [22] or people with reduced mobility [23], voice control
can help in the operation of the system. Therefore, in the future, gesture recognition and voice control
technologies will be more widely used in humanised interfaces to increase the convenience of the
IoT system.

In conclusion, the contributions of this paper are summarised as follows:

(1) We proposed a framework for edge computing to support operations in the IoT environment,
including traditional devices and smart devices. Then, we used the data aggregation feature of
the gateway to perform edge computing and output the instructions corresponding to the device.

(2) We performed device authentication and authorisation in an offline environment to ensure
system security.

(3) We provided a method to synchronise the status of devices in a group to prevent repeated
operations of devices, and provided use cases for smart hotels and smart factories.

The remainder of this paper is organised as follows: Section 2 introduces the relevant background
knowledge and a review of the related research. Section 3 introduces the modular framework. Section 4
displays the data response time of the system. Section 5 introduces the scenarios and choice of modular
frameworks that the framework can apply. Section 6 presents the research results and discusses future
research directions.

2. Related Work

IoT devices are computing devices that connect wirelessly to the network to interact and exchange
data, such as electronic products, software, sensors and actuators; these devices can be embedded into
vehicles, industrial machines, agricultural tools and home appliances. Due to the convenience brought
by the cloud (i.e., a server that does not require management and maintenance, and has unlimited
storage space, security management and device identification), IoT applications are often integrated
with cloud services [1–3]. However, when these IoT devices lose internet connectivity for some reason,
such as information security attack or network disconnect, they cannot access cloud services and, thus,
local services cannot be used. Therefore, some IoT application services are moved to the local device
so that essential features can still be accessed.

However, most devices in the IoT system are limited in terms of computing resources, memory,
data storage space and transfer speed. As the transmission and application are the most critical
core values of the IoT system, some services in the cloud are moved to the IoT device to perform
essential features; however, this requires a lot of computing capability. For example, moving the
recognition model, action model and calculation function into an anti-theft camera that uses artificial
intelligence (AI) face recognition will require a huge amount of power consumption. Therefore,
a device with higher computing capability is required to assist with computing-related models. As the
functions of the IoT system have become increasingly complex, Zhong et al. [24] transferred some
of the data processing functions, such as the local sensors, actuators and cloud, to the gateway.
Services that handle the communication between the local end and the cloud can complete the

Sensors 2020, 20, 6012 3 of 18

monitoring and management of the IoT system and analyse and process the collected and stored data.
In an IoT scenario, edge computing provides computational power, secures access to the edge data,
reduces latency for time-sensitive applications, supports performance in low-bandwidth environments
and eases overall network congestion [25]. In this way, merging multiple end devices into a single
module can significantly reduce the calculation amount of the end device, and edge computing can be
implemented [6,7,13–18].

In past research, edge computing was implemented to ensure the reliability in local, and the
communication latency reduced [6,7,13–18]. However, in these works of literature, most of them are
assisted by an additional device server; this is an additional overhead to the hardware cost and should
consider whether it is necessary, for example, Smart Farm, where communication of the network is
poor. To ensure the reliability of Pesticide Spray Drone [26] to location, another device server that
performs boundary operations is set-up. However, most end devices in Smart Farm are relatively
simple (detecting temperature, humidity and brightness; switch on or off the water valves, etc.),
i.e., it does not require complex computing. Therefore, this study moves the essential functions of IoT
applications to the gateway. Compared with [6,7,13,18] and this study, it is feasible to use the more
substantial computing power of the gateway to perform edge computing to assist other end devices to
compute. Then, edge devices can not only transmit data but also preprocess data and analyse real-time
data, which can support edge computing and provide logic control services.

To bring technology into people’s lives, the original business model has been changed [27,28].
The new business models focus on obtaining relevant usage data, delivering value and generating
innovative and differentiated value, and they aim to connect data with physical devices to better
control and understand each device. This method allows these devices to share data, improve processes
and drive growth. Although the transformation and digitisation of the industrial chain has made
the management of the industry more convenient, allowing consumers (users) to experience the
convenience and progress brought by technology, most traditional devices are unable to connect to the
network via wire or wirelessly for data exchange [29]. However, it is not feasible for businesses to
purchase all new devices and equipment for a transformation. Therefore, previous research [2,4,14]
has used interfaces to receive instructions or collect user data to overcome the bottlenecks caused by
traditional devices. Interfaces can maintain the communication (control) mode between the device
and the controller, and the controller can receive control from a network request or instruction to take
control of the traditional devices.

The IoT devices communicate in local, and effective messaging protocols include Message Queuing
Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), Advanced Message Queuing
Protocol (AMQP) and HyperText Transfer Protocol (HTTP). As different messaging protocols have
different rates of power consumption, communication distance and security, they are applied in different
scenarios. The architecture mentioned in this paper can be used with both smart-device controllers
(SDCs) and traditional-device controllers (TDCs), which include infrared emitters (IR-emitters) and
relay device controllers. When these multiple devices communicate, they take up some of the network
bandwidth, which can be expensive. A comparison of CoAP and MQTT in the existing literature [30]
showed that CoAP has better network overhead, scalability and latency. However, considering the
maturity, one-to-many communication environment, and under congested or poorly reliable networks,
MQTT based on TCP has become a crucial decision factor. This paper uses MQTT for communication
between devices, which can perform one-to-many communication. MQTT based on TCP is more
reliable than CoAP, and because its data packet transmission is small, and because of the low local
power consumption, it is suitable to use.

As the IoT system can be used to control several devices, there are specific requirements for
device security management. A forged controller controls the smart devices and then obtains the
device’s resources. Thus, it is necessary to verify the control source and control target. Gope et al. [31]
introduced a lightweight authentication and authorisation mechanism to protect the local device
from physical and cloning attacks and to guarantee the anonymity of the device. Although [31]

Sensors 2020, 20, 6012 4 of 18

shows excellent performance and security, for existing traditional devices, there is no network or
computing capability, and it is not possible to independently complete authentication and authorisation
mechanisms. This paper uses the controller device’s authentication and authorisation mechanism to
allow the system to register with the gateway during initialisation. When the smart controller uses
MQTT [32] to communicate with traditional controllers, devices that are not registered in the gateway
are unable to obtain messages, ensuring minimal security and flexibility.

This article presents a framework that allows the IoT system to include essential features when
there is no internet access. This architecture can also perform authentication and authorisation when
there is no network, to ensure system security. A voice module is added to this architecture to increase
the operability of the entire system.

3. Proposed Framework

Based on the needs of the establishment of low-cost IoT services and off-line operations, this study
proposes a new IoT framework that can realise offline operations without the need to replace existing
equipment. Digital transformation is suitable for traditional industries in various industries.

Figure 1 shows the proposed modular framework, which can provide a low-cost digital
transformation and voice and offline operation of the IoT system. The framework can be divided into
five modules: Gateway, Voice, SDC, IR-emitter and Relay-Device Controller. Figure 2 shows the default
architecture. The end devices in Figure 2 are controlled by the SDC and the TDC, and the instructions
of the controller are parsed by the gateway and passed through MQTT transmission. This architecture
simplifies the system: When a new end device is added, only the relevant control instructions of the
device need to be added to the gateway, and each controller does not need to be updated individually,
thus significantly reducing the complexity of the system update.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 17

mechanisms. This paper uses the controller device’s authentication and authorisation mechanism to

allow the system to register with the gateway during initialisation. When the smart controller uses

MQTT [32] to communicate with traditional controllers, devices that are not registered in the gateway

are unable to obtain messages, ensuring minimal security and flexibility.

This article presents a framework that allows the IoT system to include essential features when

there is no internet access. This architecture can also perform authentication and authorisation when

there is no network, to ensure system security. A voice module is added to this architecture to

increase the operability of the entire system.

3. Proposed Framework

Based on the needs of the establishment of low-cost IoT services and off-line operations, this

study proposes a new IoT framework that can realise offline operations without the need to replace

existing equipment. Digital transformation is suitable for traditional industries in various industries.

Figure 1 shows the proposed modular framework, which can provide a low-cost digital

transformation and voice and offline operation of the IoT system. The framework can be divided into

five modules: Gateway, Voice, SDC, IR-emitter and Relay-Device Controller. Figure 2 shows the

default architecture. The end devices in Figure 2 are controlled by the SDC and the TDC, and the

instructions of the controller are parsed by the gateway and passed through MQTT transmission.

This architecture simplifies the system: When a new end device is added, only the relevant control

instructions of the device need to be added to the gateway, and each controller does not need to be

updated individually, thus significantly reducing the complexity of the system update.

Figure 1. The proposed framework.

Figure 2. Default system architecture.

Figure 1. The proposed framework.

Sensors 2020, 20, 6012 5 of 18

Sensors 2020, 20, x FOR PEER REVIEW 4 of 17

mechanisms. This paper uses the controller device’s authentication and authorisation mechanism to

allow the system to register with the gateway during initialisation. When the smart controller uses

MQTT [32] to communicate with traditional controllers, devices that are not registered in the gateway

are unable to obtain messages, ensuring minimal security and flexibility.

This article presents a framework that allows the IoT system to include essential features when

there is no internet access. This architecture can also perform authentication and authorisation when

there is no network, to ensure system security. A voice module is added to this architecture to

increase the operability of the entire system.

3. Proposed Framework

Based on the needs of the establishment of low-cost IoT services and off-line operations, this

study proposes a new IoT framework that can realise offline operations without the need to replace

existing equipment. Digital transformation is suitable for traditional industries in various industries.

Figure 1 shows the proposed modular framework, which can provide a low-cost digital

transformation and voice and offline operation of the IoT system. The framework can be divided into

five modules: Gateway, Voice, SDC, IR-emitter and Relay-Device Controller. Figure 2 shows the

default architecture. The end devices in Figure 2 are controlled by the SDC and the TDC, and the

instructions of the controller are parsed by the gateway and passed through MQTT transmission.

This architecture simplifies the system: When a new end device is added, only the relevant control

instructions of the device need to be added to the gateway, and each controller does not need to be

updated individually, thus significantly reducing the complexity of the system update.

Figure 1. The proposed framework.

Figure 2. Default system architecture. Figure 2. Default system architecture.

In this framework, to prevent unauthorised external devices from efficiently controlling other
internal devices, the device controller needs to be authorised via an authentication mechanism.
The framework also needs to pay attention to the control of multiple controllers because of the
synchronisation between controllers. Therefore, the gateway is responsible for registering the device,
performing authentication and authorisation, handling user requests, publishing instructions and
determining the device status in the system design.

The following sections describe the functions of each module and the algorithms for identity
verification and status synchronisation in more detail. Note that module functions can be swapped
according to the user’s needs and the environment. An IoT system that is suitable for each industry
has been deployed.

3.1. Gateway Module

As a primary communication network for end devices in local and cloud servers, the gateway
provides services such as data aggregation, pre-processing, offloading and control feedback. As the
gateway has a mechanism for data aggregation, it proceeds with data processing and analysis.
As described above, the gateway module performs most of the system functions, including the MQTT
broker messages, device registration, authentication and authorisation, and user request analysis.
The gateway analyses the user’s request and gives feedback (device instruction) when it is offline or
connected to the foreign network. When a gateway has a foreign network, it determines whether the
end device needs cloud services, such as AI, sending an email, sending text messages, accessing a
database, image analysis and transmitting large-scale data. If necessary, the gateway can request
related cloud services for processing. The gateway stores the items that need to be processed by the
cloud service when offline and requests the cloud service again when the network recovers.

This centralised management method is convenient for future system expansion and maintenance
and allows the SDC to control the smart device without knowing the device instructions in detail. If not
reducing the gateway’s original role that relays internet to the place, another device can be deployed
to replace the role of the gateway module. However, the gateway has additional computing power.
This research uses the gateway as a centralised component that connects devices, analyses user requests
and transmits instructions, reducing the cost of system deployment. The SDC publishes user request
messages, including button messages, rotation messages and voice messages. The gateway analyses
the message to determine what kind of device instructions the device wants to control, and publishes
the instructions. If new devices are added in the future, the user need only update the gateway code,

Sensors 2020, 20, 6012 6 of 18

thus reducing the complexity of the system’s update code. The following are the module features of
the gateway:

• MQTT Broker: In this module, the MQTT protocol [32] transmits the published messages from
the controller to the gateway, and the gateway processes the received messages to determine the
corresponding device instructions. The gateway analyses, processes and publishes all messages.
Using this method, the system can manage and realise the function of operation centrally and
offline. All data and messages are transmitted to the gateway. Thus, if there is a need to connect to
an external network, the gateway connects to an external cloud service. Such an architecture can
ensure local service reliability, and the system can perform local control even without an external
networking function.

• Device Register: This is an essential requirement for the IoT system. To prevent the devices
in the system from being controlled by unauthorised controllers and avoid impersonation
attacks, authentication and authorisation mechanisms are used. As the instruction judgment
and processing of the system are parsed and published by the gateway, each device connected
to the gateway needs to register its device identity. Similarly, when the system is initialised,
each controller connected to the gateway needs to be registered with the gateway (Figure 3).
The gateway generates a 2048-bit RSA key pair and an X.509 certificate using the generated public
key. The gateway defines a set of policies to allow or deny access control, such as publishing or
subscribing to MQTT or a device state. Then, the device certificate, 2048-bit RSA key pair and
gateway certificate as a root Certificate Authority (CA) are stored in the controller for subsequent
authentication and authorisation by the system.

• Authentication and Authorisation: Before each registered controller publishes a message, it needs
to connect to the gateway’s MQTT Broker. A controller registers to the gateway and provides the
device certificate, private key and gateway certificate, which are used for mutual authentication
of the transport layer security (TLS) and the gateway. The gateway first verifies its identity before
identifying whether it meets the requirements of the match policy to obtain a temporary token.
If the controller’s credentials pass the authentication requirements and have the authority to
obtain a temporary token, the gateway recognises the controller as a member of the local device
and authorises it by sending a temporary token.

• User’s Request: After receiving the user’s control request from the controller, the gateway analyses
the request—including which devices to control—the device settings, the device instructions and
the changed device status values (e.g., fan volume, setting value of air conditioning and bulb
brightness). Figure 4 shows the flowchart. After receiving the user’s request, the gateway first
analyses the device to obtain the device status stored in the gateway. If the user wants to control
the device in a controllable state (Algorithm 1), the gateway analyses the corresponding actions of
the button or voice commands, for example, turning the button to adjust the strength of the device
or recognising the voice stating ‘turn off’ to turn off the device. The gateway changes the state
value of the device and analyses the related control instructions of the device, such as raw infrared
data for turning the TV on and off, and RESTful API instructions to adjust the strength of the air
conditioner. Finally, the gateway publishes the relevant instructions and device status information.

• Device Status: The gateway needs to record the status of all the devices on the local. This paper
uses JSON files to store the status of the devices in the gateway. Each field has the relevant
properties of the corresponding device. For example, electric fans have multiple attributes,
including switch on or off, wind force, position, whether to swing and control type. For the
gateway to process the logic control (Algorithm 2) when processing user requests, the JSON files
store all the controlled device information in the system, such as the device type, current setting
values, device status that the controller controls and the last received instruction, as shown in
Figure 5. Then, the SDC obtains a copy file of the device status and displays information for the
device status.

Sensors 2020, 20, 6012 7 of 18

Sensors 2020, 20, x FOR PEER REVIEW 6 of 17

gateway certificate as a root Certificate Authority (CA) are stored in the controller for subsequent

authentication and authorisation by the system.

Figure 3. The flowchart of device registration.

 Authentication and Authorisation: Before each registered controller publishes a message, it

needs to connect to the gateway’s MQTT Broker. A controller registers to the gateway and

provides the device certificate, private key and gateway certificate, which are used for mutual

authentication of the transport layer security (TLS) and the gateway. The gateway first verifies

its identity before identifying whether it meets the requirements of the match policy to obtain a

temporary token. If the controller’s credentials pass the authentication requirements and have

the authority to obtain a temporary token, the gateway recognises the controller as a member of

the local device and authorises it by sending a temporary token.

 User’s Request: After receiving the user’s control request from the controller, the gateway

analyses the request—including which devices to control—the device settings, the device

instructions and the changed device status values (e.g., fan volume, setting value of air

conditioning and bulb brightness). Figure 4 shows the flowchart. After receiving the user’s

request, the gateway first analyses the device to obtain the device status stored in the gateway.

If the user wants to control the device in a controllable state (Algorithm 1), the gateway analyses

the corresponding actions of the button or voice commands, for example, turning the button to

adjust the strength of the device or recognising the voice stating ‘turn off’ to turn off the device.

The gateway changes the state value of the device and analyses the related control instructions

of the device, such as raw infrared data for turning the TV on and off, and RESTful API

instructions to adjust the strength of the air conditioner. Finally, the gateway publishes the

relevant instructions and device status information.

Figure 4. The flowchart of the analysis of user request.

Figure 3. The flowchart of device registration.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 17

gateway certificate as a root Certificate Authority (CA) are stored in the controller for subsequent

authentication and authorisation by the system.

Figure 3. The flowchart of device registration.

 Authentication and Authorisation: Before each registered controller publishes a message, it

needs to connect to the gateway’s MQTT Broker. A controller registers to the gateway and

provides the device certificate, private key and gateway certificate, which are used for mutual

authentication of the transport layer security (TLS) and the gateway. The gateway first verifies

its identity before identifying whether it meets the requirements of the match policy to obtain a

temporary token. If the controller’s credentials pass the authentication requirements and have

the authority to obtain a temporary token, the gateway recognises the controller as a member of

the local device and authorises it by sending a temporary token.

 User’s Request: After receiving the user’s control request from the controller, the gateway

analyses the request—including which devices to control—the device settings, the device

instructions and the changed device status values (e.g., fan volume, setting value of air

conditioning and bulb brightness). Figure 4 shows the flowchart. After receiving the user’s

request, the gateway first analyses the device to obtain the device status stored in the gateway.

If the user wants to control the device in a controllable state (Algorithm 1), the gateway analyses

the corresponding actions of the button or voice commands, for example, turning the button to

adjust the strength of the device or recognising the voice stating ‘turn off’ to turn off the device.

The gateway changes the state value of the device and analyses the related control instructions

of the device, such as raw infrared data for turning the TV on and off, and RESTful API

instructions to adjust the strength of the air conditioner. Finally, the gateway publishes the

relevant instructions and device status information.

Figure 4. The flowchart of the analysis of user request.
Figure 4. The flowchart of the analysis of user request.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 17

Algorithm 1. Device’s Controllable

Begin: Device’s name

1: controllable = the “control” field of device in JSONstate

2: if controllable is True then

3: return True

4: else

5: return False

6: end if

7: END

 Device Status: The gateway needs to record the status of all the devices on the local. This paper

uses JSON files to store the status of the devices in the gateway. Each field has the relevant

properties of the corresponding device. For example, electric fans have multiple attributes,

including switch on or off, wind force, position, whether to swing and control type. For the

gateway to process the logic control (Algorithm 2) when processing user requests, the JSON files

store all the controlled device information in the system, such as the device type, current setting

values, device status that the controller controls and the last received instruction, as shown in

Figure 5. Then, the SDC obtains a copy file of the device status and displays information for the

device status.

Figure 5. Device status.

Some environments have several controllers. For example, in the field of smart homes, each

family member has one SDC, 𝑆𝐷𝐶 = {𝑆𝐷𝐶1, 𝑆𝐷𝐶2, … , 𝑆𝐷𝐶𝑛}, where 𝑛 ∈ 𝑁. If 𝑆𝐷𝐶1 controls a specific

machine, 𝑆𝐷𝐶1 must synchronise the set value changed by the home appliance to all SDCs in the

field to prevent the local device from repeating operations. Whenever a user makes a device control

request, the user controls the request message published to the gateway. After verifying its identity,

the gateway updates the relevant device status in the original JSON file to show that 𝑆𝐷𝐶1 is

controlling the system. The gateway then publishes the device status and the device instruction to

∀𝑖 ∈ 𝑁: 𝑆𝐷𝐶𝑖. When 𝑆𝐷𝐶𝑖 receives the device status of the gateway, it updates the device status copy

on the 𝑆𝐷𝐶𝑖 and displays it to the user. If 𝑆𝐷𝐶𝑖,𝑖≠1 wants to control the same device as 𝑆𝐷𝐶1, it needs

to go through the logic control of the gateway and refuse the 𝑆𝐷𝐶𝑖,𝑖≠1 request according to the

Figure 5. Device status.

Sensors 2020, 20, 6012 8 of 18

Algorithm 1. Device’s Controllable

Begin: Device’s name
1: controllable = the “control” field of device in JSONstate
2: if controllable is True then
3: return True
4: else
5: return False
6: end if
7: END

Some environments have several controllers. For example, in the field of smart homes, each family
member has one SDC, SDC = {SDC1, SDC2, . . . , SDCn}, where n ∈ N. If SDC1 controls a specific
machine, SDC1 must synchronise the set value changed by the home appliance to all SDCs in the field
to prevent the local device from repeating operations. Whenever a user makes a device control request,
the user controls the request message published to the gateway. After verifying its identity, the gateway
updates the relevant device status in the original JSON file to show that SDC1 is controlling the system.
The gateway then publishes the device status and the device instruction to ∀i ∈ N : SDCi. When SDCi
receives the device status of the gateway, it updates the device status copy on the SDCi and displays
it to the user. If SDCi,i,1 wants to control the same device as SDC1, it needs to go through the logic
control of the gateway and refuse the SDCi,i,1 request according to the timestamp. The centralised
management of the JSON files in the gateway means that when there is a control request, a status copy
is obtained, thus preventing duplicate or simultaneous operations.

Algorithm 2. Logic Control of Gateway

Begin: JSON context of user request
1: msg is JSON context of user request
2: Get SDCname, SDCstate, SDCstate_Topic, and SDCcmd_Topic from JSON device state
3: Get device_name and device_state from JSON device state
4: if Controllable(device_name, device_state) is False then
5: publish_message(‘False’, SDCstate_Topic)
6: return
7: end if
8: set_device_state(SDCname, device_name)
9: Get device’s type from JSON device state
10: if msg == ‘switch controlled device’ then
11: Update the device that SDC is controlling in JSON device state
12: elif msg == ‘control device’
13: According user request set device_set_value and generate command
14: Using device_name and device_set_value to update device’s state
15: Get device_state after update
16: if device’s type is ‘smart device’ then
17: publish_message(command and type, SDCcmd_Topic)
18: elif device’s type is ‘traditional device’
19: Get TDCname, TDCstate, TDCstate_Topic, and TDCcmd_Topic from JSON device state
20: publish_message(command and type, TDCcmd_Topic)
21: end if
22: end if
23: publish_message(device_state, SDCstate_Topic)
24: END

Sensors 2020, 20, 6012 9 of 18

3.2. Smart Device Module

The SDC of the framework mainly controls smart devices [29] in the environment that use
wireless communication methods such as Bluetooth, Zigbee, Wireless network and Radio Frequency
Identification (RFID) (Figure 6). The SDC can be used to control the local device using various buttons,
knobs and/or microphones. If necessary, an LCD screen or speaker is installed to indicate which device
the controller is controlling and the device status value. When operating the SDC, the user needs to
switch the SDC to the device to be controlled by pressing the button, turning a rotary knob or using
voice control to publish the user’s request message to the gateway. The device logic, controlled by the
SDC, determines the instruction corresponding to the request.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 17

timestamp. The centralised management of the JSON files in the gateway means that when there is a

control request, a status copy is obtained, thus preventing duplicate or simultaneous operations.

Algorithm 2. Logic Control of Gateway

Begin: JSON context of user request

1: msg is JSON context of user request

2: Get SDCname, SDCstate, SDCstate_Topic, and SDCcmd_Topic from JSON device state

3: Get device_name and device_state from JSON device state

4: if Controllable(device_name, device_state) is False then

5: publish_message(‘False’, SDCstate_Topic)

6: return

7: end if

8: set_device_state(SDCname, device_name)

9: Get device’s type from JSON device state

10: if msg == ‘switch controlled device’ then

11: Update the device that SDC is controlling in JSON device state

12: elif msg == ‘control device’

13: According user request set device_set_value and generate command

14: Using device_name and device_set_value to update device’s state

15: Get device_state after update

16: if device’s type is ‘smart device’ then

17: publish_message(command and type, SDCcmd_Topic)

18: elif device’s type is ‘traditional device’

19: Get TDCname, TDCstate, TDCstate_Topic, and TDCcmd_Topic from JSON device state

20: publish_message(command and type, TDCcmd_Topic)

21: end if

22: end if

23: publish_message(device_state, SDCstate_Topic)

24: END

3.2. Smart Device Module

The SDC of the framework mainly controls smart devices [29] in the environment that use

wireless communication methods such as Bluetooth, Zigbee, Wireless network and Radio Frequency

Identification (RFID) (Figure 6). The SDC can be used to control the local device using various buttons,

knobs and/or microphones. If necessary, an LCD screen or speaker is installed to indicate which

device the controller is controlling and the device status value. When operating the SDC, the user

needs to switch the SDC to the device to be controlled by pressing the button, turning a rotary knob

or using voice control to publish the user’s request message to the gateway. The device logic,

controlled by the SDC, determines the instruction corresponding to the request.

Figure 6. Wireless communication technology type of smart end device.

The X.509 certificate obtained by the SDC during the registration phase is used for gateway

authentication. When connecting to the gateway, the gateway verifies the identity of the SDC and

authorises the SDC to publish and receive relevant messages and obtain tokens issued by the gateway.

Figure 6. Wireless communication technology type of smart end device.

The X.509 certificate obtained by the SDC during the registration phase is used for gateway
authentication. When connecting to the gateway, the gateway verifies the identity of the SDC and
authorises the SDC to publish and receive relevant messages and obtain tokens issued by the gateway.

When a user uses the SDC to generate a user request, the action is digitalised and published.
Figure 7 shows the process flow. The user presses a button on the controller to generate a ‘press’
message and a message is published. When the gateway obtains the message, it makes a logic judgment
to generate an operation instruction and updates the JSON file for the device status. The device
status copy and operation instructions are published to the controller, including the SDC and TDC
(responsible for controlling traditional home appliances), and the controller completes the device
control according to the instructions.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 17

When a user uses the SDC to generate a user request, the action is digitalised and published.

Figure 7 shows the process flow. The user presses a button on the controller to generate a ‘press’

message and a message is published. When the gateway obtains the message, it makes a logic

judgment to generate an operation instruction and updates the JSON file for the device status. The

device status copy and operation instructions are published to the controller, including the SDC and

TDC (responsible for controlling traditional home appliances), and the controller completes the

device control according to the instructions.

Figure 7. User’s action digitisation.

3.3. Voice Module

Voice control and reminders are effective in many areas of life, such as guidance for visually

impaired [22] or handicapped [23] users. This type of system improves the convenience of system

operation [33,34]. The ‘Echo’ [35] developed by Amazon is the most popular voice control product

on the market today.

The voice function analyses the intent expressed by the user’s voice through natural language

analysis. This paper uses the voice module Amazon Lex [36] for natural language processing, which

connects to cloud services via the internet. Lex is converted into words or symbols to analyse the

intent, as shown in Figure 8. In the audio system, SoX [37] is used to read and write audio files in PI

and acts as an audio player or a multi-track audio recorder. Then, the voice module listens for audio

input, detects sound and starts streaming the audio to Lex. After semantic analysis, the user’s

intention is published to the gateway for logic control processing. The gateway analyses the

instructions and publishes them to the controller. Using voice commands can make the device seem

more humane to users and is more helpful to some users, such as visually impaired people and

people with reduced mobility. The voice module can also be combined with the SDC module, which

combines manual operation and voice operation so that the controller can more directly express the

device that the user wants to control through voice control, thus solving some user problems and

making the system more intelligent.

Figure 8. The flowchart of user’s voice semantic analysis.

3.4. IR-Emitter Module

Some environments use traditional devices that cannot connect to the internet, which is one

reason why some industries have not yet made the digital transformation. It is costly to replace

traditional devices with smart devices that have network functionality. To make a smooth digital

transformation without incurring huge costs, the infrared controller module can be used to control

traditional devices, such as old TVs, air conditioners, stoves and DVD players, using infrared control.

In this study, a single-chip development board is used for forwarding the control instructions,

and an IR-emitter module is fixed in front of the infrared receiver of the device to be controlled,

corresponding to a traditional device. After receiving the instructions published by the gateway, the

IR-emitter sends infrared raw data corresponding to the functions of the traditional device to control

the traditional infrared device.

Figure 7. User’s action digitisation.

3.3. Voice Module

Voice control and reminders are effective in many areas of life, such as guidance for visually
impaired [22] or handicapped [23] users. This type of system improves the convenience of system
operation [33,34]. The ‘Echo’ [35] developed by Amazon is the most popular voice control product on
the market today.

The voice function analyses the intent expressed by the user’s voice through natural language
analysis. This paper uses the voice module Amazon Lex [36] for natural language processing,
which connects to cloud services via the internet. Lex is converted into words or symbols to analyse
the intent, as shown in Figure 8. In the audio system, SoX [37] is used to read and write audio files in
PI and acts as an audio player or a multi-track audio recorder. Then, the voice module listens for audio
input, detects sound and starts streaming the audio to Lex. After semantic analysis, the user’s intention
is published to the gateway for logic control processing. The gateway analyses the instructions and
publishes them to the controller. Using voice commands can make the device seem more humane to
users and is more helpful to some users, such as visually impaired people and people with reduced

Sensors 2020, 20, 6012 10 of 18

mobility. The voice module can also be combined with the SDC module, which combines manual
operation and voice operation so that the controller can more directly express the device that the
user wants to control through voice control, thus solving some user problems and making the system
more intelligent.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 17

When a user uses the SDC to generate a user request, the action is digitalised and published.

Figure 7 shows the process flow. The user presses a button on the controller to generate a ‘press’

message and a message is published. When the gateway obtains the message, it makes a logic

judgment to generate an operation instruction and updates the JSON file for the device status. The

device status copy and operation instructions are published to the controller, including the SDC and

TDC (responsible for controlling traditional home appliances), and the controller completes the

device control according to the instructions.

Figure 7. User’s action digitisation.

3.3. Voice Module

Voice control and reminders are effective in many areas of life, such as guidance for visually

impaired [22] or handicapped [23] users. This type of system improves the convenience of system

operation [33,34]. The ‘Echo’ [35] developed by Amazon is the most popular voice control product

on the market today.

The voice function analyses the intent expressed by the user’s voice through natural language

analysis. This paper uses the voice module Amazon Lex [36] for natural language processing, which

connects to cloud services via the internet. Lex is converted into words or symbols to analyse the

intent, as shown in Figure 8. In the audio system, SoX [37] is used to read and write audio files in PI

and acts as an audio player or a multi-track audio recorder. Then, the voice module listens for audio

input, detects sound and starts streaming the audio to Lex. After semantic analysis, the user’s

intention is published to the gateway for logic control processing. The gateway analyses the

instructions and publishes them to the controller. Using voice commands can make the device seem

more humane to users and is more helpful to some users, such as visually impaired people and

people with reduced mobility. The voice module can also be combined with the SDC module, which

combines manual operation and voice operation so that the controller can more directly express the

device that the user wants to control through voice control, thus solving some user problems and

making the system more intelligent.

Figure 8. The flowchart of user’s voice semantic analysis.

3.4. IR-Emitter Module

Some environments use traditional devices that cannot connect to the internet, which is one

reason why some industries have not yet made the digital transformation. It is costly to replace

traditional devices with smart devices that have network functionality. To make a smooth digital

transformation without incurring huge costs, the infrared controller module can be used to control

traditional devices, such as old TVs, air conditioners, stoves and DVD players, using infrared control.

In this study, a single-chip development board is used for forwarding the control instructions,

and an IR-emitter module is fixed in front of the infrared receiver of the device to be controlled,

corresponding to a traditional device. After receiving the instructions published by the gateway, the

IR-emitter sends infrared raw data corresponding to the functions of the traditional device to control

the traditional infrared device.

Figure 8. The flowchart of user’s voice semantic analysis.

3.4. IR-Emitter Module

Some environments use traditional devices that cannot connect to the internet, which is one reason
why some industries have not yet made the digital transformation. It is costly to replace traditional
devices with smart devices that have network functionality. To make a smooth digital transformation
without incurring huge costs, the infrared controller module can be used to control traditional devices,
such as old TVs, air conditioners, stoves and DVD players, using infrared control.

In this study, a single-chip development board is used for forwarding the control instructions,
and an IR-emitter module is fixed in front of the infrared receiver of the device to be controlled,
corresponding to a traditional device. After receiving the instructions published by the gateway,
the IR-emitter sends infrared raw data corresponding to the functions of the traditional device to
control the traditional infrared device.

3.5. Relay Controller Module

As mentioned in Section 1, some traditional devices cannot connect to the internet and need to
be controlled by electric currents, such as electric fans, bulbs, dehumidifiers and even robot arms in
factories. To remotely control this type of device, this paper uses a single-chip development board to
forward the control instructions.

We therefore install a relay module in the single-chip development board, which uses a smaller
electric current to control the larger electric current required by the traditional device. The internal
solenoid of the relay controls the current loop to form a path and create a current switch. The module
is installed on the socket of the control device. After receiving the operation instruction transmitted
by the gateway, the relay controller makes or breaks the current to a path according to the operation
instruction and controls the switching and strength of the electrical current to the device.

4. Experimental Results

This paper designs a prototype to test the feasibility of the framework, which uses a Raspberry
Pi 3 and two Zero W. Raspberry Pi 3 represents the gateway, and Raspberry Pi and Zero W represent
SDC and TDC, respectively. Then, as per the system architecture depicted in Figure 2, each module
can obtain cloud services from the external network through the gateway. For the IoT scenario in
this article, it is necessary to ensure that the local device can operate in a weak-signal or no-signal
environment. We therefore conducted experiments when the gateway could not connect to the external
network and observed the response time of each device to publish and subscribe after logic control.
The response times were obtained for (1) the time to publish/subscribe between the same devices,
(2) the devices that received the published messages between different devices, and (3) the logic control
through the gateway.

Sensors 2020, 20, 6012 11 of 18

4.1. Response Time of Publish/Subscribe Message between Same Device

This experiment was performed to obtain the response time of the publish/subscribe messages
by the publishing end, receiving end and gateway when using the same device offline, respectively,
with Pi 3 and Zero W. For the same device, messages are passed between different modular functions to
measure the response time between publish/receive messages in an internet-less environment. As the
publishing end, receiving end and gateway are all part of the same device, this method should be
suitable for small environments, such as a room of a smart hotel or laboratory.

Figure 9 shows the response time between publishing a user request and receiving a control
instruction at the gateway. Figure 10a shows the time sequence. As soon as the controller starts to
publish the user requests, the gateway immediately publishes the feedback message after receiving the
message published by the controller.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 17

3.5. Relay Controller Module

As mentioned in Section 1, some traditional devices cannot connect to the internet and need to

be controlled by electric currents, such as electric fans, bulbs, dehumidifiers and even robot arms in

factories. To remotely control this type of device, this paper uses a single-chip development board to

forward the control instructions.

We therefore install a relay module in the single-chip development board, which uses a smaller

electric current to control the larger electric current required by the traditional device. The internal

solenoid of the relay controls the current loop to form a path and create a current switch. The module

is installed on the socket of the control device. After receiving the operation instruction transmitted

by the gateway, the relay controller makes or breaks the current to a path according to the operation

instruction and controls the switching and strength of the electrical current to the device.

4. Experimental Results

This paper designs a prototype to test the feasibility of the framework, which uses a Raspberry

Pi 3 and two Zero W. Raspberry Pi 3 represents the gateway, and Raspberry Pi and Zero W represent

SDC and TDC, respectively. Then, as per the system architecture depicted in Figure 2, each module

can obtain cloud services from the external network through the gateway. For the IoT scenario in this

article, it is necessary to ensure that the local device can operate in a weak-signal or no-signal

environment. We therefore conducted experiments when the gateway could not connect to the

external network and observed the response time of each device to publish and subscribe after logic

control. The response times were obtained for (1) the time to publish/subscribe between the same

devices, (2) the devices that received the published messages between different devices, and (3) the

logic control through the gateway.

4.1. Response Time of Publish/Subscribe Message Between Same Device

This experiment was performed to obtain the response time of the publish/subscribe messages

by the publishing end, receiving end and gateway when using the same device offline, respectively,

with Pi 3 and Zero W. For the same device, messages are passed between different modular functions

to measure the response time between publish/receive messages in an internet-less environment. As

the publishing end, receiving end and gateway are all part of the same device, this method should be

suitable for small environments, such as a room of a smart hotel or laboratory.

Figure 9 shows the response time between publishing a user request and receiving a control

instruction at the gateway. Figure 10a shows the time sequence. As soon as the controller starts to

publish the user requests, the gateway immediately publishes the feedback message after receiving

the message published by the controller.

Figure 9. Response time of publish/subscribe for PI 3 and Zero W. The blue line shows that PI 3 is

both a publisher and a subscriber. The orange line shows that Zero W is both a publisher and a

subscriber.

Figure 9. Response time of publish/subscribe for PI 3 and Zero W. The blue line shows that PI 3 is both
a publisher and a subscriber. The orange line shows that Zero W is both a publisher and a subscriber.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17

(a) (b)

Figure 10. Time sequence diagram of publish/subscribe between (a) same devices and (b) different

devices.

4.2. Response Time of Publish/Subscribe Message Between Different Devices

This experiment uses Pi 3 as the gateway, one Zero W as the SDC and the other Zero W as the

TDC. We measured the response time of different devices for publishing and receiving messages. In

some scenarios, the SDC is used to publish user requests and operate smart devices and traditional

devices, and the TDC forwards the signals. Figure 10b shows the timing sequence. After the SDC

publishes the user’s request, it is sent to the TDC immediately after passing the gateway. Finally, the

TDC forwards the instruction to the infrared raw date or relay switch to operate the traditional device.

Figure 11 shows the results of the reaction time for the same experiment without any logic control.

Figure 11. Response time of publish/subscribe between different devices. Pi 3 publishes a message as

a publisher; then, Zero W subscribes a message as a subscriber.

4.3. Logical Control Through Gateway

In this experiment, the sender publishes the instruction message after the logic control of the

gateway, and the SDC receives the message. The purpose is to analyse the response time, which is

controlled by the logic control. In the experiment, the logic control of Algorithm 2 was used by Python,

and Pi 3 was used as the gateway. After receiving the General Purpose Input/Output (GPIO) message,

the algorithm reads the status of the device to be controlled and determines the button function

corresponding to the GPIO. In this experiment, the button was pressed 10 times. The corresponding

button functions are pressed to turn the device on or off. After the message is published, the gateway

performs the logic control of the device to generate the device instructions. Finally, the instruction

message is published. Figure 12 shows the execution time, which is an average of 1822.298 ms.

Figure 10. Time sequence diagram of publish/subscribe between (a) same devices and (b) different devices.

4.2. Response Time of Publish/Subscribe Message between Different Devices

This experiment uses Pi 3 as the gateway, one Zero W as the SDC and the other Zero W as the TDC.
We measured the response time of different devices for publishing and receiving messages. In some
scenarios, the SDC is used to publish user requests and operate smart devices and traditional devices,
and the TDC forwards the signals. Figure 10b shows the timing sequence. After the SDC publishes the
user’s request, it is sent to the TDC immediately after passing the gateway. Finally, the TDC forwards
the instruction to the infrared raw date or relay switch to operate the traditional device. Figure 11
shows the results of the reaction time for the same experiment without any logic control.

Sensors 2020, 20, 6012 12 of 18

Sensors 2020, 20, x FOR PEER REVIEW 11 of 17

(a) (b)

Figure 10. Time sequence diagram of publish/subscribe between (a) same devices and (b) different

devices.

4.2. Response Time of Publish/Subscribe Message Between Different Devices

This experiment uses Pi 3 as the gateway, one Zero W as the SDC and the other Zero W as the

TDC. We measured the response time of different devices for publishing and receiving messages. In

some scenarios, the SDC is used to publish user requests and operate smart devices and traditional

devices, and the TDC forwards the signals. Figure 10b shows the timing sequence. After the SDC

publishes the user’s request, it is sent to the TDC immediately after passing the gateway. Finally, the

TDC forwards the instruction to the infrared raw date or relay switch to operate the traditional device.

Figure 11 shows the results of the reaction time for the same experiment without any logic control.

Figure 11. Response time of publish/subscribe between different devices. Pi 3 publishes a message as

a publisher; then, Zero W subscribes a message as a subscriber.

4.3. Logical Control Through Gateway

In this experiment, the sender publishes the instruction message after the logic control of the

gateway, and the SDC receives the message. The purpose is to analyse the response time, which is

controlled by the logic control. In the experiment, the logic control of Algorithm 2 was used by Python,

and Pi 3 was used as the gateway. After receiving the General Purpose Input/Output (GPIO) message,

the algorithm reads the status of the device to be controlled and determines the button function

corresponding to the GPIO. In this experiment, the button was pressed 10 times. The corresponding

button functions are pressed to turn the device on or off. After the message is published, the gateway

performs the logic control of the device to generate the device instructions. Finally, the instruction

message is published. Figure 12 shows the execution time, which is an average of 1822.298 ms.

Figure 11. Response time of publish/subscribe between different devices. Pi 3 publishes a message as a
publisher; then, Zero W subscribes a message as a subscriber.

4.3. Logical Control through Gateway

In this experiment, the sender publishes the instruction message after the logic control of the
gateway, and the SDC receives the message. The purpose is to analyse the response time, which is
controlled by the logic control. In the experiment, the logic control of Algorithm 2 was used by Python,
and Pi 3 was used as the gateway. After receiving the General Purpose Input/Output (GPIO) message,
the algorithm reads the status of the device to be controlled and determines the button function
corresponding to the GPIO. In this experiment, the button was pressed 10 times. The corresponding
button functions are pressed to turn the device on or off. After the message is published, the gateway
performs the logic control of the device to generate the device instructions. Finally, the instruction
message is published. Figure 12 shows the execution time, which is an average of 1822.298 ms.Sensors 2020, 20, x FOR PEER REVIEW 12 of 17

Figure 12. Execution time of Algorithm 2 by Python on PI 3.

Figure 13 shows the relevant logic control instructions through the gateway. In the first

experiment (1), the publishing end, receiving end and gateway are all the same device, Pi 3 and two

Zero W, respectively. Figure 14 shows the timing sequence. The red frame in the figure is the

execution time of Figure 13. First, the controller publishes the user’s request. After receiving the

message published by the controller, the gateway generates device instructions through logic control.

Then, the instructions are published to the SDC.

Figure 13. Response time for PI 3 and Zero W after logical control of gateway. The blue line shows

that PI is both a publisher and a subscriber. The orange line shows that Zero W is both a publisher

and a subscriber.

Figure 14. Timing sequence diagram of publish/subscribe at the same devices by logical control. This

process simulated the smart-device controller (SDC) to control a smart device.

Finally, we use Pi 3 as the gateway, one Zero W as the SDC and the other Zero W as the TDC.

Figure 15 shows the logic control-related instructions through the gateway. In the second experiment

(2), the SDC publishes the user requests and operates both smart devices and traditional devices, and

the TDC forwards the signals. In this experiment, the infrared fan is turned on or off by continuous

pressing of the button 10 times. Figure 16 shows the complete timing sequence. The message is

published to the gateway after the user presses the button. Then, the device instructions are generated

Figure 12. Execution time of Algorithm 2 by Python on PI 3.

Figure 13 shows the relevant logic control instructions through the gateway. In the first experiment (1),
the publishing end, receiving end and gateway are all the same device, Pi 3 and two Zero W, respectively.
Figure 14 shows the timing sequence. The red frame in the figure is the execution time of Figure 13. First,
the controller publishes the user’s request. After receiving the message published by the controller,
the gateway generates device instructions through logic control. Then, the instructions are published
to the SDC.

Sensors 2020, 20, 6012 13 of 18

Sensors 2020, 20, x FOR PEER REVIEW 12 of 17

Figure 12. Execution time of Algorithm 2 by Python on PI 3.

Figure 13 shows the relevant logic control instructions through the gateway. In the first

experiment (1), the publishing end, receiving end and gateway are all the same device, Pi 3 and two

Zero W, respectively. Figure 14 shows the timing sequence. The red frame in the figure is the

execution time of Figure 13. First, the controller publishes the user’s request. After receiving the

message published by the controller, the gateway generates device instructions through logic control.

Then, the instructions are published to the SDC.

Figure 13. Response time for PI 3 and Zero W after logical control of gateway. The blue line shows

that PI is both a publisher and a subscriber. The orange line shows that Zero W is both a publisher

and a subscriber.

Figure 14. Timing sequence diagram of publish/subscribe at the same devices by logical control. This

process simulated the smart-device controller (SDC) to control a smart device.

Finally, we use Pi 3 as the gateway, one Zero W as the SDC and the other Zero W as the TDC.

Figure 15 shows the logic control-related instructions through the gateway. In the second experiment

(2), the SDC publishes the user requests and operates both smart devices and traditional devices, and

the TDC forwards the signals. In this experiment, the infrared fan is turned on or off by continuous

pressing of the button 10 times. Figure 16 shows the complete timing sequence. The message is

published to the gateway after the user presses the button. Then, the device instructions are generated

Figure 13. Response time for PI 3 and Zero W after logical control of gateway. The blue line shows that
PI is both a publisher and a subscriber. The orange line shows that Zero W is both a publisher and
a subscriber.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 17

Figure 12. Execution time of Algorithm 2 by Python on PI 3.

Figure 13 shows the relevant logic control instructions through the gateway. In the first

experiment (1), the publishing end, receiving end and gateway are all the same device, Pi 3 and two

Zero W, respectively. Figure 14 shows the timing sequence. The red frame in the figure is the

execution time of Figure 13. First, the controller publishes the user’s request. After receiving the

message published by the controller, the gateway generates device instructions through logic control.

Then, the instructions are published to the SDC.

Figure 13. Response time for PI 3 and Zero W after logical control of gateway. The blue line shows

that PI is both a publisher and a subscriber. The orange line shows that Zero W is both a publisher

and a subscriber.

Figure 14. Timing sequence diagram of publish/subscribe at the same devices by logical control. This

process simulated the smart-device controller (SDC) to control a smart device.

Finally, we use Pi 3 as the gateway, one Zero W as the SDC and the other Zero W as the TDC.

Figure 15 shows the logic control-related instructions through the gateway. In the second experiment

(2), the SDC publishes the user requests and operates both smart devices and traditional devices, and

the TDC forwards the signals. In this experiment, the infrared fan is turned on or off by continuous

pressing of the button 10 times. Figure 16 shows the complete timing sequence. The message is

published to the gateway after the user presses the button. Then, the device instructions are generated

Figure 14. Timing sequence diagram of publish/subscribe at the same devices by logical control.
This process simulated the smart-device controller (SDC) to control a smart device.

Finally, we use Pi 3 as the gateway, one Zero W as the SDC and the other Zero W as the TDC.
Figure 15 shows the logic control-related instructions through the gateway. In the second experiment
(2), the SDC publishes the user requests and operates both smart devices and traditional devices,
and the TDC forwards the signals. In this experiment, the infrared fan is turned on or off by continuous
pressing of the button 10 times. Figure 16 shows the complete timing sequence. The message is
published to the gateway after the user presses the button. Then, the device instructions are generated
after the logic control is performed by the gateway. Finally, the control instruction is published to the
TDC, which controls the traditional device, and the device status copy is published to the SDC device
information for the user. Figure 16 shows the measured response time in the red frame.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 17

after the logic control is performed by the gateway. Finally, the control instruction is published to the

TDC, which controls the traditional device, and the device status copy is published to the SDC device

information for the user. Figure 16 shows the measured response time in the red frame.

Figure 15. Response time of publish/subscribe between different devices after logical control of

gateway. A Zero W as the SDC publishes a message, and then the other Zero W as the TDC subscribes

a message.

Figure 16. Timing sequence diagram of publish/subscribe between different devices by logical control.

This process is to simulate the SDC to control a traditional device.

5. Use Case

The IoT has produced revolutionary changes by manufacturing sensors, generating and

transmitting data, and combining mobile phones, tablets, clouds and major platforms to produce a

variety of different applications ranging from smart homes to smart healthcare. The framework

proposed in this research offers advantages for the application of IoT to various use scenarios,

including smart warehouses, smart agriculture, smart homes, smart restaurants, smart medical care

and smart factories. This section introduces how to choose modular functions and deploy the

framework in smart hotels and smart warehouses.

5.1. Smart Hotel

With the changing times, many hotels are slowly transforming into smart hotels. However,

because of the cost, it is not feasible to replace all existing equipment with smart devices. The modular

framework proposed herein can provide a low-cost transformation for hotels, enabling them to

provide intelligent services without needing to replace their existing devices.

Hotel rooms contain several operable types of equipment, such as heating and cooling systems,

kettles, televisions, stereos, electric lights, smart grids and smart sockets. To apply a modular

framework, the devices are divided into traditional devices and smart devices. Traditional infrared

devices are controlled by an IR-emitter, while traditional mechanical devices are controlled by relays

and use PWD or PID to control the strength. Then, the smart device is controlled by the SDC.

Note that as hotel rooms operate independently, each room requires an IoT modular framework,

and each SDC or TDC receives MQTT operation messages. If each room is not distinguished, when

the tenant operates their room equipment, the controller receives the instruction and controls the

room equipment of another or all other rooms. Tantitharanukul et al. [38] claimed that the topic is

Figure 15. Response time of publish/subscribe between different devices after logical control of gateway.
A Zero W as the SDC publishes a message, and then the other Zero W as the TDC subscribes a message.

Sensors 2020, 20, 6012 14 of 18

Sensors 2020, 20, x FOR PEER REVIEW 13 of 17

after the logic control is performed by the gateway. Finally, the control instruction is published to the

TDC, which controls the traditional device, and the device status copy is published to the SDC device

information for the user. Figure 16 shows the measured response time in the red frame.

Figure 15. Response time of publish/subscribe between different devices after logical control of

gateway. A Zero W as the SDC publishes a message, and then the other Zero W as the TDC subscribes

a message.

Figure 16. Timing sequence diagram of publish/subscribe between different devices by logical control.

This process is to simulate the SDC to control a traditional device.

5. Use Case

The IoT has produced revolutionary changes by manufacturing sensors, generating and

transmitting data, and combining mobile phones, tablets, clouds and major platforms to produce a

variety of different applications ranging from smart homes to smart healthcare. The framework

proposed in this research offers advantages for the application of IoT to various use scenarios,

including smart warehouses, smart agriculture, smart homes, smart restaurants, smart medical care

and smart factories. This section introduces how to choose modular functions and deploy the

framework in smart hotels and smart warehouses.

5.1. Smart Hotel

With the changing times, many hotels are slowly transforming into smart hotels. However,

because of the cost, it is not feasible to replace all existing equipment with smart devices. The modular

framework proposed herein can provide a low-cost transformation for hotels, enabling them to

provide intelligent services without needing to replace their existing devices.

Hotel rooms contain several operable types of equipment, such as heating and cooling systems,

kettles, televisions, stereos, electric lights, smart grids and smart sockets. To apply a modular

framework, the devices are divided into traditional devices and smart devices. Traditional infrared

devices are controlled by an IR-emitter, while traditional mechanical devices are controlled by relays

and use PWD or PID to control the strength. Then, the smart device is controlled by the SDC.

Note that as hotel rooms operate independently, each room requires an IoT modular framework,

and each SDC or TDC receives MQTT operation messages. If each room is not distinguished, when

the tenant operates their room equipment, the controller receives the instruction and controls the

room equipment of another or all other rooms. Tantitharanukul et al. [38] claimed that the topic is

Figure 16. Timing sequence diagram of publish/subscribe between different devices by logical control.
This process is to simulate the SDC to control a traditional device.

5. Use Case

The IoT has produced revolutionary changes by manufacturing sensors, generating and
transmitting data, and combining mobile phones, tablets, clouds and major platforms to produce
a variety of different applications ranging from smart homes to smart healthcare. The framework
proposed in this research offers advantages for the application of IoT to various use scenarios,
including smart warehouses, smart agriculture, smart homes, smart restaurants, smart medical care
and smart factories. This section introduces how to choose modular functions and deploy the
framework in smart hotels and smart warehouses.

5.1. Smart Hotel

With the changing times, many hotels are slowly transforming into smart hotels. However,
because of the cost, it is not feasible to replace all existing equipment with smart devices. The modular
framework proposed herein can provide a low-cost transformation for hotels, enabling them to provide
intelligent services without needing to replace their existing devices.

Hotel rooms contain several operable types of equipment, such as heating and cooling systems,
kettles, televisions, stereos, electric lights, smart grids and smart sockets. To apply a modular
framework, the devices are divided into traditional devices and smart devices. Traditional infrared
devices are controlled by an IR-emitter, while traditional mechanical devices are controlled by relays
and use PWD or PID to control the strength. Then, the smart device is controlled by the SDC.

Note that as hotel rooms operate independently, each room requires an IoT modular framework,
and each SDC or TDC receives MQTT operation messages. If each room is not distinguished, when the
tenant operates their room equipment, the controller receives the instruction and controls the room
equipment of another or all other rooms. Tantitharanukul et al. [38] claimed that the topic is named
based on three attributes: ‘Objective’, ‘Location’ and ‘Owner’. To distinguish the topic of each room,
room type and room number are used for determination based on Objective: RoomType/RoomNumber.
The last instruction received in each room needs to be published to a different MQTT topic to solve this
problem that distinguishes the topic of each room, so that each room has its MQTT topic, as shown in
Figure 17. In Figure 17, each controller in the room corresponds to the room number, and each room
has its topic, which uses the room number as a unique identifier. The gateway can obtain the room
topic to which the controller belongs from the device state. With this method, even if these devices
belong to the same gateway module, each controller can control a specific room.

Sensors 2020, 20, 6012 15 of 18

Sensors 2020, 20, x FOR PEER REVIEW 14 of 17

named based on three attributes: ‘Objective’, ‘Location’ and ‘Owner’. To distinguish the topic of each

room, room type and room number are used for determination based on Objective:

RoomType/RoomNumber. The last instruction received in each room needs to be published to a

different MQTT topic to solve this problem that distinguishes the topic of each room, so that each

room has its MQTT topic, as shown in Figure 17. In Figure 17, each controller in the room corresponds

to the room number, and each room has its topic, which uses the room number as a unique identifier.

The gateway can obtain the room topic to which the controller belongs from the device state. With

this method, even if these devices belong to the same gateway module, each controller can control a

specific room.

Figure 17. The example of room topic in smart hotel.

5.2. Smart Factory

The modular framework proposed in this paper is suitable for various environments, including

a smart warehouse, which contains all kinds of machines such as robotic arms, unmanned aircraft,

unmanned vehicles, take-off and landing machines and robots [2,6,7,39,40]. Such a large environment

typically comprises large shelves, shelters, high places and corners that can cause instability for

wireless signals. If an IoT device exists in a space that cannot fully receive instructions, it could cause

the device to fail to operate, resulting in damage to the device or human casualties.

It is thus necessary to ensure that the system can operate offline to ensure the reliability of the

IoT system in a smart warehouse. An MQTT broker is installed on the gateway so that all data can be

transmitted to the gateway to make logic judgments and generate operation instructions. Signal

reliability can also ensure system reliability. The devices that need to be controlled in the warehouse

must be classified. These devices, which are controlled by relay device controllers, include traditional

devices such as take-off and landing machines, robot arms and stackers. By contrast, connected

devices, such as drones or unmanned vehicles, are controlled by the SDC.

Typically, multiple workers control the devices in the warehouse, and these workers can use the

SDC. Therefore, attention must be paid to the synchronisation between the devices. For example, if

Worker A is using a lifter to pick up goods, the status of the lifter needs to be synchronised to the

SDC of each worker; without this synchronisation, Worker B might be unaware that anyone is using

the lift and directly operate the landing gear to pick up the goods on another shelf, thus causing an

accident involving Worker A. Therefore, it is essential to obtain the device status in the warehouse

from the gateway. If the device is determined to be in use, the gateway refuses access control to the

controller.

6. Conclusions

This paper presents a framework that ensures the reliability of IoT system services so that even

if the IoT system cannot connect to the network, the system can provide the services by edge

computing. An edge device can not only transmit data but also preprocess data and analyse real-time

data, which can support edge computing and provide logic control services. The gateway stores the

related status of all devices in the group. When a user requests generation, it will perform edge

Figure 17. The example of room topic in smart hotel.

5.2. Smart Factory

The modular framework proposed in this paper is suitable for various environments, including a
smart warehouse, which contains all kinds of machines such as robotic arms, unmanned aircraft,
unmanned vehicles, take-off and landing machines and robots [2,6,7,39,40]. Such a large environment
typically comprises large shelves, shelters, high places and corners that can cause instability for wireless
signals. If an IoT device exists in a space that cannot fully receive instructions, it could cause the device
to fail to operate, resulting in damage to the device or human casualties.

It is thus necessary to ensure that the system can operate offline to ensure the reliability of the
IoT system in a smart warehouse. An MQTT broker is installed on the gateway so that all data
can be transmitted to the gateway to make logic judgments and generate operation instructions.
Signal reliability can also ensure system reliability. The devices that need to be controlled in the
warehouse must be classified. These devices, which are controlled by relay device controllers,
include traditional devices such as take-off and landing machines, robot arms and stackers. By contrast,
connected devices, such as drones or unmanned vehicles, are controlled by the SDC.

Typically, multiple workers control the devices in the warehouse, and these workers can use the
SDC. Therefore, attention must be paid to the synchronisation between the devices. For example,
if Worker A is using a lifter to pick up goods, the status of the lifter needs to be synchronised to the SDC
of each worker; without this synchronisation, Worker B might be unaware that anyone is using the lift
and directly operate the landing gear to pick up the goods on another shelf, thus causing an accident
involving Worker A. Therefore, it is essential to obtain the device status in the warehouse from the
gateway. If the device is determined to be in use, the gateway refuses access control to the controller.

6. Conclusions

This paper presents a framework that ensures the reliability of IoT system services so that even if
the IoT system cannot connect to the network, the system can provide the services by edge computing.
An edge device can not only transmit data but also preprocess data and analyse real-time data,
which can support edge computing and provide logic control services. The gateway stores the related
status of all devices in the group. When a user requests generation, it will perform edge computing on
the device status to generate related instructions. The framework proposed in this paper can effectively
reduce the difficulty of software deployment and maintenance and prevent unauthorised devices
from performing masquerading attacks to ensure minimal system security and resilience. This article
provided examples of how to deploy the system; the framework can be used to deploy an IoT system
architecture suitable for various industries.

The experiments tested the operations of smart and traditional devices. During the system
initialisation, the controller connects to the gateway and performs X.509 certificate authentication and
authorisation to ensure that the system is not fraudulent. Once authorisation is successful, the system
can operate.

Sensors 2020, 20, 6012 16 of 18

In the experiment, this paper uses Pi 3 as the gateway to perform most of the computing functions;
however, in the experiments in Section 4, using Pi 3 to make logic judgments is also somewhat
time-consuming. Most of that time is spent on the logic control of the device functions. The more
the device functions, the stricter the logic control needs to be and the more time needs to be spent.
Scenarios requiring faster requirements or large fields, such as smart homes, should use a high operand
mini-computer instead.

At this stage, traditional devices have been connected to the TDC. In future work,
multiple environmental sensors, such as temperature and humidity, soil humidity, PM2.5 and human
infrared sensors will be added. These environmental sensing data will be transmitted to the gateway
and then to the server for machine learning, where the environmental data will be analysed before
returning the recommended machine operations. Combined with indoor positioning to sense the
user’s position, this system will provide complete and better smart control.

Author Contributions: Conceptualization, C.-Y.W.; methodology, C.-Y.W. and K.-H.H.; software, C.-Y.W.;
resources, C.-Y.W.; data curation, C.-Y.W.; writing—original draft preparation, C.-Y.W.; writing—review and
editing, K.-H.H.; supervision, K.-H.H.; project administration, K.-H.H.; funding acquisition, K.-H.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology under Grant MOST
108-3011-F-036-001, and in part by the Tatung University under Grant B108-I01-016.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Awadallah, S.; Moure, D.; Torres-González, P. An Internet of Things (IoT) Application on volcano monitoring.
Sensors 2019, 19, 4651. [CrossRef] [PubMed]

2. Cvar, N.; Trilar, J.; Kos, A.; Volk, M.; Duh, E.S. The use of IoT technology in smart cities and smart villages:
Similarities, differences and future prospects. Sensors 2020, 20, 3897. [CrossRef]

3. Capella, J.V.; Bonastre, A.; Ors, R.; Peris, M. A new application of internet of things and cloud services in
analytical chemistry: Determination of bicarbonate in water. Sensors 2019, 19, 5528. [CrossRef]

4. Ozeer, U.; Letondeur, L.; Ottogalli, F.; Salaün, G.; Vincent, J. Designing and implementing resilient IoT
applications in the fog: A smart home use case. In Proceedings of the 2019 22nd Conference Innovation in
Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 19–21 February 2019; pp. 230–232.

5. Lin, Y.; Tseng, H. Fish Talk: An IoT-based mini aquarium system. IEEE Access 2019, 7, 35457–35469. [CrossRef]
6. Park, C.Y.; Kim, J.W.; Kim, B.; Lee, J. Prediction for manufacturing factors in a steel plate rolling smart factory

using data clustering-based machine learning. IEEE Access 2020, 8, 60890–60905. [CrossRef]
7. Feng, Y.; Wang, T.; Hu, B.; Yang, C.; Tan, J. An integrated method for high-dimensional imbalanced assembly

quality prediction supported by edge computing. IEEE Access 2020, 8, 71279–71290. [CrossRef]
8. Internet of Things—Number of Connected Devices Worldwide 2015–2025. Available online: https://www.

statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/#statisticContainer (accessed on
3 March 2020).

9. Yu, J.; Kim, Y. Analysis of IoT platform security: A survey. In Proceedings of the 2019 International Conference
on Platform Technology and Service (PlatCon), Jeju, Korea, 28–30 January 2019; pp. 1–5.

10. Tedeschi, P.; Sciancalepore, S.; Eliyan, A.; Di Pietro, R. LiKe: Lightweight certificateless key agreement for
secure IoT communications. IEEE Internet Things J. 2020, 7, 621–638. [CrossRef]

11. Trilles, S.; Gonzálwz-Pérez, A.; Huerta, J. An IoT platform based on microservices and serverless paradigms
for smart farming purposes. Sensors 2020, 20, 2418. [CrossRef] [PubMed]

12. Ge, S.; Cheng, M.; He, X.; Zhou, X. A two-stage service migration algorithm in parked vehicle edge computing
for internet of things. Sensors 2020, 20, 2786. [CrossRef] [PubMed]

13. Phan, L.A.; Kim, T. Breaking down the compatibility problem in smart homes: A dynamically updatable
gateway platform. Sensors 2020, 20, 2783. [CrossRef]

14. Sunny, S.M.N.A.; Liu, X.; Shahriar, M.R. An integrated IoT enabled on-demand grocery shopping and
delivery cloud system using MTcomm at the edge. In Proceedings of the 2019 IEEE International Conference
on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; pp. 51–55.

http://dx.doi.org/10.3390/s19214651
http://www.ncbi.nlm.nih.gov/pubmed/31717744
http://dx.doi.org/10.3390/s20143897
http://dx.doi.org/10.3390/s19245528
http://dx.doi.org/10.1109/ACCESS.2019.2905017
http://dx.doi.org/10.1109/ACCESS.2020.2983188
http://dx.doi.org/10.1109/ACCESS.2020.2988118
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/#statisticContainer
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/#statisticContainer
http://dx.doi.org/10.1109/JIOT.2019.2953549
http://dx.doi.org/10.3390/s20082418
http://www.ncbi.nlm.nih.gov/pubmed/32344569
http://dx.doi.org/10.3390/s20102786
http://www.ncbi.nlm.nih.gov/pubmed/32422954
http://dx.doi.org/10.3390/s20102783

Sensors 2020, 20, 6012 17 of 18

15. Chen, X.; Shi, Q.; Yang, L.; Xu, J. ThriftyEdge: Resource-efficient edge computing for intelligent IoT
applications. IEEE Netw. 2018, 32, 61–65. [CrossRef]

16. Wazid, M.; Das, A.K.; Odelu, V.; Kumar, N.; Conti, M.; Jo, M. Design of secure user authenticated key
management protocol for generic IoT networks. IEEE Internet Things J. 2017, 5, 269–282. [CrossRef]

17. Takiddeen, N.; Zualkernanm, I. Smartwatches as IoT edge devices: A framework and survey. In Proceedings
of the 2019 4th International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy,
10–13 June 2019; pp. 216–222.

18. Liao, R.; Wen, H.; Wu, J.; Pan, F.; Xu, A.; Song, H.; Xie, F.; Jiang, Y.; Cao, M. Security enhancement for mobile
edge computing through physical layer authentication. IEEE Access 2019, 7, 116390–116401. [CrossRef]

19. Kandalaft, N.; Kalidindi, P.S.; Narra, S.; Saha, H.N. Robotic arm using voice and gesture recognition.
In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 1060–1064.

20. Lai, C.; Hwang, Y. The voice controlled Internet of Things system. In Proceedings of the 2018 7th International
Symposium on Next Generation Electronics (ISNE), Taipei, Taiwan, 7–9 May 2018; pp. 1–3.

21. Erić, T.; Ivanović, S.; Milivojša, S.; Matić, M.; Smiljković, N. Voice control for smart home automation:
Evaluation of approaches and possible architectures. In Proceedings of the 2017 IEEE 7th International
Conference on Consumer Electronics, Berlin, Germany, 3–6 September 2017; pp. 140–142.

22. Saade, R.; Salhab, K.; Nakad, Z. A Voice-Controlled Mobile IoT Guider System for Visually impaired Students.
In Proceedings of the 2018 IEEE International Multidisciplinary Conference on Engineering Technology
(IMCET), Beirut, Lebanon, 13–16 November 2018; pp. 1–6.

23. Umchid, S.; Limhaprasert, P.; Chumsoongnern, S.; Petthong, T.; Leeudomwong, T. Voice controlled automatic
wheelchair. In Proceedings of the 2018 11th Biomedical Engineering International Conference (BMEiCON),
Chiang Mai, Thailand, 21–24 November 2018; pp. 1–5.

24. Zhong, C.; Zhu, Z.; Huang, R. Study on the IOT architecture and gateway technology. In Proceedings of the
2015 14th International Symposium on Distributed Computing and Applications for Business Engineering
and Science (DCABES), Guiyang, China, 18–24 August 2015; pp. 196–199.

25. Gong, C.; Lin, F.; Lu, Y. Intelligent cooperative edge computing in the Internet of Things. IEEE Internet Things J.
2020, 7, 9372–9382. [CrossRef]

26. Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture
for optimization of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73.
[CrossRef]

27. Paiola, M.; Gebauer, H. Internet of Things technologies, digital servitization and business model innovation
in BtoB manufacturing firms. Ind. Mark. Manag. 2020, 89, 245–264. [CrossRef]

28. Rasmussen, N.V.; Beliatis, M.J. IoT based Digitalization and Servitization of Construction Equipment in
Concrete Industry. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 July 2019;
pp. 1–4.

29. Silverio-Fernández, M.; Renukappa, S.; Suresh, S. What is a smart device?—A conceptualisation within the
parading of the internet of things. Vis. Eng. 2018, 6, 3–13. [CrossRef]

30. Iglesias-Urkia, M.; Orive, A.; Barcelo, M.; Moran, A.; Bilbao, J.; Urbieta, A. Towards a lightweight protocol
for Industry 4.0: An implementation based benchmark. In Proceedings of the 2017 IEEE International
Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM),
Donostia-San Sebastian, Spain, 24–26 May 2017; pp. 1–6.

31. Gope, P.; Sikdar, B. Lightweight and privacy-preserving two-factor authentication scheme for IoT device.
IEEE Internet Things J. 2018, 6, 580–589. [CrossRef]

32. Kim, G.; Kang, S.; Park, J.; Chung, K. An MQTT-based context-aware autonomous system in oneM2M
architecture. IEEE Internet Things J. 2019, 6, 8519–8528. [CrossRef]

33. Ni, P.; Li, Y.; Li, G.; Chang, V. Natural language understanding approaches based on joint task of intent
detection and slot filling for IoT voice interaction. Neural Comput. Appl. 2020, 32, 16149–16166. [CrossRef]

34. Solorio, J.A.; Garcia-Bravom, J.M.; Newell, B.A. Voice activated semi-autonomous vehicle using off the shelf
home automation hardware. IEEE Internet Things J. 2018, 5, 5046–5054. [CrossRef]

35. Li, S.; Choo, K.R.; Sun, Q.; Buchanan, W.J.; Cao, J. IoT Forensics: Amazon echo as a use case. IEEE Internet of
Things J. 2019, 6, 6487–6497. [CrossRef]

http://dx.doi.org/10.1109/MNET.2018.1700145
http://dx.doi.org/10.1109/JIOT.2017.2780232
http://dx.doi.org/10.1109/ACCESS.2019.2934122
http://dx.doi.org/10.1109/JIOT.2020.2986015
http://dx.doi.org/10.1016/j.aiia.2020.04.002
http://dx.doi.org/10.1016/j.indmarman.2020.03.009
http://dx.doi.org/10.1186/s40327-018-0063-8
http://dx.doi.org/10.1109/JIOT.2018.2846299
http://dx.doi.org/10.1109/JIOT.2019.2919971
http://dx.doi.org/10.1007/s00521-020-04805-x
http://dx.doi.org/10.1109/JIOT.2018.2854591
http://dx.doi.org/10.1109/JIOT.2019.2906946

Sensors 2020, 20, 6012 18 of 18

36. Srivastava, S.; Prabhakar, T.V. Intent sets: Architectural choices for building practical chatbots. In Proceedings
of the 2020 12th International Conference on Computer and Automation Engineering (ICCAE 2020), New York,
NY, USA, 14–16 February 2020; pp. 194–199.

37. Sox—Sound Exchange, the Swiss Army Knife of Audio Manipulation. Available online: http://sox.sourceforge.
net/sox.html (accessed on 3 March 2020).

38. Tantitharanukul, N.; Osathanunkul, K.; Hantrakul, K.; Pramokchon, P.; Khoenkaw, P. MQTT-topics
management system for sharing of open data. In Proceedings of the 2017 International Conference
on Digital Arts, Media and Technology (ICDAMT), Chiang Mai, Thailand, 1–4 March 2017; pp. 62–65.

39. Liu, X.; Cao, J.; Yang, Y.; Jiang, S. CPS-based smart warehouse for industry 4.0: A survey of the underlying
technologies. Computers 2018, 7, 13. [CrossRef]

40. Wen, J.; He, L.; Zhu, F. Swarm robotics control and communications: Imminent challenges for next generation
smart logistics. IEEE Commun. Mag. 2018, 56, 102–107. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://sox.sourceforge.net/sox.html
http://sox.sourceforge.net/sox.html
http://dx.doi.org/10.3390/computers7010013
http://dx.doi.org/10.1109/MCOM.2018.1700544
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Framework
	Gateway Module
	Smart Device Module
	Voice Module
	IR-Emitter Module
	Relay Controller Module

	Experimental Results
	Response Time of Publish/Subscribe Message between Same Device
	Response Time of Publish/Subscribe Message between Different Devices
	Logical Control through Gateway

	Use Case
	Smart Hotel
	Smart Factory

	Conclusions
	References

