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Abstract: A beryllium(II)-ion-selective poly(ethylenedioxythiophene) (PEDOT) solid contact electrode
comprising 9,10-dinitrobenzo-9-crown-3-ether was successfully developed. The all-solid-state contact
electrode, with an oxygen-containing cation-sensing membrane combined with an electropolymerized
PEDOT layer, exhibited the best response characteristics. The performance of the constructed electrode
was evaluated and optimized using potentiometry, conductance measurements, constant-current
chronopotentiometry, and electrochemical impedance spectroscopy (EIS). Under optimized
conditions, which were found for an ion-selective membrane (ISM) composition of 3% ionophore,
30% polyvinylchloride (PVC), 64% o-nitro phenyl octyl ether (o-NPOE), and 3% sodium
tetraphenylborate (NaTPB), the fabricated electrode exhibited a good performance over a wide
concentration range (10−2.5–10−7.0 M) and a wide pH range of 2.0–9.0, with a Nernstian slope of
29.5 mV/D for the beryllium (II) ion and a detection limit as low as 10−7.0 M. The developed electrode
shows good selectivity for the beryllium(II) ion over alkali, alkaline earth, transition, and heavy
metal ions.
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1. Introduction

Beryllium (Be) has been widely used in various industries, such as automobile manufacturing,
aerospace, nuclear energy, electronics, and communications [1]. Despite its use, Be is extremely
hazardous to human health, causing serious diseases including berylliosis and chronic beryllium
disease (CBD), which is an incurable and fatal progressive lung ailment [2]. Therefore, it is necessary
to develop stable, selective, and sensitive electrochemical techniques methods for the rapid detection
of Be [3]. In this regard, although the analytical technique for the ion-selective electrodes has been
widely applied to determine the chemical analytes, research on beryllium ion-selective electrodes is
sparse [4–6]. This is due to the tendency of hydration causing a small size of beryllium ion in aqueous
solution. Therefore, designing an ion-selective membrane (ISM) suitable for beryllium ions remains a
challenging task.
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Along these lines, we focus on all-solid-state ion-selective electrodes (ASS-ISEs) [3,7,8], which are
drawing attention as alternatives to conventional electrodes with an inner solution. In ASS-ISEs,
ion-to-electron transduction takes place in a solid and compact layer of conductive polymer, which is
placed into contact between the ion-selective membrane (ISM) and the electron-conducting metallic
substrate. ASS-ISEs can be placed in positions that pose no risk of leakage of the inner solution.
Moreover, the fabrication procedures involving ASS-ISEs are much simpler than those of conventional
solid-contact ISEs, and no additional steps are required to produce the intermediate layer [9].

Coated-wire electrodes (CWEs) [10] were initially used in solid-contact ISEs, but such ISEs
exhibited a poor potential stability due to the blocked interface between the electron conductor and
the ion-selective membrane [11]. Therefore, various electroactive materials have been proposed
for this interface to improve the potential stability [12]. Several solid-contact transducers have
been introduced, including hydrogels [13], redox-active self-assembled layers [14], carbonaceous
materials [15], fullerene [16], graphene [17], as have conducting polymers, such as polypyrrole [18],
polyaniline [19–21], polythiophene [22,23], and poly(3-methylthiophene) [24–27].

Among these materials, the conductive polymer PEDOT is one of the most promising
ion-to-electron transducers for solid-contact ISEs, since PEDOT offers less electroactivity and fewer
electrochemical side reactions than the highly p-doped conductive polymers [28,29]. Moreover,
PEDOT is highly conductive, which may assist in preventing the accumulation of water and salt
between the conductive substrate and the ISM.

In this work, we report an ASS-ISE based on PEDOT, with a benzo crown ether as a neutral carrier,
that exhibits high beryllium selectivity and sensitivity. Employing PEDOT as an active ion-to-electron
transducer in combination with an ISM forms an excellent strategy for beryllium sensing while avoiding
the detrimental water layer formed at the buried interface of ASS-ISEs.

2. Materials and Methods

2.1. Reagents and Preparation of Solution

Beryllium sulfate tetrahydrate was purchased from Alfa Aesar. The membrane components,
monomeric 3,4-ethylenedioxythiophene (EDOT), high-molecular-weight poly(vinyl chloride) (PVC),
o-nitro phenyl octyl ether (o-NPOE), and sodium tetraphenylborate (NaTPB), were obtained from
Aldrich. All other chemicals were of analytical grade and used without further purification.
All beryllium solutions were prepared from distilled-deionized water with a resistance of ≥18.2 MΩ,
and solutions of different concentrations were prepared using the sulfate salts of given cations with
diluting 0.1 M stock solutions.

2.2. Instrumentation

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance-300 (300 MHz)
spectrometer. High-resolution mass spectra were measured using a JEOL JMS-700 (MStation)
instrument. Conductance measurements were performed using a Metrohm 660 conductivity meter at
a frequency of 2 kHz, with the cell constant of 0.769 cm−1 was used. The reference electrode (Orion
sleeve-type double-junction Ag/AgCl reference electrode; model 90-02) was used to compare with the
ISEs; the potential differences were conducted using a PC equipped with a high-impedance-input
16-channel analog-to-digital converter (KOSENTECH, Korea). Electrochemical experiments were
carried out at room temperature using a PARSTAT2263 (Princeton Applied Research, Oak Ridge, TN,
USA) with a three-electrode system. A saturated Ag/AgCl electrode was used as the reference, and all
potentials were recorded with respect to this electrode.

2.3. Synthesis of the Ionophore

Compound 1 (benzo-9-crown-3-ether) was synthesized according to previously reported
procedures [29]. Briefly, benzo-9-crown-3-ether (2.0 g, 1.1 mmol) in CH2Cl2 (50 mL) was added
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to glacial acetic acid (30 mL), and the mixture was stirred with one drop of 96% H2SO4. Afterward,
70% HNO (10 mL) was slowly added to the mixture, followed by stirring at RT for 1 h and refluxed
for 4 h. After cooling to 0 ◦C in an ice bath, aqueous Na2CO3 was added to adjust the pH to 7.
Following extraction with CHCl3, the organic solvent was evaporated, and the remaining extract
was washed with a saturated NaHCO3 solution. The crude product was recrystallized from absolute
ethanol, affording a pure product with a 59% yield after filtration and drying. MP: 94.5 ◦C; 1H-NMR
(300 MHz), DMSO: δ 7.7 (s, 2H, ArH), 4.4 (m, 4H), 3.85 (m, 4H); MS: m/z (%) 270.20 (M+, 100).

2.4. Conductance Measurements

BeSO4 solution (5.0 × 10−5 M) was placed in the conductometric cell in a mixed solvent (7 mL)
of 95% Acetonitrile-DMSO and titrated with a solution of 1 in the same solvent to a molar ratio of
[1]/[Be2+] ranging from 5.0 × 10−4 M to 3 of mole ratio. Conductance readings were recorded at 25 ◦C.
Similar procedures were followed for other metal cations, Mn+, to obtain plots of molar conductance
versus [1]/[Mn+] concentration ratio. The stability constants (log Kf) were calculated by fitting all the
conductometric curves with a nonlinear least-squares curve fitting program, KINFIT [30].

2.5. Electrode Preparation and ISE Measurements

The polymerization of Poly(3,4-ethylenedioxythiophene) (PEDOT) was carried out galvanostatically
in acetonitrile solutions containing the 20 mM of EDOT monomer in the presence of 100 mM of TBAP
(tetrabutylammonium perchlorate), while EDOT was polymerized electrochemically onto Pt substrates
using the cyclic voltammetry (CV) technique and following reported procedures [8].

To prepare all-solid-state ISEs, a solution of 1 (100 µL) was applied to bare Pt and Pt/PEDOT
electrodes. The membrane was composed of ~3.0 mg of 1, ~3.0 mg of NaTPB, ~64.0 mg of o-NPOE,
and ~30.0 mg of PVC. These components were dissolved in 1.5 mL of THF. After the evaporation
of THF, the resulting plasticized PVC membrane covered the underlying PEDOT film, yielding
Pt/PEDOT/1-ISM (E1) and Pt/1-ISM (E2) electrodes.

For electromotive force (EMF) measurements, the dynamic response curves and calibration plots
of ISEs were obtained, and a standard solution was added stepwise to 100 mL of background electrolyte
under stirring at 25 ◦C. The calibration curve for Be2+ is shown in Figure S1.

The selectivity coefficients towards several cations were determined by a separate solution method
(SSM) using the reduced form of the Nikolsky–Eisenman equation [31].

log Kpot
i, j =

(
E j − Ei

)
Si

Here, Ej and Ei are the potentials measured in a 10−2.5 M solution of the interfering ion and a
10−2.5 M solution of the primary ion (Mn+), respectively. Si is the calibration slope. The detection
limits of the electrodes were estimated through a method suggested by IUPAC [32].

2.6. Chronopotentiometry Measurement

For constant-current chronopotentiometric measurements, the experiments were performed using
cyclic voltammetry at 25 ◦C. To investigate the E1 and E2 electrodes in 0.1 M of BeSO4 solution as
a function of time, a constant current of +1.0 nA for 60 s followed by −1.0 nA for another 60 s was
applied while the potential of electrodes was measured.

2.7. Impedance Measurements

Electrochemical impedance spectroscopy (EIS) measurements were performed in deaerated
0.1 M BeSO4 solution with the same voltammetric cell and electrodes under quiescent conditions.
The impedance spectra were recorded in the frequency range of 100 kHz to 10 mHz using a sinusoidal
excitation signal with an amplitude of 10 mV.
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3. Results and Discussion

3.1. Binding Studies

The 9-crown-3-ether moiety of ionophore 1 is widely known as a receptor for the Be2+ ion due
to its cavity size (0.26 Å) (Figure 1) [5,33,34]. In order to investigate the binding ability between the
Be2+ ion and 1, we performed conductance measurements that determined the stoichiometry and
stability constants for the complexes formed between 1 and Be2+ salts. Figure 2 shows the plots of
molar conductance, Λm, versus the metal cation concentration ratio [1]/[Mn+], where Mn+ was Be2+

and other cations. As shown in Figure 2, the Be2+ binding curve for 1 obviously plateaued starting
at a 1:1 mole ratio. The stability constants of the complex between 1 and the metal cations can be
determined by analyzing the molar conductance data using the KINFIT program. A best-fit curve for
1-Be2+ was obtained by a nonlinear least-squares fitting procedure. As shown in Table 1, the stability
constant between 1 and the Be2+ ion (log Kf = 6.54) was higher than that of the other metal cations
studied, indicating that 1 a exhibited greater selectivity for Be2+ than for other metal cations. The order
of the stability constants is as follows: Be2+ >> Mg2+ > Li+ > Ca2+ > Na+ > K+. These results indicate
that ionophore 1 can be employed in electrodes as an ion-selective membrane for the Be2+ ion.
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Figure 1. Chemical structure of 1.
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Figure 2. Conductometric titration curves for 1 with metal cations, obtained in 95% acetonitrile-DMSO
(AN-DMSO) solution. The molar conductance Λm (S−1cm2mol−1) is plotted against [1]/[Mn+].

Table 1. Log Kf values of binary mixtures of 1 complexes with different cations in 95% AN-DMSO.

Li+ Na+ K+ Be2+ Mg2+ Ca2+

1 4.05 3.05 2.88 6.54 4.51 3.45

3.2. Response and Selectivity of All-Solid-State Be2+-ISE

To optimize several parameters related to the performance of the ASS-ISEs, ionophore 1 was
mixed and tested with different plasticizers: o-NPOE, NPPE, TEHP, and DBP. The best membrane
performance was obtained in compositions with 3% ionophore, 3% NaTPB, 64% o-NPOE, and 30% PVC.
The performance of the prepared ISEs was analyzed in metal cation solutions with concentrations
ranging from 10−2.0 to 10−8.0 M.
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To confirm the desired effect of PEDOT on the membrane as an ion-to-electron transducer,
two different electrodes, E1 (with PEDOT) and E2 (without PEDOT), were investigated in this
study. In potential measurements, a linear response with a near-Nernstian slope of 29.5 mV/decade
was observed between 10−2.5 M and 10−7 M Be2+ for E1, while E2 gave a sub-Nernstian response
(data not shown). The results obtained for alkali, alkaline-earth, and transition metal cations are shown
in Figure 3a. The slopes, linear ranges, detection limits, and response times of E1 and E2 are shown in
Table S1. The Be2+ detection limit of E1, calculated from the intersection of the two slopes, was 10−7.0 M,
which is superior to the detection limit of E2 of 10−6.2 M. In addition, E1 exhibited a faster response
time than E2 (Figure S2). Thus, electrode E1 clearly demonstrated improved selectivity and sensitivity
for the Be2+ ion, consistent with the presence of ionophore 1. As shown in Figure 3b, the potentiometric
selectivity coefficients of the E1 and E2 electrodes towards several metal cations were determined
by the separate solution method (SSM). Electrode E1 showed significantly enhanced selectivity for
Be2+ (log Kpot

Be2+ ,Mn+ > −3.7) over other metal cations compared with electrode E2. These results bear
out the rational prediction of improved electrochemical performance through efficient ion-to-electron
transduction via PEDOT on the membrane.
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Be2+ ,Mn+ ) for E1 and E2.

To clarify the significant role of PEDOT, the potential stability of the all-solid-state Be2+-ISE was
studied using the constant-current chronopotentiometric measurement suggested by Bobacka [11].
Chronopotentiograms were recorded for E1 and E2 (Figure S3). The potential drift of electrode E1,
derived from the ratio ∆E/∆t, was 1.62 µV/s at a current of 1 nA, which was lower than that of E2,
for which ∆E/∆t = 4.18 µV/s at the same current. This result suggests that potential stability can be
dramatically improved by applying PEDOT as the solid contact between the Pt electrode and the
ion-selective membrane. Additionally, the E1 and E2 electrodes were characterized by electrochemical
impedance spectroscopy (EIS). As shown in Figure S4b, the introduction of the conductive PEDOT
between the Pt electrode and the ion-selective membrane reduced the resistance from 12.2 MΩ to 9.3
MΩ, which is evidence that PEDOT facilitates charge transport across the interfaces of ASS-ISMs—that
is, it “unblocks” the interface.

3.3. pH Effects

The effect of pH on the Be2+-ISE (E1) was tested in a 10−2 M BeSO4 solution over the pH range of
2.5–11 (adjusted with HNO3 or NaOH). As shown in Figure 4, the potential response was almost the
same over the pH range of 2.5–9.0. The observed drift at higher pH values may be due to the formation
of hydroxyl complexes with Be2+ ions in solution. Thus, the wide pH working ranges of the developed
electrode E1 may be useful for selective Be2+ sensing in aqueous solution.
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3.4. Analytical Applications

Electrode E1 was used as an indicator electrode in a titration of 10−4 M BeSO4 with a standard
10−2 M EDTA solution, allowing the accurate determination of the amount of Be2+ ion in solution,
as evidenced in the titration curve in Figure S5. In addition, E1 was maintained in a 0.01 M Be2+

solution for 2 months to investigate its long-term response behavior, and there were no drastic changes
in the slope or the detection limit of the electrode (Figure S6). Thus, the proposed Be2+-ISE exhibited a
good performance for at least 1 month under laboratory conditions.

4. Conclusions

This study shows that PEDOT can serve as an effective ion-to-electron transducer in all-solid-state
Be2+-ISEs in combination with a plasticized PVC-based membrane containing ionophore 1.
The electrochemical properties of an all-solid-state electrode (E1) were quantitatively improved
by the introduction of PEDOT, as shown by comparison with an electrode (E2) where PEDOT was
absent. The proposed electrode exhibited stable Nernstian characteristics in BeSO4 solutions with
concentrations ranging from 10−2.5 to 10−7 M, and response times shorter than 15 s. Therefore,
the developed electrode with a wide working pH range from 2.5 to 9.0, based on incorporating PEDOT
into an ion-selective membrane containing ionophore 1, is well suited for applications requiring highly
selective beryllium sensors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/21/6375/s1:
Figure S1: Calibration curve obtained by increasing Be2+ ion for the E1; Figure S2: Dynamic response time of
(a) electrode E1 and (b) E2 for step changes in concentration of Be2+ ion; Figure S3: Chronopotentiograms for the
E1 (black line) and the E2 (red line) electrodes recorded in 10−3 M BeSO4. The applied current was +1 nA for 60 s
and −1 nA for 60 s.; The total resistance (R) of the E1 electrode is approximately 9.5 MΩ, estimated by the potential
jump, according to Ohm’s law, R = E/I, where E represents the potential change and I is the applied current;
Figure S4: Impedance spectra of (a) the bared Pt (solid circle) and the PEDOT/Pt (hollow circle) recorded in 0.1 M
KCl, the frequency range, 10 mHz–100 kHz; the excitation amplitude, 10 mV; The sharp of the impedance spectra
is typical for PEDOT film in an aqueous electrolyte. The impedance spectra are dominated by an approximate
90◦ capacitive line, and there is only a slight deviation from the capacitive line at high frequencies. These results
indicate that a fast electronic transfer occurs at the interface between Pt/PEDOT and PEDOT/solution. Also,
the redox capacitance was estimated using the equation CLF = 1/(2πf Z”), where f is the lowest frequency used to
record the spectra (10 mHz), and Z” is the imaginary part of the impedance at this frequency. The calculated CLF
was 617 and 239 µF for Pt/PEDOT and bared Pt, respectively. And (b) the E1 (solid circle) and E2 (hollow circle)
and the electrodes recorded in 10−3 M BeSO4 at the open-circuit potential. The frequency range, 10 mHz–100 kHz;
the excitation amplitude, 100 mV; Figure S5: Potential titration curve of the E1 as an indicator electrode, condition:
25 mL of 0.1 mM BeSO4 with 10 mM EDTA; Table S1: Response characteristics of all-solid state electrode (E1) and
coated wire electrode (E2); Figure S6: Long-term response behavior of the electrode E1.
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