
sensors

Article

Recognition of Typical Locomotion Activities Based
on the Sensor Data of a Smartphone in Pocket
or Hand

Markus Ebner 1,* , Toni Fetzer 1 , Markus Bullmann 1 , Frank Deinzer 1

and Marcin Grzegorzek 2

1 Faculty of Computer Science and Business Information Systems, University of Applied Sciences
Würzburg-Schweinfurt, 97070 Würzburg, Germany; toni.fetzer@fhws.de (T.F.);
markus.bullmann@fhws.de (M.B.); frank.deinzer@fhws.de (F.D.)

2 Institute of Medical Informatics, University of Lübeck, 23562 Lübeck, Germany;
grzegorzek@imi.uni-luebeck.de

* Correspondence: markus.ebner@fhws.de

Received: 22 September 2020; Accepted: 5 November 2020; Published: 17 November 2020 ����������
�������

Abstract: With the ubiquity of smartphones, the interest in indoor localization as a research area
grew. Methods based on radio data are predominant, but due to the susceptibility of these radio
signals to a number of dynamic influences, good localization solutions usually rely on additional
sources of information, which provide relative information about the current location. Part of this role
is often taken by the field of activity recognition, e.g., by estimating whether a pedestrian is currently
taking the stairs. This work presents different approaches for activity recognition, considering the
four most basic locomotion activities used when moving around inside buildings: standing, walking,
ascending stairs, and descending stairs, as well as an additional messing around class for rejections.
As main contribution, we introduce a novel approach based on analytical transformations combined
with artificially constructed sensor channels, and compare that to two approaches adapted from
existing literature, one based on codebooks, the other using statistical features. Data is acquired
using accelerometer and gyroscope only. In addition to the most widely adopted use-case of carrying
the smartphone in the trouser pockets, we will equally consider the novel use-case of hand-carried
smartphones. This is required as in an indoor localization scenario, the smartphone is often used
to display a user interface of some navigation application and thus needs to be carried in hand.
For evaluation the well known MobiAct dataset for the pocket-case as well as a novel dataset for
the hand-case were used. The approach based on analytical transformations surpassed the other
approaches resulting in accuracies of 98.0% for pocket-case and 81.8% for the hand-case trained on the
combination of both datasets. With activity recognition in the supporting role of indoor localization,
this accuracy is acceptable, but has room for further improvement.

Keywords: activity recognition; accelerometer; gyroscope; smartphone; sensor fusion;
indoor localization; locomotion; principal component analysis; codebooks; support vector machine;
nearest neighbor

1. Introduction

The ubiquity of smartphones has made many use-cases practicable, which were previously
thought unfeasible. Thanks to their general versatility, the need for special equipment in many
different areas of daily living almost completely disappeared. Due to their constantly increasing
processing power, as well as the steadily growing repertoire of contained sensors and measuring
devices, smartphones have also attracted the attention of many fields of research.

Sensors 2020, 20, 6559; doi:10.3390/s20226559 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7221-3748
https://orcid.org/0000-0002-8249-8783
https://orcid.org/0000-0001-7213-1024
https://orcid.org/0000-0003-2573-3529
https://orcid.org/0000-0003-4877-8287
http://www.mdpi.com/1424-8220/20/22/6559?type=check_update&version=1
http://dx.doi.org/10.3390/s20226559
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 6559 2 of 35

An example is the field of activity recognition, which tries to classify physical activities, such as
walking or ascending stairs, currently performed by a person, based on sensor data. An extensive
overview and introduction of the field of activity recognition using inertial sensors of either wearables
or smartphones is provided in [1,2]. In earlier works, this was mostly done using multiple
wearable sensors attached to several positions on the human body [3,4]. With the inception of
smartphones, the focus of this field shifted to using them as single location sensor sources. For the
employed approaches, this brought a whole new set of required properties, such as orientation- and
location-independence, since people tend to carry their smartphones in locations of their preference.
Possible use-cases for activity recognition range from logging activity diaries, to acting as information
source for other applications, such as sports apps or other fields of research. Indoor localization is
one such field that benefits from activity recognition as source of information. Research projects exist,
attempting to implement indoor localization solely based on sources for relative position information,
such as activity recognition and pedestrian dead reckoning, in combination with a building’s floor
plan [5]. However, such techniques without sources for the absolute location within the building suffer
from obvious disadvantages, such as the requirement to know a starting point or the inevitable drift
over time.

Nowadays, indoor localization research often uses radio signals from existing Wi-Fi or Bluetooth
infrastructure to estimate the absolute position of a person [6–8]. However, these signals are susceptible
to numerous dynamic influences, such as people passing by, changing nearby interior, or opened
and closed doors [9]. These influences cause strong fluctuations on the estimation, which is the
main reason for why state of the art indoor localization systems are based on a combination of
sources for absolute location information, such as radio signals, and sources of relative information,
such as activity recognition and pedestrian dead reckoning [10–14]. In this combination, the source of
relative localization information provides short-term accuracy, and the source for absolute localization
information prevents the estimation from drifting off in the longer term. When activity recognition is
used as part of this environment, several requirements should be fulfilled. First, the activity recognition
should work in the most prominent positions, in which a smartphone is typically carried, for scenarios
of indoor localization. For context-awareness applications, this mostly consists of passive positions,
such as trouser pockets (called pocket-case in the remainder of this work), whereas navigational
use-cases mostly consists of the smartphone being carried in hand, such that the display can be seen
(hand-case). Second, the activity recognition should provide estimations with a latency as short as
possible, since its main goal is to provide short-term accuracy. Third, since activity recognition is only
one part of the overall application, it must not be overburdening resources, such as computational
complexity, memory, and battery. In addition, activity recognition should be able to detect when the
data it provides is not reliable. This, for example, includes situations where users start messing around
with their mobile phones. In addition, finally, a practical implementation must be able to work with the
hardware of smartphones that are most common today. This not only refers to the available computing
power, but also to the selection of the available sensors.

The aim of this work is to find an approach for activity recognition that recognizes the typical
locomotion activities in both pocket-case and hand-case in a as stable and accuracy way as possible.
For that, we limited the focus on the four most basic locomotion activities used when moving around
inside buildings: standing, walking, ascending stairs, and descending stairs, as well as the additional
messing around class for rejections. Additionally, only accelerometer and gyroscope will be used,
since the barometer has great potential, but only a small distribution among the currently distributed
smartphones. To find a suitable approach for our use-case, we will introduce a novel approach based
on analytical transformations combined with artificially constructed sensor channels, and compare that
to two approaches adapted from existing literature, one based on codebooks, the other using statistical
features. The latter was also included to serve the purpose of comparability with other works, as it
maps best to existing research for the pocket-case.

Sensors 2020, 20, 6559 3 of 35

The paper is structured as follows: In Section 2 we examine papers with a close relation to our
work. Next, Section 3 contains an introduction of the employed sensors and coordinate systems,
as well as short discussions on the activities to be identified, together with their characteristics and
possible difficulties in both cases. The used activity recognition approaches are presented in Section 4,
followed by evaluation and comparison between them in Section 5. Finally, the work concludes in
Section 6.

2. Related Work

Activity recognition has been a field of research for many years already. Most works in this area
differ in their set of selected activities, while having the basic locomotion activities, which are covered
in this work, as common basis most of the time.

One of the first works on the general subject of activity recognition is [15]. Like most research
before the inception of smartphones, it focuses on activity detection using wearable sensors. For the
activity recognition using wearables, the publications of Bulling et al., as well as the publication by
Lara and Labrador, are the established works of reference [2,16]. Most of this research is based on the
use of multiple sensors placed at different positions on the human body, which is rather impractical for
real-world scenarios. Though, mostly for the detection of complex activities such as opening a door,
wearable sensors are still being researched today [17].

The publications of Shirahama et al., using a codebook approach together with six accelerometers
rank among the best with regards to accuracy [18,19] in this area. Over the course of this work,
the codebook approach will be adapted to and tested for the smartphone use-case at hand. Due to the
lack of practical uses with many wearables, Lester et al. investigated whether this large number of
wearables, which were common in most publications before, are really necessary for the detection of
the most common activities of daily living [20]. As a result of the reduction in the number of sensors,
the topics of location- and orientation-independence arose, to allow a user to pick their favorite position
for the sensor. Though, the increasing popularity of smartwatches makes activity recognition with a
single wearable an interesting target for research [21]. These properties are also essential for activity
recognition using smartphones, since users typically only have a single smartphone, which they carry
in a position of their personal preference. With the inception of smartphones, the number of possible
use-cases for activity recognition increased [22]. Most of the studies in this area deal with the case of
smartphones carried in passive positions such as pockets or even handbags. Good general overviews
of activity recognition with smartphones can be found in [22], which mainly focuses on challenges
and possible use-cases, as well as [23,24], which give a general technical overview of approaches and
other works in this area. The hard constraint of only one sensor location, as well as the necessity
for orientation-independence is the subject of multiple works, such as [25,26]. The topic of user
independence is further researched in [26,27]. Commonly represented in publications focused on
smartphones is the use of the gyroscope sensor. Ref. [28,29] examine the roles of the different sensors for
activity recognition, also examining relations to single activities. They conclude that the magnetometer
leads to barely any improvements when used in addition to accelerometer and gyroscope.

Most smartphone-based publications use approaches based on hand-crafted statistical features,
instead of feature learning approaches [26,30–33], while also doing a comparison between classification
approaches such as SVM, Naive Bayes, and decision trees. Ref. [34] gives an overview of many
commonly used features applicable to accelerometer data. This approach will also be discussed in this
paper, while using a handpicked combination of features from the ones used in the mentioned works.
As briefly mentioned earlier, the most works in activity recognition with smartphones cover the case
of devices carried in passive locations, while the case of a smartphone being statically held in hand as
would be the case for pedestrian navigation use-cases has very little coverage in activity recognition
research yet. Ref. [5] is one of the few publications with a similar use-case, which is directly using the
recognition of activity sequences for localization, though while making use of a barometer. Ref. [35]
is another publication that uses data from a smartphone carried in the hand. However, the work

Sensors 2020, 20, 6559 4 of 35

leaves open an exact description of the data acquisition, and from the existing description it can be
assumed that the smartphone was merely held in the hand while performing the usual locomotion
arm movements.

3. Sensors and Locomotion Activities

3.1. Sensors

For activity recognition, multiple sensors of a smartphone can provide valuable information.
Previous studies, as mentioned in Section 2, have successfully used accelerometers, gyroscopes,
and barometers. Due to the low availability of barometers, this work focuses on the combination
of accelerometer and gyroscope. Most sensors in Android and iOS use the same coordinate
system, as shown in Figure 1. This coordinate system is typically called device coordinate system.
Accelerometers measure the acceleration along the three depicted axes, mostly consisting of a static
and a dynamic component:

a =
(
ax, ay, az

)ᵀ
= astatic + adynamic + anoise where astatic = OE→L · −g, (1)

where astatic is equivalent to the negative gravitational acceleration, rotated from the earth’s coordinate
system into the device’s local coordinate system by OE→L, adynamic is the acceleration applied on
the phone by the user, and the sensor’s noise anoise. This, however, also means that the device
coordinate system depends on how the smartphone is currently oriented. If the user changes the
device’s orientation, collected acceleration data also is rotated. Orientation sensitivity is an undesirable
property in activity detection, since there is no correlation between a device’s general orientation and
the currently executed activity. This is why many publications deal with this topic, in one form or the
other [23]. Aligned coordinate systems can help to remedy this problem, by deriving a deterministically
calculatable transformation from the sensor data in the device coordinate system to a coordinate system
independent of the smartphone’s orientation. Since the transformation between device- and aligned
coordinate system has to be derivable from the raw sensor data, most of the aligned coordinate systems
try to align one of the axes to earth’s gravity vector, which is a good absolute measure of the device’s
orientation. The most basic approach to calculate this orientation is to isolate the gravity vector from
the measured acceleration with a long-term mean, and then determining the rotation OL→E from
the isolated gravity vector in the device coordinate system, to gravitation in the earth coordinate
system (0, 1, 0)ᵀ. However, since this introduces a large delay, practical use-cases typically use more
advanced techniques such as complementary filters [36,37], or the Madgwick filter [38,39], which
directly calculate OE→L using a combination of accelerometer for long-term stability, and an integration
of the gyroscope for quick orientation changes. Since both approaches use only one reference for the
alignment, the remaining two coordinate system axes remain unspecified, and are allowed to rotate by
sensor inaccuracy. Acceleration â in this underspecified earth coordinate system is calculated using:

â = OL→E · a where OL→E = OE→L
−1 (2)

Aligning the two mentioned remaining axes to another fixed reference in the earth coordinate
system, such as one of the magnetic poles, is more of a hindrance than helping, since that would
introduce a sensitivity to the walking direction. To fix this, Yang has instead chosen to represent
measured accelerometer data as two-dimensional [25,40], consisting of a vertical and a horizontal
component. Movement along the horizontal axis is then only represented by its magnitude,
intentionally discarding orientation information. Acceleration a′ in this two-dimensional coordinate
system is calculated using:

a′ =

(
ây,

√
â2

x + â2
z

)ᵀ

. (3)

Sensors 2020, 20, 6559 5 of 35

x

y
z

Figure 1. Coordinate system used for sensor data measured on smartphones using the iOS or Android
operating systems.

The gyroscope, as second used sensor in this work, measures the current angular velocity around
the shown axes in rad/s, which is composed of the sensor’s noise θnoise and the angular velocity
caused from movements of the user θdynamic. A gyroscope measurement is given by:

θ =
(
θx, θy, θz

)ᵀ
= θdynamic + θnoise. (4)

As both Equations (1) and (4) show, accelerometer and gyroscope each have a noise component
in the measured data. Part of this noise is normally distributed noise, which is less significant
for the gyroscope, when compared to the noise measured by typical MEMS accelerometers.
This makes gyroscopes very reliable as short-term component in combinatory techniques such as the
complementary filter. Another significant part of the noise is a bias, which is caused by properties
of the underlying MEMS-technology of both sensors [41]. Android and iOS try to remove this bias
internally, using techniques such as the ones discussed in [42], which has proven to be sufficient for
the requirements in this publication.

3.2. Locomotion Activities

Based on the example data shown in Figure 2a,b, we will next do a short discussion of the
activities to be detected for our use-case, their properties, characteristics, as well as a comparison
between pocket-case and hand-case.

Standing. As one would expect, the standing activity does not exhibit any periodic behavior
within the measured data. This is in contrast to the other covered activities, which is also clearly visible
in the shown samples of Figure 2a,b. In the possible use-case of doing a navigation within a museum,
standing could additionally comprise the act of looking around. Most of the times, looking around
does not exhibit longer sequences of periodic behavior either, but a simple check for any action in the
measurements to decide whether the current activity is standing, might fall into the trap of rejecting
this situation. In the case of simply no action in the signal, there is barely any difference between the
hand-case and the pocket-case. The standing activity has thus not been included again in Figure 2b.
Simply looking around mostly involves one’s upper body, which results in little movement to be
recorded in the lower body, to which the pocket is indirectly attached. The problem of looking around
is thus less interesting for the pocket-case.

Walking. In the measurements, any activity that involves walking can be recognized by its
characteristic periodic behavior. The exhibited frequencies caused by gait are dependent on many
factors; one of them being the smartphone’s location. When the phone is held in hand, this periodic
behavior is mainly visible in the accelerometer measurements, whereas the most characteristic part
of the signal is found in the gyroscope measurements, when the phone is carried in a trouser pocket.
Additionally, the exhibited frequency for the hand-case appears to be roughly double that of the trouser
pockets case. This is because the most evident part of the periodic behavior in the hand-case is the up-

Sensors 2020, 20, 6559 6 of 35

and downwards movement of the upper body, caused by the steps. Here, the smartphone is able to
measure each step, while when attached to the trouser-pocket, it mostly measures the movement of
only that single leg (mainly in the gyroscope’s x-axis in Figure 2a). Due to this difference, Figure 2b
visualizes data over a longer time span than Figure 2a. Additionally, people walk at different speeds,
which introduces an unknown in the exhibited frequencies [43], further obscured by factors such as a
person’s mood, situation, and age.

0

5

10

A
cc

el
er

om
et

er
(m

/
s2)

Standing Walking Ascending Stairs Descending Stairs

0.5 1 1.5

−1

0

1

G
yr

os
co

pe
(r

ad
/

s)

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5(a)

0

10

20

A
cc

el
er

om
et

er
(m

/
s2)

Walking Ascending Stairs Descending Stairs

0.5 1 1.5 2 2.5 3

−4

−2

0

2

G
yr

os
co

pe
(r

ad
/

s)

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

Time (s)
(b)

Figure 2. Raw sensor data sequences of the covered activities in hand-case (a) and pocket-case (b).
Green, blue, and red represent the device’s local coordinate system axes x, y, and z respectively.

Walking Stairs. During normal gait, the maximum inclination of the thighs is rather small,
because they are the heaviest part of the leg, and raising them costs energy. When climbing stairs,
this maximal inclination is higher than for normal gait. As demonstrated in Figure 3a, the angle of
inclination is mainly important for the pocket-case. Since the gyroscope only measures the angular
velocity, and not the actual angle, comparing the walking activity with the activity of ascending stairs
in the samples at Figure 2b is not trivial. The most significant difference between both is the length
of their peaks exhibited on the gyroscope’s x-axis, which, however, also depend on step frequency.
In the hand-case, the differentiation between walking and ascending stairs from the samples shown
in Figure 2a seems to be hard, since there is no apparent constant visible difference, apart from the
frequency that is slightly faster when walking on an even surface. However, as mentioned above,
making this differentiation by means of calculating the exhibited frequency is bound to be unstable
even on a per person basis.

For the activity of descending stairs in the hand-case, the differentiation bears pretty much
the same problems. In the pocket-case, the differentiation seems easier. As shown in Figure 3b,c,
the maximum inclination of the thighs while descending stairs is much smaller than during ascend,
because most of the rotation is absorbed by bending the toes on the previous stair step. Thus, when only

Sensors 2020, 20, 6559 7 of 35

looking at the observed maximal inclination of the thighs, this makes descending stairs very similar to
normal gait. However, as seen in Figure 2b, the shape of the angular velocity has sharper and shorter
peaks, which are probably caused by the smaller step size compared to normal gait, as well as the
support of gravitation during the downwards movement.

(a) (b) (c)
Figure 3. Typical poses and movements exhibited while walking stairs. (a) demonstrates the high
inclination typically exhibited during the ascend of stairs. (b,c) demonstrate the typically much smaller
thigh inclinations during the descend of stairs.

Messing Around. If indoor localization on the smartphone is not used for the mere guidance to a
destination, another aspect appears that needs to be considered. Sometimes, users start to mess around
with their smartphones during idle periods, which could for example involve hitting the smartphone
against their thighs to the beat of the music in a department store while standing in front of a shelf.
There is no fixed pattern for the way users play around with their smartphones that could be easily
trained. Handling this kind of activity would need to be done by detecting outliers from the normally
occurring values, a rejection class, or similar mechanisms. Since the detection of activities has to be
orientation independent, deciding if a user is messing around by focusing on certain axes of sensor
data is not a reasonable solution.

4. Activity Recognition

Activity Recognition is the task of classifying a continuous stream of data. For this reason, only a
temporally limited segment of the continuous signal at the input is considered at any time. This is
achieved by using the Sliding Window approach on the sensor data streams in each of the three
approaches examined throughout this work. One instance of data within such a temporal window at
one point in time will be called sequence in the rest of this work. The longer these temporal windows,
the worse the classification of very short activity sequences, such as stairs consisting of only three
steps, will be. Whereas a temporal window that is too short will at some point have the problem of
not containing enough information for a reliable classification. This length thus is a tradeoff between
temporal accuracy and classification accuracy. It further also depends on the user, since older people
are generally moving slower and therefore need a larger window than younger users, to cover periodic
movements. Based on the findings of previous studies [44,45] this work is using sequence lengths
between 2 s and 3 s for all approaches.

4.1. Analytical Transformations

Based on analytical transformations, this novel approach first tries to learn a linear transformation
suitable for dimensionality reduction on raw, as well as computationally produced additional sensor
data. Using an analytical transformation for dimensionality reduction here has the potential to
provide better class separability, while also reducing the computing time required in the classifier.
Since applying the rotation matrices calculated by the transformation on the data is comparatively
cheap, this results in a reduction of the overall approach’s computational complexity. As analytical

Sensors 2020, 20, 6559 8 of 35

transformations, we tested both a PCA [46] and an LDA, which is also often called Fisher Discriminant
Analysis [47].

The approach’s pattern recognition pipeline is shown in Figure 4. It uses the raw incoming sensor
data of gyroscope and accelerometer, of which all sensor channels (x-, y-, and z-axis) are handled
independently. On each of the sensor channels, a sliding window is used to extract sequences.
All of these separate sliding windows are synchronized across sensor channels. All associated
windows extracted at one point in time on the stream will in the following be summarized under
the term time-window. One analytical transformation is used per sensor channel, resulting in six
unique transformations when gyroscope and accelerometer provide three channels each. Each of these
analytical transformations is used on the raw sequences of sensor data, which were extracted using the
sliding window on each sensor channel. These transformations significantly reduce the dimensionality
of the sequences, extracted from their respective sensor channels, and at the same time provide the
potential of improving separability.

· · ·

...
...

Accelerometer

Gyroscope

Sliding
Window

Analytical
Transforms Classifier

Virtual
Sensors

Figure 4. Flow diagram of the pattern recognition pipeline employed for the approach based on
analytical transformations. Accelerometer and gyroscope each output the three streams x-axis (green),
y-axis (blue), z-axis (red), which are processed independently throughout the pipeline until their
features are concatenated for classification. Virtual sensors supply additional, artificially created, sensor
channels (black). No preprocessing is required for this approach.

To train the transformations, all activity sequences from the recordings are run through the
pipeline up until the analytical transformations. For this, the sequences extracted from a labeled
dataset are separately accumulated per sensor channel, further broken down by the contained activity
class Ω. These |Ω| activity sets, accumulated per sensor channel, are then used to train the respective
analytical transformation for each sensor channel. When the sensor data is sampled with 50 Hz,
a sliding window of length 2 s thus results in 100 samples per extracted sequence, which is seen as
100-dimensional vector of the corresponding analytical transformation. Smartphones are limited in
their calculation, as well as their battery capacity, even more so since activity recognition is only one
task in the background for most use-cases. The assumption is that the sequences contain a significant
amount of correlation, which can be reduced by an analytical transformation without loosing too
much of the contained information. After this dimensionality reduction has been done per sensor
channel, all resulting feature vectors will be concatenated to one big feature vector per time-window,
which is then used for classification. For an exemplary reduction to 3 remaining dimensions per sensor
channel using accelerometer and gyroscope, this would result in a concatenated feature vector of
length 6 × 3 = 18, when two sensors, and thus six sensor channels are used as input.

Conceptually, calculating the PCA tries to learn template sequences (eigenvectors), which can
then be used to describe new encountered sequences during operation through a linear combination
of the templates learned from the training dataset. The result of this linear combination to reconstruct
a newly encountered sequence from the live stream during operation is a histogram-like feature
vector describing the prevalence of each of the learned template sequences in the linear combination.
This makes noise filters unnecessary, since the resulting eigenvectors are the ones with the largest
variance, and thus only contain a miniscule amount of white noise. The sensor bias, which is mainly a
problem for the accelerometer, turned out to be unproblematic. Most of the bias is corrected by the
online calibration done in Android.

Sensors 2020, 20, 6559 9 of 35

Publications such as [48] from Khan et al. suggest that the problem cannot be easily solved by
linear approaches. They use a KDA for dimensionality reduction and for improving separability. This is
a variation of the LDA used in this work, extended by applying the kernel trick [49]. In case of analytical
transformations, however, the kernel trick makes their memory complexity often scale quadratically
with the number of samples used for training in practice, instead of the number of dimensions. For big,
representative datasets, this is impractical. Instead, in an attempt on getting this approach to gain
non-linear separation abilities, the concept of virtual sensors was adopted. These virtual sensors
generate additional streams of data by taking raw sensor data as input, and continuously calculating
metrics, such as the magnitude, on them. Using

√
a[t]ᵀa[t] for each raw accelerometer sample a[t] at

time t, simple metrics such as the magnitude can be calculated on a per-sample basis without delay.
More complex metrics, such as variance on the other hand, always require multiple samples as input.
For this, a sliding window with a length of wvirt is used that moves across the raw stream of sensor
data using a step width of 1. In pre-tests, wvirt ≈ 0.3 s has shown to perform best while allowing a
small delay. This happens before a sliding window approach is used to extract temporal sequences for
each time-window, and is thus not to be confused with those later in the pipeline. Due to this window,
these windowed metrics introduce a delay of ∆t = wvirt−1

2 . The chosen metrics further also differ in the
amount of input and output dimensions. Calculation of simple and windowed metrics at the examples
of magnitude and variance is demonstrated in Figure 5. An overview of all used virtual sensors and
their metrics is given by Table 1. For the remaining pipeline, including the extraction of sequences,
virtual sensors look and behave no different than real sensors.

t

t

t + 1

t + 1

t

t

∆t

t + 1

t + 1

∆t

Simple Metrics (e.g., Magnitude) Windowed Metrics (e.g., Variance)

Figure 5. Calculation of virtual sensors for simple and windowed metrics at the example of magnitude
and variance, simulated for two consecutive time-steps. For a window size of wvirt, windowed metrics
have a delay of ∆t = wvirt−1

2 , while simple metrics such as magnitude always have a delay of ∆t = 0.

Table 1. Overview of the metrics calculated as virtual sensors for the approach based on analytical
transformations. For each metric, the table lists whether it is calculated on accelerometer, gyroscope,
using a window, if it is calculated per sensor channel, as well as the resulting dimensions.

Virtual Sensor
(Metric)

For
Accelerometer

For
Gyroscope

Calculated
per Sample

Calculated
per Channel

Channels
(Dimensions)

Magnitude X - X - 1
Standard Deviation X X - X 3
Root mean square X X X X 3
Inclination X - X - 2

The calculated virtual sensors and their corresponding metrics were chosen to be beneficial for
activity recognition. For example, magnitude has been used to achieve rotational invariance in works
such as [28,29]. Step detection based on magnitude is much easier if the orientation of the smartphone
is unknown, since the magnitude is independent of the orientation. Other metrics such as standard
deviation, variance, and RMS, on the other hand, allow an easier differentiation between resting
activities and activities which involve movement [30,34]. The Inclination metric listed in the table is
a metric that calculates the absolute rotation of the device in its local coordinate system along x-axis

Sensors 2020, 20, 6559 10 of 35

(called TD, for Top-Down) and y-axis (called LR, for Left-Right) in rad. This metric is calculated on the
accelerometer data on a per-sample basis using:

f [t]TD = atan2(a[t]y , a[t]z) , and f [t]LR = atan2(a[t]x , a[t]z), (5)

where f [t]TD and f [t]LR denote the feature calculated at time point t along x-axis and y-axis respectively.
The function atan2 is an extension of tan−1, which considers the quadrant in the calculation.
One sample at time point t of the accelerometer data from the stream used for the calculation is
denoted by a[t]x , a[t]y , and a[t]z for the device’s local x-axis, y-axis, and z-axis respectively. After the virtual
sensors have been calculated, and all streams of channels have been synchronized, the extraction of
windows from each sensor-channel to produce features for a time-window is then done analogous
to what has been described for the real sensors above. At that point in the pipeline, virtual sensor
channels and real sensor channels are treated equally.

Outlier Detection

As discussed previously, messing around with the smartphone consists of very individual
movements. Creating a dataset for messing around is thus not an option. It follows that the analytical
transformations used in this approach cannot be trained using recordings of users messing around
with their smartphone. Due to the manifold nature of movements done while messing around with
a smartphone, there will certainly be a set of movements that are too similar to the actually covered
activities in this work, thus leading to a certain amount of misclassifications. The approach described in
this section uses the concatenated feature vectors calculated per time-window for outlier classification.
Since no representative set of training data for outliers can be produced, a normal classification
approach is impossible. Thus, a one-class classifier is used to classify whether a feature vector is an
outlier or contains an actual activity sequence. For this task, a one-class Support Vector Machine
(SVM) using the well-known Radial Basis Function (RBF) kernel is used. Finding a value for the
hyperparameter γ of the kernel is done as part of the evaluation.

4.2. Codebook

One of the best performing approaches regarding accuracy in the field of activity recognition is
the codebook approach by [19]. However, to the best of our knowledge, this approach has yet only
been used in combination with wearable devices. The original work, which will be used as model for
this work, used six accelerometer-only wearables mounted on different body positions. Conceptually,
this approach tries to learn characteristic shapes exhibited in the sensor data during training. When the
codebooks are then used during operation, exhibited shapes from the stream are compared against the
learned characteristic shapes, which produces a histogram-like feature vector. Due to the clustering
done in the training phase, no filtering is required on the raw sensor data. The following will describe
our differences to the original, while adopting the terminology of sequences, subsequences, codebooks,
and codewords from the mentioned publication.

Figure 6 shows a flow diagram of the recognition pipeline employed with the codebook approach.
As can be seen, the first steps are sliding windows to extract sequences of length wseq, which are then
further subdivided into subsequences of length wsub. Instead of multiple accelerometers at different
locations, we use accelerometer and gyroscope as two different sensors, though within the same
location. To capture correlation between sensor channels, the authors use a strategy that appends
all temporally related subsequences of all sensor channels, before assigning this composite with the
codebook. This workflow is visualized on the left side in Figure 7. We instead use the strategy depicted
on the right, which does not append subsequences, and instead assigns them one by one using the
same codebook. In a pre-test, this strategy produced slightly better results. The biggest difference
between both strategies of combined sensor channels is the number of feature vectors produced per

Sensors 2020, 20, 6559 11 of 35

sensor. While the strategy without appending subsequences produces the same number of feature
vectors as the sensor has channels, the appending strategy always only produces one feature vector.

Sliding
Window

Sliding
Window

Codebook
Assignment Classifier

Accelerometer

Gyroscope

Figure 6. Flow diagram of the pattern recognition pipeline employed during operation of the
codebook-based approach. The two sliding windows correspond to the ones employed by the
codebook approach for the extraction of sequences and subsequences respectively. Accelerometer and
gyroscope each output the three streams x-axis (green), y-axis (blue), z-axis (red), which are processed
independently throughout the pipeline until one of the two codebook assignment strategies is used.

t
...

· · ·
...

Codebook

· · ·

Subsequences Appended
Subsequences

Assignment

t
...

· · ·

Codebook

· · ·· · ·· · ·

Subsequences Assignment

Figure 7. Diagrams visualizing the strategies for using a single codebook with multiple sensor channels
as used by [19] (left) and us (right). With the left variant, subsequences from all channels are appended
to a vector that is then used for codebook assignment, producing only one histogram feature vector per
time-window and sensor. The variant on the right treats subsequences of all sensor channels equally,
and assigns them using the same codebook, resulting in 3 independent histogram feature vectors.

Multiple variants for the assignment of sequences to a codebook exist. As [19] suggest, we use Soft
Assignment, which has shown better general versatility. Additionally, the codebook approach has a
couple of hyperparameters. These are the width of the extracted sequences wseq with the corresponding
step size, the width of extracted subsequences wsub with the corresponding step size, as well as the
codebook size |C|. For the Soft Assignment strategy, there additionally is σ, which controls the
Kernel Density Estimation’s smoothness. The parameters |C| and σ have to be chosen with respect
to use-case and dataset, which will be done as part of the evaluation. To reduce computational
complexity, we used a fixed step width of si = 2 samples for subsequences ω, which was determined
empirically. The outer sequences s, which are divided into subsequences during operation, are not
moved freely, but instead moved by a multiple of this subsequence step width. The length wseq

of sequences s is thus not given in samples directly, but instead implicitly determined through the
number of subsequences nsub contained. The step width used for sequences s is then given by 1

4 nsub,
which moves sequences 1

4 th of their contained subsequences forward per time step. This alignment
of sequences to the contained subsequences can in production be used to reduce computational
complexity, since codebook assignments have to be done only once per subsequence, which can then
be reused for 4 consequent sequences. Many approaches in the context of activity recognition use a
step width in the same order of magnitude [3,27,32,50,51]. The smaller this step width so for sequences,
the smaller the delay of the approach, but the higher the computational complexity. The actual
sequence length wseq can then be calculated using:

wseq = (nsub − 1)si + wsub (6)

Since the codebook approach is essentially based on learning characteristic shapes and trying to
find them in new data, this approach has a good potential with regards to the pocket-case. As discussed
in Section 3.2, the pocket-case exhibits a range of characteristic shapes for all activities in the raw

Sensors 2020, 20, 6559 12 of 35

sensor data. When looking at the results of the first study on activities’ exhibited shapes, done in the
mentioned section, the hand-case might turn out to be a bigger problem for the codebook approach.
While the differentiation between activities that involve walking (walking, stairs up, stairs down),
and the standing activities based on shapes seems feasible; the differentiation between the walking
activities based on shape seems difficult.

Outlier Detection

For outlier detection, the features calculated using the codebooks will be used. This could,
however, prove difficult, since the codebook’s task is to find characteristic shapes in the trained
signals to then try and differentiate between the activities. Though, since messing around does not
have a dataset that could be trained, the deployed codebooks have no reference shapes to map the
seen subsequences to, which are characteristic for messing around. During codebook assignment,
the messing around subsequences will thus be assigned to the shapes in the codebooks that have been
trained with the positive dataset. For the codebook, this problem is thus even more pronounced than
for the one mentioned for analytical transformations in Section 4.1, since the codebook is limited to
the codewords it has learned, while the approach based on analytical transformations does a linear
combination with its learned sequences. And due to the employed normalization of the resulting
histogram feature vector to a sum of 1, a differentiation between outliers and actual activity samples
will have to be solely based on the probability distribution within the feature vectors. Main difference
between some of the movements done while messing around with the smartphone and normal
activities is their larger magnitude. Since the codebook is mainly comparing shapes, and invariant to
the exhibited magnitudes in the shapes to a certain extend, these types of messing around could prove
to be complicated to detect. As with the approach based on analytical transformations, a one-class
SVM using the RBF kernel will be facilitated for this differentiation.

4.3. Statistical Features

The last examined approach for activity recognition is the most commonly used approach in
activity detection and fall detection research [25,29,40,52]. As the comparison of numbers between
papers is difficult due to different sets of activities to be identified, this approach can also be seen as
representative for the comparison with other papers. Its basic principle is to calculate a set of features
on all sequences that were extracted across sensor channels at one point in time using the sliding
window. These calculated features are appended, and thus form a large feature vector for one point
in time, on which classification can run. Figure 8 shows a flow diagram of the employed pattern
recognition pipeline for this approach.

...
...

Sliding
Window

Accelerometer

Gyroscope

Feature Calculator

Analytical
Transform Classifier

SMA

Variance

MFCC

AR-Coeff

Max

Min

· · ·
Figure 8. Flow diagram of the pattern recognition pipeline employed for the approach based on
statistical features. Accelerometer and gyroscope output the three streams x-axis (green), y-axis
(blue), z-axis (red), which are processed independently throughout the pipeline until their features are
concatenated for classification.

As with the other approaches, the set of sequences extracted at one point in time from the sensor
channels, is summarized under the term time-window. Figure 9 visualizes the feature extraction
workflow, where one feature vector is generated for each such time-window, by calculating a set of
statistical features on the extracted sequences. Not all employed statistical features are calculated for the
sequences of all sensors. Table 2 gives an overview of the mapping from calculated features to sensor
channels, as well as the resulting amount of dimensions. Directly using the large vector of appended

Sensors 2020, 20, 6559 13 of 35

features for classification is impractical on a mobile device, due to its large amount of dimensions and
the resulting computational complexity required. Therefore, one analytical transformation after the
feature extraction is used to reduce the dimensions of this concatenated feature vector, before using it
for classification. To train this analytical transformation, the pipeline is run with the activity sequences
from the recordings as input. To also support class-aware analytical transformations, this is done
separately for each of the activities, which results in one set of feature vectors per class Ω, on which
the analytical transformation can then be computed.

Sensor-Streams
Accelerometer

Gyroscope

Extracted Sensor
Channel Sequences

...

x
y

z

x
y

z

Features

(1.24, 1.37, 5.2, . . .)ᵀ - MFCC

(2.76, 1.37, 0.23, . . .)ᵀ - AR-Coeff.

(0.5)ᵀ - Entropy

(7.34)ᵀ - SMA

(6.32, 0.98, 0.76, . . .)ᵀ - MFCC

...

Figure 9. Flow diagram of the feature extraction workflow during operation of the approach based on
statistical features using exemplary data and a subset of features. Sequences are extracted from each
sensor channel. Features are calculated on the extracted sequences.

Table 2. Overview of the features in use for the statistical feature approach, with an assignment to
the sensors on which they are calculated. Dimensions separated by a slash represent the number of
resulting dimensions for raw accelerometer data and data in the earth coordinate system on the left
side, and accelerometer data in the two-channel coordinate system on the right side of the slash.

Features Calculated
per Channel Calculated on Sensor Channels

(Dimensions)

MFCC yes

Accelerometer (3/2) · nmel
Gyroscope 3 · nmel
Accelerometer Magnitude nmel
Gyroscope Magnitude nmel

AR-Coefficients yes Accelerometer (3/2) · |q|

SMA no Accelerometer 1
Gyro 1

Integration yes Gyroscope 3

Variance yes
Inclination 2
Acceleration Magnitude 1
Gyroscope Magnitude 1

Max yes Inclination 2
Inclination Gradient 2

Min yes Inclination 2
Inclination Gradient 2

Entropy yes Acceleration 3/2
Gyroscope 3

Correlation no Acceleration 3/1
Gyroscope 3

75th Percentile yes Acceleration Magnitude 1
Gyroscope Magnitude 1

Sensors 2020, 20, 6559 14 of 35

As can be seen in the features listed in Table 2, some are calculated on sensor channels such
as Accelerometer Magnitude, or Inclination Gradient, which do not actually exist in hardware.
These streams are computed on the fly while calculating the actual feature on them, very similar to the
virtual sensors concept. Thus, Magnitude and Inclination were adopted as presented in Section 4.1
for the approach based on analytical transformations. Additionally to these, the gradient sensor,
which calculates the difference between two consecutive samples per channel of the incoming signal,
was added. The selected features presented in Table 2 are a collection of the best performing ones,
gathered from a large set of research on activity recognition. A good overview of commonly used
features for accelerometer signals can be found in [34], while [23,24] provide a general overview of
features used in a large set of publications for multiple sensors. The following will give a more in-depth
view of the features we chose, as well as implementation details where appropriate.

SMA and Variance have shown to be valuable features for the differentiation between idling
activities (low variance) such as standing, and active activities (high variance) such as walking.
These are one of the most common features, also mentioned in [30,32,34,50–53].

MFCC is a set of features calculated in the frequency domain, widely used for audio
fingerprinting [54]. The use of features in frequency domain has long been avoided by research
on activity recognition, since its calculation was very costly and impractical on old smartphones.
Instead, some publications used rough approximations of the examined base frequencies by counting
peaks [55] or calculating the times between peaks [52,53]. On more modern smartphones, features in
time domain are less problematic, which is why they will be used in this work in form of the MFCC
features. Using a multi-dimensional feature in frequency-domain could prove helpful for the detection
of non-periodic behavior in the sensor data. Since, while periodic movement with a consistent
frequency produces a clean frequency spectrum with few and very significant peaks, un-periodic
behavior tends to produce chaotic frequency spectra without peaks. MFCC feature calculation is
configured using the two hyperparameters nmel and ψ, controlling amount and growth of the filters in
the used filter-bank respectively. Determining appropriate values for these hyperparameters on the
given datasets is done as part of the evaluation.

AR-Coefficients are especially crafted for the prediction of repeating patterns, using them for
activity recognition thus seems logical. These features have already been used in the context of activity
recognition by publications such as [48]. The amount of calculated coefficients is controlled by the
hyperparameter |q|, for which finding a suitable value is done in the evaluation. When used together
with MFCC features, the autoregression coefficients could turn out to be redundant. The evaluation
will thus do a test of different values for |q|, as well as a comparison against MFCC features.

Entropy provides an assessment on the activity contained in a signal, similar to SMA and Variance.
The entropy uses a discrete histogram calculated on the exhibited values in each time-window. In this
work, the underlying histogram has the size of 256 bins, which was empirically determined, since no
implementation details were found in other publications that make use of the entropy [3,25,30,53].

Correlation delivers an indication of similarities in patterns found across multiple sensor channels.
When Correlation is listed for one sensor source, it is calculated between all unique permutations
of a sensors’ n channels, thus resulting in n!

2(n2)! feature dimensions. This feature has been used by
publications such as [3,25,30,32,50,51,53].

75th Percentile, Min, and Max are extreme values hinting at the strength of the recorded movement.
This could be helpful for the outlier detection, since messing around might contain higher acceleration
peaks for certain movements. These features have been used in [25,55]. The 75th Percentile in this
work is calculated using linear interpolation on the observations in a time window.

Outlier Detection

As with the other two approaches, outlier classification is done using a one-class SVM with the
RBF kernel trained and operated on the features calculated as part of the approach’s pattern recognition
pipeline. The use of an analytical transformation for dimensionality reduction, however, could prove

Sensors 2020, 20, 6559 15 of 35

to be a problem. When the analytical transformation is trained on raw sensor channel data, as is the
case for the approach based on analytical transformations alone, the calculated eigenvectors try to
model as much variation in the data as possible. Since all samples (dimensions) in such a signal are
conterminous due to the temporal relationship, the exhibited variance for each of these dimensions
is roughly equal. Situation for this approach is different, since the dimensions in the vector used
as input for the analytical transformations have many different sources and value ranges. If there
were a feature that is crucial for the recognition of outliers, while at the same time not exhibiting
any changes for normal activities, this feature dimension would run the risk of being abandoned,
when using dimensionality reduction with the transformation. If the eigenvectors with activity along
the mentioned hypothetical feature dimension are removed, the feature dimension is effectively
abandoned. Since such an ideal dimension for detecting outliers, however, does not exist, the effect of
this will probably be only moderately.

5. Experiments

5.1. Dataset and Measuring Setup

To be able to compare performance between approaches and configurations, an appropriate
metric has to be used. For that, the average class accuracy is used, which is calculated by building
the quadratic classification matrix of size |Ω| × |Ω|. Each cell in this classification matrix at row i and
column j represents how many samples of class Ωi from the dataset have been classified as class Ωj.
The diagonal of this matrix thus contains correct classifications, while the surrounding cells represent
misclassifications. From this matrix, the average classification accuracy is calculated by averaging
over the percentage of correctly classified samples of each class Ωi. To ensure better comparability
with other plants, the average F1 score is also given for the most important results. This metric was
preferred to weighted F1, because in this use-case it is less important to be right most of the time than
to recognize all activities as good as possible, in order to not miss any possible transitions such as
stairs. If available, this score is shown in brackets following the average class accuracy. For the final
results of each approach, the entire confusion matrix is given in a plot.

Performance evaluations were done using the average class accuracy, on two labeled datasets.
For each evaluation, they are randomly split up into training (70%) and test set (30%). Many public
domain datasets exist for the pocket-case, such as the MobiAct dataset [56], which was used in this
work. This dataset contains accelerometer, gyroscope and orientation data. Since we calculated the
orientation from accelerometer and gyroscope using the Madgwick filter, the contained orientation data
was not used. In total, the dataset contains recordings from 50 subjects during nine activities, of which
four are the activities covered by this work. During the recording of these activities, the smartphone
was placed in either the right or the left trouser pocket, at random orientations.

Due to no publicly available datasets for the hand-case, one had to be recorded using our data
recording app [57] as demonstrated in [58]. It contains data from eight subjects during the four
activities covered by this work, while carrying the device in their hands such that the display is
pointing to their face. The dataset was recorded in situations near to reality, such as museum tours.
The exact orientation of the smartphone was left to each subjects’ preference, and they were free to
change it during the walk.

For this work, both datasets are used in the format of recordings consisting of multiple
consecutively executed activities from one person on a pre-defined path, with sensor data sampled
at 50 Hz. For training, these labeled activity sections that each recording consist of are separately
extracted and accumulated per activity class. For training, the activity sequences are extracted from
the recordings, and accumulated per activity class. To be able to also correctly handle the transitions
between consecutive activities, the sequences are not cut directly at the border between two activities,
but instead overlap by 1

3 of the length of the temporal window used for each approach. Overlapping
the extracted activity sequences ≥ 1

2 of the used temporal window’s length does not make sense,

Sensors 2020, 20, 6559 16 of 35

since that would lead to the same temporal window existing in two activity classes, which inevitably
leads to misclassifications.

The experiments done for each approach are first done separately for pocket-case and hand-case.
Performance of the combined dataset with both cases is then examined in Section 5.5. If not further
specified, all experiments calculating a classification accuracy use a k-Nearest Neighbor classifier with
a neighborhood size of k = 3. This is not practical for usage on a mobile device, but was used to
avoid the long training times of the SVM, while being very similar in classification performance to a
SVM with the RBF kernel [59]. The best performing configuration of each method is then evaluated
with an SVM classifier, which establishes the relation to the accuracy that can be expected when run
on smartphones.

5.2. Results for Analytical Transformations

The first experiment for the approach based on analytical transformations is a preliminary
examination of the eigenvalues to be expected, when separately training the transformations on
hand- and pocket-case dataset, as described in Section 4.1. This was done using a window-length of
100 samples (u 2 s), as suggested by [44,45]. The resulting 10 most significant eigenvalues of both PCA
and LDA, when calculated on raw accelerometer (solid lines) and gyroscope (dashed lines) channels,
are shown in Figure 10. In case of the PCA, eigenvalues represent the variance along the corresponding
eigenvector axes. As discussed in Section 4.1, normalizing the sensor channels’ variances is not
necessarily required, but was done here, to allow comparisons between channels. This, however,
prevents meaningful comparisons between transformations and cases. From a look at the graphs,
a reduction to at most 5 dimensions seems reasonable.

2 4 6
0

20
40
60
80

Pocket (PCA)

2 4 6

Hand (PCA)

Dimensions

Ei
ge

nv
al

ue
s

2 4 6
0

0.2
0.4
0.6

Pocket (LDA)

2 4 6

Hand (LDA)

Dimensions

Figure 10. Scree-Plots for a preliminary examination of the information redundancy using both PCA
and LDA within a window of length 2 s for pocket-case and hand-case. Green, red, and blue lines
represent x, y, and z axes of the accelerometer (solid) and gyroscope (dashed) respectively.

Next, a quick examination of the eigenvectors trained in the previous experiment was done, to get
a look at the basic shapes used to assemble encountered sequences during operation. Figure 11 shows
the 5 most significant eigenvectors trained using the PCA for each accelerometer channel and both
pocket-case and hand-case. The exhibited shapes look very similar to sine waves with different scaling
overall, while some eigenvectors look like a combination of multiple sine waves. More prominent
in the pocket-case, some eigenvectors contain irregularities and asymmetries in the vectors. Just like
the codewords in a codebook, the eigenvectors contain barely any noise, which suggests that a filter
is unnecessary for acceleration. For this setup, the PCA thus behaves similar to a Fourier transform,
except that it is not reconstructing signals using simple single sine waves, but combinations of them
instead. The eigenvectors exhibited for gyroscope channels look fairly similar and were thus not
presented here for a lack of space.

Both gyroscope and accelerometer were first tested in isolation for pocket-case and hand-case,
which helps to determine their roles. In pre-tests, the PCA performed better than the LDA, the tests
shown in Figure 12 were thus done with the PCA, and a reduction to 5 dimensions. As can be seen
in Figure 12, accelerometer and gyroscope tend to perform similarly in the pocket-case when using
5 dimensions. At a lower dimensionality, however, the gyroscope takes a strong leading role here,
which would be in accordance to the discussions from Section 3.2, as well as the findings in [28,29].
Significant is the bad performance of both sensors for the hand-case, with the accelerometer still being

Sensors 2020, 20, 6559 17 of 35

better than the gyroscope. This also fits the mentioned discussion above. Differences between the
tested window widths of 2 s, 2.5 s, 3 s, however, were hardly noticeable, with a very light tendency of a
decreasing accuracy with higher widths.

Accel x Accel y Accel z

Si
gn

ifi
ca

nc
e

(E
ig

en
va

lu
e)

Pocket

Accel x Accel y Accel z

Hand

Figure 11. Shapes of the 5 most significant eigenvectors resulting from a PCA calculated on acceleration
sequences 2 s in length for both pocket-case and hand-case. Significance decreases from top to bottom.

0.8 0.82 0.84 0.86 0.88 0.9

2

2.5

3

Pocket

0.5 0.55 0.6 0.65

Hand

Accelerometer
Gyroscope

Accuracy

W
in

do
w

W
id

th
(s

)

Figure 12. Comparison between classification accuracies when using accelerometer and gyroscope in
isolation using a PCA with 5 remaining dimensions.

Next, the full approach, including the virtual sensors described in Section 4.1, was run for a set of
different window widths, as well as amount of dimensions to which the data is reduced. The results
of this test, using both PCA and LDA on pocket-case and hand-case are shown in Figure 13. In this
setup, the approach achieved an average classification accuracy of 92.4%(84.1%) 1 at 5 remaining
dimensions with a window length of 2 s for the pocket-case, and 76.4%(80.3%) 2 for the hand-case
at the same configuration. Between window lengths, again, there is not much difference, with a
slight tendency to be better for smaller window lengths. Especially for the hand-case, with more
realistic recordings, this could be due to fewer misclassifications at the borders between two adjacent
activities. A fundamental question arising from these results is, however, why the LDA performs
much worse than the PCA across all tests, even though its primary task is to improve class separability.
Since the LDA is especially crafted for classification problems, one would expect it to yield better results
than the PCA, which is solely based on variances. Multiple possible reasons for this come to mind.
One being that the original Fisher Discriminant Analysis was only specified for two classes. The variant
deployed in this work is actually a modification called Multiclass LDA, introduced by Rao in [60].
This variant assumes a normal distribution of the classes, as well as equal class covariances. Another
possible reason is that, in comparison to the PCA, the LDA’s kernel is not guaranteed to be positive
semi-definite, since it is a combination of multiple covariance matrices. An implication of this are
negative eigenvalues, and thus imaginary components in the corresponding eigenvectors. A short test
with the trained transformations, however, did not confirm this problem. Another short experiment

Sensors 2020, 20, 6559 18 of 35

with training data containing an equal amount of samples per class, instead of the unevenly distributed
default, was able to dismiss the distribution of class-samples as another possible implication.

An empirical comparison between PCA and LDA, especially focused on cases that could result in
better classification results for the PCA was done in [61]. Sometimes, a chain of LDA and PCA is used
for classification problems, where the LDA is used to rotate the data into a coordinate system with
better class separability, on which the PCA is then used for dimensionality reduction. A short test with
such a chain, however, showed no noticeable improvements. All remaining tests will thus be done
with the PCA only.

0.7

0.8

0.9
1

A
cc

ur
ac

y
(P

oc
ke

t)

PCA LDA

2 2.5 3

0.4

0.6

0.8 2

A
cc

ur
ac

y
(H

an
d)

2 2.5 3

3
4
5

Window Width (s)

Figure 13. Comparison of the resulting classification accuracies when using the approach based on
analytical transformations for different window lengths and dimensions (blue 3, red 4, green 5) with
PCA and LDA on both pocket-case and hand-case.

As discussed in Section 3.1, the two-channel coordinate system for accelerometer data could help
to gain more orientation-independence. The next experiment thus replaced the raw accelerometer
with aligned acceleration in this coordinate system, while using the PCA. The aligned acceleration was
also used for the calculation of virtual sensors, where applicable. The corresponding results for this
experiment are depicted in Figure 14. As can be seen, the best achieved accuracy for the pocket-case was
improved from 92.4%(84.1%) 1 to 97.5%(96.0%) 3 at the same configuration as previously, while the
hand-case’s best accuracy has deteriorated from 76.4%(80.3%) 2 to 73.4%(78.3%) 4. Main motivation
for the aligned coordinate systems is an improved orientation-independence, same of which inspired
the use of virtual sensors. Acceleration in the two-channel coordinate system could have reduced
the information content, such that it is hindering the calculated virtual sensor’s effectiveness. To test
this assumption, the comparison between raw and aligned acceleration was repeated without virtual
sensors, only making use of accelerometer and gyroscope. And indeed, with hardware sensors only,
the two-channel coordinate system was able to improve the best performance from 91.2% to 96.5% for
the pocket-case, and from 71.5% to 73.1% for the hand-case.

To further investigate the virtual sensor’s influence on the approach’s overall classification
performance, accelerometer and gyroscope were augmented with each of the virtual sensors
individually in the next experiment. The resulting accuracy for each virtual sensor was then compared
to the one achieved by the mentioned hardware-sensors alone. This test was repeated with raw
acceleration, as well as acceleration in the two-channel coordinate system. As can be seen from the
results depicted in Figure 15, most virtual sensors improve the resulting accuracy across all cases.
An exception is the inclination sensor, which worsens the result for all cases, except the hand-case
using two-channel acceleration. A further investigation of the resulting class accuracies showed
that the largest improvements in this case were achieved for the stair activities. The virtual Inclination
sensor is the only one, which always uses the raw acceleration for its calculation. Since this sensor

Sensors 2020, 20, 6559 19 of 35

brings large gains for the case of the two-channel coordinate system, this could be an indication that
the lost information between raw and two-channeled acceleration, probably among other things,
is the inclination. Another interesting aspect of this investigation is the finding that the increases in
accuracy of the virtual sensors almost add up when combined. Since raw acceleration achieved the
better accuracy for the hand-case, it was chosen over the two-channeled acceleration, albeit its inferior
performance on the pocket-case.

2 2.5 3

0.96

0.965

0.97

0.975 3
Pocket

2 2.5 3

0.7

0.72

4
Hand

3
4
5

Window Width (s)

A
cc

ur
ac

y

Figure 14. Resulting classification accuracies for the approach based on analytical transformations,
with using the PCA at different window lengths and dimensions, on aligned acceleration data in the
two-channel coordinate system described in Section 3.1.

−1 0 1 2 3

Magnitude
Stddev

RMS
SMA

Inclination
Pocket

−1 0 1 2 3

Hand

−1 0 1 2 3

Pocket

−1 0 1 2 3

Hand

Accuracy Increase (p.p.)

Raw Acceleration Two-Channel Acceleration

Figure 15. Achieved increases of accuracy (p.p.) by independently adding each virtual sensor on top of
only the hardware sensors, for pocket-case and hand-case, using the PCA with 5 remaining dimensions
and a window length of 2 s, using raw acceleration (left) and two-channel acceleration (right).

Finally, the best performing configuration using a PCA, with a window length of 2 s, 5 remaining
dimension and raw acceleration with virtual sensors was tested using the SVM classifier with an
RBF kernel. The resulting confusion matrices are depicted in Figure 16. Compared to the accuracies
achieved with the Nearest-Neighbor classifier for this configuration, the SVM classifier was able to
improve them from 92.4%(84.1%) 1 to 96.0%(89.3%) 5 for the pocket-case, and from 76.4%(80.3%) 2 to
84.1%(73.9%) 6 in the hand-case. This improvement can probably be mostly attributed to the small
neighborhood size of k = 3, which was chosen for performance reasons. As was to be expected
from the discussion in Section 3.2, most misclassifications in the hand-case happen between the
gait-involving activities.

Since the SVM classifier significantly improved accuracies for raw acceleration, it was also
tested with the two-channel coordinate system for acceleration. One advantage of this coordinate
system, especially for the mobile use-case, is its reduced dimensionality, which causes a lower overall
computational complexity for the approach. In this setup, the approach was able to achieve 96.1% and
83.0% for pocket-case and hand-case respectively. The two-channel configuration of this approach
could thus be a worthwhile tradeoff, when considering the minor difference in accuracy.

Sensors 2020, 20, 6559 20 of 35

Walk Stand Stairs
up

Stairs
down

Walk

Stand

Stairs up

Stairs down

0.892
0.000
0.004
0.001

0.000
0.992
0.004
0.004

0.080
0.003
0.977
0.018

0.028
0.005
0.015
0.977

Pocket

Walk Stand Stairs
up

Stairs
down

0.809
0.103
0.162
0.066

0.034
0.882
0.020
0.004

0.111
0.005
0.765
0.021

0.045
0.009
0.052
0.909

Hand

0.2
0.4
0.6
0.8

5 6

Figure 16. Final confusion matrices for the best-performing configuration (PCA, 5 dimensions, 2 s
windows, raw acceleration) of the analytical transformations approach for pocket-case and hand-case
using an SVM classifier. Each row represents the actual class, each column the classification results.

Outlier Detection

Next, the approach’s generated features are tested for outlier detection. For that, a one-class
SVM with the RBF kernel was trained on a combination of the datasets for hand-case and pocket-case.
To determine the classification accuracy, a part of the combined dataset was split for testing as positive
class samples. To test the class accuracy for the detection of outliers, the mentioned unrepresentative
dataset of people messing around with their smartphones was used. A gradient descent approach was
then used to find an appropriate scaling parameter γ for the RBF kernel that results in best classification
accuracies across both negative and positive samples. A classification accuracy of up to 95.5% was
achieved, for γ = 0.005. At this best configuration, the outlier detection was able to correctly classify
94.1% of the positive samples, and 97.0% of the negative samples.

5.3. Results for Codebook

Next, the approach based on codebooks is evaluated. Not all of the approach’s numerous
hyperparameters will be evaluated in this section. The parameter nsub, which controls the amount
of extracted subsequences per sequence, was set to nsub = 32, which was selected in a pre-test.
The length of these subsequences is controlled by wsub. Values for this hyperparameter are evaluated,
since it has shown to have a higher influence on the achieved classification accuracies than nsub.
The hyperparameter si controls the step width used for the extraction of subsequences from a sequence,
which has been empirically selected as si = 2. From these hyperparameters, the actual length wseq of
the extracted sequences can then be determined using (6). The remaining evaluated hyperparameter are
σ, which controls the assignment smoothness of the Kernel Density Estimation, and |C|, which controls
the number of codewords per codebook. As before, if not explicitly stated otherwise, all benchmarks
are done using a k-Nearest Neighbor classifier with a neighborhood size of k = 3.

As a first test for these hyperparameters, the approach based on codebooks, as described in
Section 4.2, was run with different combinations of values for the hyperparameters σ, wsub, and |C|.
Since it was using raw accelerometer and gyroscope data, two codebooks were used. The tested
values for wsub were chosen, such that they roughly represent the range between 2 s and 3 s for the
overall sequence lengths, where the number of subsequences per sequence nsub is fixed to 32 as
mentioned above. Thus, the subsequence lengths 32 ≈ 1.88 s, 48 ≈ 2.2 s, 64 ≈ 2.52 s, and 96 ≈ 3.16 s
were tested. This test was repeated for both assignment strategies that allow using a codebook for
multiple sensor channels. The strategy that appends subsequences before assigning them through
the codebook achieved accuracies which were lower by roughly 2 percentage points when averaged
across all tested configurations. The remaining evaluation will thus focus on the strategy that treats all
subsequences independently.

The results depicted in Figure 17 show the accuracies achieved for pocket-case and hand-case at
different assignment smoothnesses σ, codebook sizes |C|, and subsequence lengths wsub. Each tested
assignment smoothness σ is represented as one heatmap of accuracies. The tested values were
adopted from [19] for an initial pre-test, but turned out to already be in the optimal range for
dataset and use-case at hand. While there is not much change in classification accuracy between
them, using lower or higher values only decreased accuracy for both pocket-case and hand-case.

Sensors 2020, 20, 6559 21 of 35

Considering the resulting classification accuracy as a function of codebook size |C| and subsequence
length wsub reveals a similar pattern across tested σ. As was to be expected, an increasing |C| leads to
higher accuracies, while already demonstrating surprisingly good accuracies of up to 94.7%(94.3%) 7,
with only 16 codewords for the pocket-case. Further increases in classification accuracy would not
be worth the increased computational complexity, for the pocket-case at least. The sweet spot for the
used subsequence length here seems to be at 48 samples. With the highest classification accuracy
of 68.1%(72.8%) 8 for the hand-case at σ = 0.5, wsub = 32, and |C| = 64, however, the accuracies
are mostly insufficient for practical uses. Improvements of the classification accuracy achieved by
increasing the number of codewords in a codebook, is 3 percentage points on average, over the tested
codebook sizes. This improvement is clearly more significant than the one observed for the pocket-case
above, but still only marginal for practical uses. The sweet spot for the subsequence length wsub seems
to be somewhere between 32 samples and 48 samples, instead of 48 observed for the pocket-case
results. This may be connected with the main difference between pocket-case data and hand-case data,
which was discussed in Section 3.2. Since the smartphone can only measure movements of the leg to
which the pocket is attached, the exhibited base frequency in the data recorded for the pocket-case is
roughly half that of the hand-case. Most repetitive behavior in the recorded signals for the hand-case
thus have smaller periods, which could be advantaged by a smaller subsequence length wsub.

32

48

64

92

0.937 0.958 0.967 0.972
0.944 0.952 0.971 0.977
0.934 0.957 0.958 0.973
0.935 0.935 0.950 0.961

σ = 0.125
0.944 0.955 0.970 0.972
0.947 0.953 0.972 0.978
0.939 0.954 0.962 0.969
0.927 0.939 0.955 0.969

σ = 0.25
0.947 0.962 0.971 0.974
0.941 0.959 0.971 0.977
0.934 0.957 0.957 0.972
0.931 0.942 0.949 0.970

σ = 0.5

0.94

0.96

0.98

16 32 64 96

32

48

64

92

0.591 0.624 0.665 0.674
0.575 0.623 0.638 0.657
0.582 0.606 0.646 0.659
0.581 0.598 0.650 0.654

16 32 64 96

0.603 0.619 0.669 0.679
0.589 0.633 0.657 0.665
0.583 0.621 0.665 0.678
0.578 0.612 0.661 0.658

16 32 64 96

0.612 0.640 0.681 0.676
0.604 0.638 0.663 0.680
0.592 0.601 0.664 0.674
0.589 0.611 0.644 0.666

0.6

0.65

Codebook Size |C|

Su
bs

eq
ue

nc
e

Le
ng

th
w

su
b

Pocket
H

and

7

8

9

10

Figure 17. Classification accuracies achieved with the approach based on codebooks for multiple
different combinations of the σ, wsub, and |C| hyperparameters for both pocket-case and hand-case.

To test the contribution of accelerometer and gyroscope to the results achieved in the tests above,
classification was next tested separately on both sensors. For this test, a subsequence length wsub of 32
was used, since that tends to perform best for the hand-case, while still performing reasonably well
for the pocket-case. With codebooks of size |C| = 32 and σ = 0.25, this test yielded an accuracy of
90.7% and 92.4% on the pocket-case dataset for accelerometer and gyroscope respectively, compared to
95.5%(95.6%) 9 with both sensors in combination. While the gyroscope does seem to be more suited
for the recognition of pocket-case data, it is only a marginal lead.+ Since the combined accuracy is
higher, the accelerometer does seem to still have valuable information to contribute. On the hand-case
dataset, the accuracies 63.19% and 50.36% were achieved for accelerometer and gyroscope respectively.
This can be explained by the exhibited shapes in the analysis done in Section 3.2. It makes sense that
the accelerometer is taking the leading role for the hand-case, since, as discussed in the mentioned
section, barely any characteristic rotations should reach the smartphone when carried in hand. With
a classification accuracy of 61.9%(66.2%) 10, with the combination of accelerometer and gyroscope it
seems that the gyroscope is actually obstructive for classification.

The codebook approach can offer interesting insights into the similarity of observed shapes in
the data of all covered activities. For this investigation, the constructed accelerometer and gyroscope
codebooks from the previous experiment are used to assign the complete set of testing samples from
the datset. Calculating the average over all assignment histograms and displaying them in a matrix or a

Sensors 2020, 20, 6559 22 of 35

stack of histograms then reveals the most and least strongly assigned codewords in a codebook, broken
down by class. These matrix plots for pocket-case and hand-case are shown in Figure 18. Each of
these matrix plots is contained twice, with and without normalization. While the unnormalized plots
visualize the actual results and facilitate comparisons, the plots with normalization, done per codeword
(column) across all activities, allows for a simple mapping of which codeword is used most by which
activity. The normalized plot matrices show that the exhibited patterns for each activity seem to use
different codewords, which hints at the separability of activities. The differences between codewords
used for different activities does seem to be slightly more pronounced for the pocket-case than for
the hand-case, meaning that codewords used for an activity are less active in others. However, when
compared with the unnormalized plots, it becomes clear that the normalized plots exaggerate the
difference between activities, while the actual difference is much less significant. As can be seen in the
unnormalized plots, especially the accelerometer’s x-axis and y-axis exhibit a very similar assignment
pattern across all gait-based activities. The assumption of a difficult distinction between the activities
involving gait based on the exhibited shapes in the hand-case from Section 3.2 thus proved valid.

Walk
Stand

Stairs up
Stairs down

Accel x Accel y Accel z Gyro x Gyro y Gyro z

Walk
Stand

Stairs up
Stairs down

Walk
Stand

Stairs up
Stairs down

Walk
Stand

Stairs up
Stairs down

N
orm

alized

Pocket
H

and

Figure 18. Heatmaps demonstrating the average codeword assignment for accelerometer and
gyroscope data of pocket-case and hand-case, on a codebook of size 32 broken down by activity.
The upper row for each case shows the unnormalized assignment averages, while the respective
second lines were normalized per codeword (per column, across all activities). This allows to see
tendential differences between activity-specific assignments, without losing sight of the real significance
of differences.

As for the previous approach, the next test evaluates performance with aligned coordinate systems
for accelerometer data. Each of the two aligned coordinate systems was tested for all previously
benchmarked hyperparameter configurations on the raw accelerometer data. The statistical evaluation
of the resulting classification accuracies is shown in Figure 19 for pocket-case and hand-case. As can
be seen in the box plots, the codebook approach performed worse on the aligned coordinate systems
when compared to raw acceleration. So the codebook seems to be able to get more information
from the raw data, than from the artificially transformed data. A reason for this might be that the
two-channel coordinate system deliberately discards information by reducing the two remaining
axes aside of the gravitational axis, to their magnitude value. If the codebook is able to extract
valuable information from all three raw sensor channels, this combination into the magnitude might
be discarding valuable information, thus resulting in lower accuracies, which would explain why the
underspecified earth coordinate system performs worse than raw, but still better than two-channel
acceleration. All remaining tests will thus remain using raw acceleration instead of an aligned
coordinate system.

Sensors 2020, 20, 6559 23 of 35

Raw 2-channel Earth
0.9

0.92

0.94

0.96

0.98
Pocket

(a)

Raw 2-channel Earth

0.55

0.6

0.65

Hand

(b)
Figure 19. Statistical evaluation of the accuracies across all tested configurations for raw acceleration,
two-channel acceleration, and acceleration transformed into the underspecified earth coordinate system
for both pocket-case (a) and hand-case (b).

The accuracy improvements observed between the tested configurations were not significant
enough, to justify the increase in computational complexity for the better performing configurations.
For the test with an SVM classifier, thus σ = 0.25, and |C| = 32 was chosen as base configuration.
For wsub, the two values 48 and 32 were tested, as the two observed sweet spots for pocket-case
and hand-case. With subsequences of length wsub = 48, the k-Nearest Neighbor classifier achieved
accuracies of 95.3% and 63.3% for pocket-case and hand-case respectively. When the same configuration
is tested using the SVM classifier, the classification accuracies of 98.1% for the pocket-case, and 73.7%
for the hand-case are achieved. This is a small difference for the pocket-case, but a significant
difference for the hand-case. Like for the approach based on analytical transformation, part of this
difference can probably be attributed to k = 3 as the chosen neighborhood size for the k-Nearest
Neighbor classifier. With wsub = 32, the SVM classifier performed slightly better, achieving
classification accuracies of 98.4%(98.1%) 11 and 76.6%(81.6%) 12 for pocket-case and hand-case
respectively. The minor improvement of accuracy for the pocket-case can be mostly assigned to
measurement errors. Nevertheless, the classification shows an accuracy for the pocket-case, which is
at least on par with the classification for wsub = 48, even though the sweet spot for the pocket-case
seemed to be around the latter from the previous benchmark results. With wsub = 32 and the k-Nearest
Neighbor classifier, this configuration previously achieved the classification accuracies 95.5%(95.6%) 9

and 61.9%(66.2%) 10 for pocket-case and hand-case respectively. The resulting confusion matrices
when using the SVM classifier with wsub = 32 for pocket-case and hand-case, are shown in Figure 20.
To no surprise, the most common misclassifications are found between the activities that involve gait.

Walk Stand Stairs
up

Stairs
down

Walk

Stand

Stairs up

Stairs down

0.990
0.001
0.014
0.020

0.000
0.999
0.001
0.002

0.008
0.000
0.978
0.007

0.001
0.000
0.006
0.970

Pocket

Walk Stand Stairs
up

Stairs
down

0.954
0.055
0.501
0.256

0.037
0.945
0.024
0.015

0.005
0.000
0.453
0.016

0.004
0.000
0.021
0.714

Hand

0
0.2
0.4
0.6
0.8

11 12

Figure 20. Final confusion matrices for the best-performing configuration (σ = 0.25, |C| = 32, wsub =

32) of the approach based on codebooks for both pocket-case and hand-case using an SVM classifier.
Each row represents the actual class, and each column represents the classification results.

Outlier Detection

Finally, the approach’s generated features are tested for outlier detection. Identical to the previous
outlier test, a one-class SVM using an RBF kernel, was trained on a subset of the features calculated
on the combined dataset from pocket-case and hand-case, using the previously best performing
configuration. Accuracy was tested with the complementary subset of the combined dataset, as well as
the unrepresentative dataset for people messing around with their smartphone. To find an appropriate
kernel scaling parameter γ that results in best classification accuracies across both negative and

Sensors 2020, 20, 6559 24 of 35

positive samples, a gradient descent approach was used. The tested configuration uses an assignment
smoothness of σ = 0.25, a subsequence length of wsub = 32, and a codebook size of |C| = 32. The best
classification accuracy reached with this configuration is 86.0%, at a scaling parameter of γ = 15.0 for
the RBF kernel. Accuracy of the positive class was 73.1%, and that of the negative class was 99.0%.
Due to the low accuracy for the positive class, the outlier classification accuracy on pocket-case and
hand-case was tested in isolation, using γ = 15.0. With 92.3%, this test surfaced a high accuracy for
the pocket-case, and a low accuracy of only 71.0% for the hand-case. This probably was to be expected,
due to the approach’s overall difficulties for the hand-case dataset. Executing the hyperparameter
optimization for γ on the hand-case dataset alone, resulted in an accuracy of up to 85.7% at γ = 11.1.
This corresponds to an accuracy of 77.0% for the positive class, and an accuracy of 94.5% for the
negative class. The concerns discussed in Section 4.2 regarding outlier detection with features from the
codebook approach thus seem valid. Since the codebook is not trained with outlier sequences, there are
probably no codewords correctly representing these cases, leading to ambiguous feature vectors.

5.4. Results for Statistical Features

This section will focus on evaluating performance characteristics of the approach based on
statistical features, as introduced in Section 4.3. Since both MFCC and AR-Coefficient features
themselves have hyperparameters, we first searched for the best performing configuration for both.
To exclude the influence of other features in these tests, both were tested in isolation to find suitable
values for these hyperparameters. For that, the approach’s pattern recognition pipeline, as visualized
in Figure 8, was employed, while only calculating these individual features as part of the feature
extraction step. As before, if not explicitly stated otherwise, all benchmarks use a k-Nearest Neighbor
classifier with a neighborhood of k = 3.

In case of the MFCC features, tested hyperparameters are nmel and ψ, which control the number,
as well as the growth of filters used in the underlying filter-bank respectively. For nmel, the values
{3, 5, 10, 15} were tested, while the values for ψ ranged from 1.2 to 2.0, using steps of 0.1. After
a short pre-test, the analytical transformation LDA with a reduction to 4 dimensions was chosen.
The amount of 4 dimensions while using only either MFCC or AR-Coefficients as feature demonstrated
to preserve most of the information, while allowing a much faster classification. As listed in Table 2
in Section 4.3, MFCC features are calculated on 8 channels (accelerometer, gyroscope, accelerometer
magnitude, gyroscope magnitude). For nmel = 15, this already amounts to 120 features, which is
clearly reflected in the speed of classification without the analytical transformation. These testes were
done twice, with, and without normalization of the filters in the filter-bank. Statistical evaluation of
the resulting accuracies for pocket-case and hand-case with enabled and disabled normalization of
the filters is shown in Figure 21a. As can be seen, there is barely any difference to be found between
the performance of both normalized filter-banks and filter-banks without normalization. For the
pocket-case, the highest accuracies over all tested parameters with normalization (94.8%) and without
normalization (94.9%) can be assigned to measurement errors. Same goes for the hand-case, where
the best accuracies are 72.1% and 72.2% with and without normalization respectively. The remaining
benchmarks will use MFCC features with unnormalized filter-banks.

Next, the accuracies of the benchmark using unnormalized filter-banks will be evaluated with
respect to the tested hyperparameter configurations. Figure 21b shows the reached accuracies, averaged
across the tested window lengths, as a function of hyperparameters nmel and ψ for both pocket-case
and hand-case. As can be seen, the best performing configuration across cases is nmel = 10 and ψ =

1.6, which reaches an average accuracy of 93.0%(94.0%) 13 for the pocket-case, and 70.6%(72.8%) 14

for the hand-case. The benchmark results for the tested window lengths can be seen in Figure 22.
The patterns exhibited across the tested window lengths, as well as across cases are very similar. Here,
the improvements for accuracy, reached by increasing the number of calculated MFC coefficients nmel,
declines with each step. The average difference between nmel = 3 and nmel = 5 roughly equals 11.5 p.p.
for the pocket-case, and 7.5 p.p. for the hand-case. Despite being a larger step, increases between

Sensors 2020, 20, 6559 25 of 35

nmel = 5 and nmel = 10 only amount to 4.1 p.p., and 4.8 p.p. for pocket-case and hand-case respectively.
If the accuracies achieved are considered to be a function of the tested growth factors ψ, only minor
differences are to be found for nmel ≥ 10. The greatest influence of the tested growth factors can be
seen for nmel < 10. Here, the accuracy is better, the larger the growth factors are chosen. This can be
interpreted as an indication of the importance of low frequencies, as larger growth factors lead to more
and smaller filters in the lower frequency ranges. This causes the calculated feature’s to have a higher
resolution in the lower frequency ranges. Due to the relatively slow nature of gait, this seems plausible.

Pocket
Normalized

Pocket Hand
Normalized

Hand

0.6

0.7

0.8

0.9

(a)

1.2
1.4
1.6
1.8

2

0.726
0.763
0.776
0.783
0.808

0.822
0.877
0.901
0.91

0.907

0.919
0.933
0.93
0.92

0.926

0.936
0.932
0.932
0.93

0.926 0.75

0.8

0.85

0.9

3 5 10 15

1.2
1.4
1.6
1.8

2

0.574
0.567
0.571
0.583
0.591

0.613
0.645
0.663
0.654
0.658

0.689
0.703
0.706
0.698
0.686

0.702
0.704
0.706
0.705
0.685

Number of coefficients nmel

0.55

0.6

0.65

0.7

Fi
lt

er
G

ro
w

th
Fa

ct
or

ψ Pocket
H

and

13

14

(b)
Figure 21. Results of hyperparameter benchmarks for MFCC features. (a) shows a statistical analysis of
the accuracy distributions for different hyperparameters, dependent on case and whether normalization
was used for the filter-bank. (b) shows the accuracies reached as a function of hyperparameters nmel

and ψ, averaged across the tested window lengths for both pocket-case and hand-case.

1.2
1.4
1.6
1.8

2

0.718
0.747
0.757
0.764
0.798

0.812
0.868
0.883
0.899
0.894

0.91
0.919
0.917
0.889
0.909

0.925
0.922
0.92
0.92

0.907

Window Width 2 s
0.714
0.769
0.778

0.8
0.804

0.819
0.879
0.909
0.917
0.912

0.92
0.935
0.932
0.932
0.931

0.934
0.931
0.931
0.93

0.933

Window Width 2.5 s
0.745
0.772
0.794
0.784
0.821

0.834
0.883
0.91
0.914
0.915

0.928
0.945
0.942
0.94
0.939

0.949
0.942
0.946
0.938
0.939

Window Width 3 s

0.8

0.9

3 5 10 15

1.2
1.4
1.6
1.8

2

0.563
0.558
0.564
0.577
0.571

0.612
0.635
0.651
0.652
0.645

0.677
0.688
0.689
0.672
0.672

0.693
0.69
0.69

0.682
0.679

3 5 10 15

0.579
0.573
0.577
0.586
0.605

0.61
0.646
0.667
0.655
0.659

0.694
0.709
0.718
0.712
0.692

0.706
0.712
0.709
0.71

0.687
3 5 10 15

0.58
0.57
0.571
0.585
0.597

0.618
0.653
0.67
0.655
0.669

0.696
0.712
0.71
0.71
0.694

0.707
0.709
0.718
0.721
0.688

0.55

0.6

0.65

0.7

Number of coefficients nmel

Fi
lt

er
G

ro
w

th
Fa

ct
or

ψ Pocket
H

and

15

Figure 22. Results of benchmarks done for the hyperparameters nmel and ψ, controlling number, as well
as growth of filters in the used MFCC filter-bank respectively, for both pocket-case and hand-case.

Next, a benchmark for the hyperparameter |q| of AR-Coefficient feature calculation was conducted.
This hyperparameter, controls the amount of coefficients that are calculated per sequence. The results
for this benchmark are visualized in Figure 23. As can be seen, the AR-Coefficients tend to perform
better with larger windows. When comparing the achieved accuracies between windows of length
2 s and 3 s, the average difference for the pocket-case is 4 p.p., while the average difference for the
hand-case is 5.25 p.p.. The biggest improvement for both cases is here achieved for a model order
of |q| = 3. When examining the influence of |q| on the achieved accuracies, only a small influence
can be detected. By increasing |q| from 3 coefficients to 15 coefficients, only an average improvement
of 4.33 p.p. can be achieved in the pocket-case. The highest improvement for the pocket-case is seen
between |q| = 3 to |q| = 5. In the hand-case, the hyperparameter does not seem to have any significant
influence. Accuracy even tends to decline with a growing model order |q|. This may be due to
differences in the complexity of the signals between pocket-case and hand-case. Such a tendency
can also be observed when comparing the eigenvector’s shapes, calculated as part of the analytical

Sensors 2020, 20, 6559 26 of 35

transformation-based approach’s evaluation, shown in Figure 11. When comparing the exhibited
shapes for the accelerometer, the eigenvectors for the pocket-case seem to contain slightly more
irregularities and assymetries than the shapes exhibited for the hand-case. Though, it should be noted
here that shapes which look like combinations of multiple sine waves can be found for both cases
equally. For the pocket-case, however, these shapes can be found across all eigenvectors, while for the
hand-case, the more complex shapes tend to occur in eigenvectors of lower significance. So, a model
order of |q| = 3 seems to be enough to model the exhibited shapes for the hand-case. The weak
tendency of a declining accuracy for a growing model order for this case could thus be credited to the
AR-Coefficients starting to model the noise in the signal with a larger number of coefficients. As best
compromise for both cases, thus a value of 5 is chosen for the hyperparameter |q|.

2 2.5 3

3

5

10

15

0.847
0.886
0.895
0.896

0.883
0.91
0.917
0.924

0.897
0.925
0.934
0.938N

um
be

r
of

co
ef

fic
ie

nt
s
|q
| Pocket

0.86
0.88
0.9
0.92

2 2.5 3

3

5

10

15

0.706
0.72

0.716
0.705

0.747
0.745
0.748
0.738

0.774
0.769
0.771
0.759

Hand

0.72

0.74

0.76

Window Width (s)

16

Figure 23. Resulting classification accuracies for the approach based on statistical features, when only
using AR-Coefficients at different hyperparameter configurations, shown as a function of the model
order |q| and the used window length for both pocket-case and hand-case.

When comparing accuracies for the hand-case between AR-Coefficient (max 77.4%(81.3%) 16)
and MFCC features (max 72.1%(74.0%) 15), the AR-Coefficients prove to be superior. Situation for
the pocket-case is more complex. Here, the AR-Coefficients tend to perform better than the MFCC
coefficients when only calculating 3 coefficients for both approaches, reducing in performance for
a larger model order |q|. To summarize, AR-Coefficients seem to be more efficient by producing
higher accuracies for smaller numbers of coefficients, and thus smaller feature vectors. In addition,
AR-Coefficients also have the advantage of being dependent on only one hyperparameter, while MFCC
features must also be adjusted to each use-case, by tuning the filter growth factor ψ for their
underlying filter-bank.

After the most efficient hyperparameter configuration for both MFCC and AR-Coefficients have
been found at nmel = 10, ψ = 1.6, and |q| = 5, next, the remaining benchmarks using the full feature
set are carried out using these values. For the dimensionality of the feature vector after the analytical
transformation, this benchmark tests the value range [3, 7]. Again, the window lengths 2 s, 2.5 s,
and 3 s, as well as both analytical transformations PCA and LDA are tested. The benchmark results
for pocket-case and hand-case with PCA and LDA can be seen in Figure 24. As can be seen, for this
approach, the LDA is generally faring much better than the PCA. However, even with the LDA, using
the full set of features barely brought any improvements over the classification accuracy achieved using
MFCC and AR-Coefficient features in isolation. The trend of better classification accuracies for larger
window lengths, however, is analogous to the one observed for the trend observed in the isolated tests
with the MFCC and AR-Coefficients above. All remaining tests will thus focus on the LDA.

Next, the approach was tested with the aligned coordinate systems for accelerometer data. Results
of the two-channel coordinate system are shown in Figure 25. When compared to the classification
accuracies reached with raw sensor data, a minor improvement was achieved for the hand-case,
while the performance on the pocket-case degraded by the same amount. The amount of features
to calculate before compacting them by applying the analytical transformation, however, is smaller
for the two-channel coordinate system. Thus, the combination of better classification accuracies for
the hand-case, as well as an improved performance is welcome. Additionally to these advantages,
the sweet spot for the used window length for the hand-case has moved from 3 s to 2.5 s, which
reduces the approach’s overall delay. With 95.8%(94.7%) 17, the best accuracy for the pocket-case here
is reached for 6 remaining dimensions and a window of 3 s. The hand-case achieved a maximum

Sensors 2020, 20, 6559 27 of 35

classification accuracy of 72.2%(73.6%) 19 at 5 remaining dimensions and a window of 2.5 s. Like when
using unaligned acceleration, this result is much worse for the hand-case when compared to using
only AR-Coefficients 16. The assumption is therefore that some of the included features confuse the
classifier, even though the LDA acts as a kind of simple feature selector when paired with a reduction
in dimensionality. Acceleration in the two-channel acceleration was chosen as best configuration, since
it achieves similar performance to unaligned acceleration at smaller window sizes, thus reducing delay
while also operating with fewer dimensions.

3

4

5

6

7

0.649
0.758
0.821
0.826
0.824

0.679
0.773
0.822
0.815
0.82

0.611
0.8

0.818
0.797
0.827

Pocket

0.65

0.7

0.75

0.8 3

4

5

6

7

0.459
0.475
0.52
0.526
0.528

0.465
0.476
0.521
0.534
0.539

0.465
0.477
0.526
0.547
0.556

Hand

0.46

0.48

0.5

0.52

0.54

2 2.5 3

3

4

5

6

7

0.937
0.941
0.941
0.945
0.944

0.945
0.947
0.948
0.948
0.95

0.953
0.954
0.958
0.958
0.96 0.94

0.95

2 2.5 3

3

4

5

6

7

0.687
0.688
0.694
0.7

0.697

0.712
0.714
0.709
0.708
0.71

0.712
0.724
0.723
0.721
0.72 0.69

0.7

0.71

0.72

Window Width (s)

Fe
at

ur
e

di
m

en
si

on
s PC

A
LD

A

Figure 24. Classification accuracies achieved for different window widths and remaining dimensions
after the analytical transformation on the concatenated feature vector. The benchmark was done for
both pocket-case and hand-case, comparing the use of both PCA and LDA.

2 2.5 3

3

4

5

6

7

0.937
0.943
0.942
0.943
0.945

0.95
0.953
0.955
0.954
0.953

0.957
0.958
0.956
0.958
0.958

Fe
at

ur
e

di
m

en
si

on
s

Pocket

0.94

0.94

0.95

0.95

2 2.5 3

3

4

5

6

7

0.687
0.683
0.685
0.682
0.685

0.721
0.719
0.722
0.721
0.719

0.714
0.711
0.712
0.714
0.713

Hand

0.69

0.7

0.71

0.72

Window Width (s)

17
18 19

Figure 25. Classification accuracies achieved for different window widths and remaining dimensions
after the LDA, while using two-channel acceleration for both pocket-case and hand-case.

Finally, the configuration which performs best across both cases is tested using an SVM classifier
with the RBF kernel. The tested configuration uses a window length of 2.5 s, a feature vector with 5
dimensions after the LDA and is calculated using accelerometer data in the two-channel coordinate
system. With the k-Nearest Neighbor classifier, this configuration previously achieved 95.5%(94.7%) 18

and 72.2%(73.6%) 19 for pocket-case and hand-case respectively. When using the SVM classifier,
this configuration achieves 95.4%(94.7%) 20 and 69.9%(73.0%) 21, with the corresponding confusion
matrices depicted in Figure 26. The difference for the pocket-case can here be assigned to measuring
errors, while the result for the hand-case with the SVM changes little for the low overall practicability of
the approach. For comparison, using only AR-Coefficients as feature with an SVM classifier, a window
length of 2.5 s and 4 dimensions after the LDA, achieved the classification accuracies 89.6% and 74.9%
for pocket-case and hand-case respectively.

Sensors 2020, 20, 6559 28 of 35

Walk Stand Stairs
up

Stairs
down

Walk

Stand

Stairs up

Stairs down

0.981
0.000
0.044
0.019

0.002
0.996
0.020
0.018

0.012
0.002
0.892
0.017

0.005
0.002
0.044
0.946

Pocket

Walk Stand Stairs
up

Stairs
down

0.905
0.056
0.488
0.360

0.056
0.943
0.042
0.116

0.016
0.001
0.448
0.026

0.023
0.001
0.022
0.499

Hand

0
0.2
0.4
0.6
0.8

20 21

Figure 26. Final confusion matrices for the best-performing configuration (LDA, 2.5 s windows,
5 dimensions, two-channel acceleration) of the statistical features approach, for pocket-case and
hand-case using an SVM classifier. Each row represents the actual class, each column the classification.

Outlier Detection

Finally, the approach’s generated features are tested for outlier detection. This procedure was
identical to the outlier detection tests done for the two other approaches. A one-class SVM using
the RBF kernel was trained on a subset of the features calculated on the combined dataset from
pocket-case and hand-case. Accuracy was tested with features from the complementary subset,
as well as the unrepresentative dataset for people messing around with their smartphone. To find
an appropriate kernel scaling parameter γ that results in best classification accuracies across both
negative and positive samples, a gradient descent approach was used. For this investigation, the best
performing hyperparameter configuration, as determined by the previous benchmarks, was used. At a
window length of 2.5 s and 5 remaining dimensions after reduction by the LDA, this configuration
uses AR-Coefficients with a model order of |q| = 5, and calculates nmel = 10 MFC coefficients per
sensor channel, at a filter growth of ψ = 1.6 for an unnormalized filter-bank. Using this setup, the best
classification accuracy for outlier detection achieved was 92.4% at a γ = 4.55. This classification
accuracy is composed of the class accuracies 95.8% for the positive, and 89.1% for the outlier class.

5.5. Comparison and Discussion

Finally, we try to provide a brief comparison of the performance characteristics exhibited between
the three tested techniques. An extensive list of the achieved accuracies of other approaches, run on
the MobiAct data set used for the pocket-case, can be found in [62]. The average accuracy calculated
across all of the 18 listed works with at least our set of recognized activities, is 85.54% with a standard
deviation of ±10.98. An overview of our resulting classification accuracies for the hyperparameter
configurations determined to be the most efficient, tested with both k-Nearest Neighbor and SVM
classifiers, are shown in Table 3. As can be seen from the listed numbers, the overall best technique
seems to be the approach based on analytical transformations, introduced in Section 4.1. It performed
best in combination with unfiltered acceleration in the device’s local coordinate system. However,
if an SVM classifier is used, the difference in accuracy to two-channel acceleration is relatively small,
while the computational complexity is noticeably smaller. Using two-channeled acceleration might thus
be a good tradeoff to make, when employing the approach on a mobile device. When compared with
the other approaches, it achieves the best classification accuracies for outlier detection, and hand-case,
while only being in measurement error range from the best technique for the pocket-case. With a
classification accuracy of roughly 84% when only trained for the hand-case, this approach is the only
one above 80%. For practicability reasons, this approach will thus be the only one tested on a combined
dataset including pocket-case and hand-case below.

For the pocket-case, the technique based on codebooks, introduced in Section 4.2, achieved
classification accuracies on the level of the ones achieved by the analytical transformation-based
approach. However, when comparing the accuracies for the hand-case achieved with the k-Nearest
Neighbor, it exhibits the worst classification accuracy by a large margin. Switching to the SVM
classifier brought surprising improvements here. As mentioned in Section 5.3, this large difference
can at least partly be attributed to the chosen neighborhood size of k = 3, which was mostly used
for performance reasons with benchmarks using the k-Nearest Neighbor classifier. Only raising the

Sensors 2020, 20, 6559 29 of 35

codebook sizes to disproportionately large numbers was able to improve the classification accuracy
for the hand-case. Especially for mobile use-cases, the resulting computational complexity here
would quickly be impractical. Tests with aligned acceleration showed no improvements with the
codebook technique. For outlier detection, the codebook-based approach proved to be the least
performing. This is in correspondence with the assumptions and possible underlying problems of
codebooks discussed in Section 4.2. Due to the unsatisfactory accuracy for the hand-case, as well as
the poor accuracy for outlier detection, we consider the approach unsuitable for the practical use in
the combined case containing pocket and hand data.

Table 3. Overview of all final benchmark results with average classification accuracy and average
F1-score (in brackets) for the chosen configuration of each approach. The last column shows the
configuration’s hyperparameters, as well as the γ trained for outlier detection.

Approach KNN SVM Outlier
Detect ConfigurationPocket Hand Pocket Hand

Analytical
Transform

92.4% 1
(91.6%)

76.4% 2
(89.1%)

96.0% 5
(95.2%)

84.1% 6
(85.3%)

95.5%
(γ = 0.005)

PCA 5-dim, wseq = 2 s, raw acceleration

Codebook 95.5% 9
(98.1%)

68.1% 8
(88.3%)

98.4% 11
(99.1%)

76.6% 12
(91.5%)

86.0%
(γ = 15.0)

σ = 0.25, |C| = 32, wsub = 32, wseq ≈ 2 s,
raw acceleration

Statistical
Features

95.5% 18
(98.3%)

72.2% 19
(87.5%)

95.4% 20
(98.3%)

69.9% 21
(87.6%)

92.4%
(γ = 4.55)

LDA 5-dim, wseq = 2.5 s, nmel = 10, ψ = 1.6,
|q| = 5, two-channel acceleration

As might be expected from the numerous studies using similar methods, the technique based on
statistical features, described in Section 4.3, performed well on the pocket-case. Performance on the
hand-case, when tested using an SVM classifier, however, is far behind the other tested approaches.
Nevertheless, when comparing the resulting classification accuracy for outlier detection, it is able
to compete with the one based on analytical transformations. Despite its good performance for the
pocket-case and outlier detection, the poor accuracy achieved in the hand-case makes this approach
unsuitable for the practical use with both cases combined. Though, as we noted in the evaluation,
our version of the approach certainly has a feature selection problem, and can thus not generally be
dismissed for satisfactorily solving the hand-case.

When the approaches based on codebooks and analytical transformations were tested with
accelerometer and gyroscope in isolation, they exhibited very similar behavior. In correspondence
with the discussion in Section 3.2, the accelerometer is performing better than the gyroscope for the
hand-case. The difference between both sensors, though, was unexpectedly small for both approaches.
For the hand-case, there thus apparently is more information to be found from the gyroscope than
expected. This assumption is further supported by the test results with acceleration in the two-channel
coordinate system. Both mentioned approaches deliver worse results with two-channel acceleration.
However, with the analytical transformations-based technique, the virtual Inclination sensor as
described in Section 4.1, brought back some of the accuracy that was lost when switching to the
aligned coordinate system. This can be interpreted as an indication that the temporal progression of a
smartphone’s orientation is a valuable source of information for the hand-case.

Figure 27 compares the classification results of all three described approaches with the actually
performed activities for two particularly badly classified recordings. Both are recordings for the
hand-case, and were not part of the training dataset. All of the approaches were employed in their
best configuration, while using the SVM classifier, as shown in Table 3. For Recording0, our novel
approach based on analytical transformations performed best. It gets most of the stairs up activity
right, though also exhibits many small variations. Compared to the codebook approach, however,
our method does not recognize the relatively short walk sequence in the middle. The reason for this
could be the decomposition of sequences into subsequences for the Codebook approach, since the first

Sensors 2020, 20, 6559 30 of 35

subsequences start matching comparably fast on the start of new activity sequences. For this recording,
the technique based on statistical features generally has problems detecting the stairs up activity.

Actual

Recording0 Recording1

Analytical Transform
Walk
Stand
Stairs up
Stairs down

Codebook

0 20 40 60 80

Statistical Features

0 10 20 30 40 50 60

Time (sec)
Figure 27. Classification results for two particularly badly classified recordings between all of the three
presented procedures in comparison with the actually performed activities (as shown in the first row).

Recording1 shows the walk on stairs with large plateaus between the stair segments. Here,
all approaches perform poorly, which is expressed by strong fluctuations of the detected activity in
the graph. However, while our novel approach mainly cannot decide between walking and climbing
stairs, the other two approaches also show misclassifications for the stair descend activity. This large
number of fluctuations is mainly due to the boolean decision for only one class using SVMs. When
instead training a set of SVMs for class probabilities, these decisions are less pronounced [63]. For both
recordings, these observations coincide with the general problems of distinguishability between
locomotion activities in the hand-case, which were discussed in Section 3.

Finally, the analytical transformations-based technique was tested on the combined dataset,
containing data for both pocket-case and hand-case. This test was done with the configuration shown
in Table 3, while using an SVM classifier with the RBF kernel. The subset used for training was
chosen evenly distributed, such that all activities had a representative set of samples with equivalent
size. The overall accuracy was improved by including slightly more samples for the hand-case, than
for the pocket-case. After the model has been trained with this combined training dataset, the both
cases were evaluated independently. The resulting confusion matrices for both cases are shown in
Figure 28. With 98.0%(94.9%) 22, the model was able to preserve its high classification accuracy for
the pocket-case of previously 96.0%(89.3%) 5. For the hand-case, the classification accuracy dropped
to 81.8%(74.0%) 23 from the 84.1%(73.9%) 6 achieved with separate training on both cases. When
comparing the results with the separately trained counterpart depicted in Figure 26, the walking
upstairs activity can be identified as main loser of this combination for the hand-case. The loss in
accuracy incurred by the combined training is less pronounced than expected. Though with roughly
80% for the hand-case, the accuracy still has room for improvement.

Walk Stand Stairs
up

Stairs
down

Walk

Stand

Stairs up

Stairs down

0.964
0.000
0.010
0.001

0.000
0.991
0.005
0.001

0.015
0.004
0.973
0.005

0.020
0.005
0.012
0.993

Pocket

Walk Stand Stairs
up

Stairs
down

0.807
0.065
0.149
0.053

0.060
0.897
0.034
0.046

0.077
0.030
0.692
0.025

0.056
0.008
0.126
0.876

Hand

0.2
0.4

0.6

0.8

22 23

Figure 28. Confusion matrices for both pocket-case and hand-case, when evaluated separately on
a model trained on the combination of both datasets. As model, the approach based on analytical
transformations with a PCA, 5 remaining dimensions, a window length of 2 s, raw acceleration, and an
SVM classifier with the RBF kernel was used.

Sensors 2020, 20, 6559 31 of 35

6. Conclusions

In this paper, we described the use of activity recognition in an indoor localization use-case,
which includes both carrying the smartphone in hand (hand-case), or in a trouser pocket (pocket-case).
To the best of our knowledge and conscience, the hand-case has not yet been examined with practical
applicability in mind by any publication, which makes it a novel use-case. We then introduced
and tested three possible approaches separately on pocket-case and hand-case datasets. For reasons
of practical applicability, we have limited the choice of sensors to accelerometer and gyroscope.
The magnetometer sensor was examined by existing research [28,29], and showed no sign of improving
accuracy, when used additionally to accelerometer and gyroscope. The barometer, which is very
promising for the detection of changes in altitude, was excluded as it is not yet widely used in
common smartphones.

The tested techniques are a mixture of novel and adapted concepts. The analytical
transformation-based approach was not found in other studies, and thus introduced as novel activity
recognition technique. It uses a sliding window to extract sequences from each sensor channel,
and uses a unique analytical transformation per such channel, to reduce dimensionality of the extracted
sequences. This technique has been further extended by the concept of virtual sensors, which calculate
new virtual sensor channels by computing a selected set of metrics on the raw sensor data of gyroscope
and accelerometer. The second introduced approach is based on codebooks, and was adapted from [19],
where it was originally introduced for activity recognition with wearable sensors. It is a feature learning
approach that tries to learn unique and significant sequences identifying the activities. Since almost
every publication in this research area considers an unidentical set of activities, a fair comparison
of the accuracies is problematic. Thus, we chose an approach based on statistical features as third
approach, which is the one used by most research in the smartphone activity recognition field. This way,
the resulting accuracies of this technique can be seen as the comparison to most existing research,
though limited to the classifiers we used.

The approach based on analytical transformations, as best performing in the comparison of
pocket-case and hand-case trained and tested separately, was finally evaluated on the combined dataset
containing the sequences from both cases. To gain more insight on the performance, the training
sequences of both cases were then tested separately, to obtain comparable accuracy metrics for both
cases. When the sequences used for training were carefully balanced between both cases, the resulting
accuracies of 98.0% for pocket-case and 81.8% for the hand-case barely changed compared to the
previously models separately trained on both cases. As expected from the discussion at the beginning of
this paper, most of the misclassifications can be found between the gait-involving activites. With activity
recognition in the supporting role of indoor localization, an accuracy of roughly 80% is acceptable,
but has room for improvement.

Future Work

For example, the integration of a light or proximity sensor could be a valuable data point,
contributing to the differentiation between pocket-case and hand-case, thus potentially improving
accuracy for the combined version. However, also in isolation, achieving good classification accuracies
for the hand-case, which was considered in this work, proved to be difficult. A thorough investigation
of existing research has shown that this case has not yet been part of many investigations. The few
publications with a similar case all made use of a barometer sensor for the detection of ascend and
descent. The most similar sensor position with wide coverage in existing research, are wrist-worn
wearables. This position generally works much better than the hand-case, since these devices are
more similar to a wristwatch. They do not have an influence on the arm movements during gait.
The arm can thus move naturally, which is in strong contrast to the hand-case covered in this work.
Due to the current rise of smartwatches, a combination with the sensoric input of these devices could
prove helpful for the detection of ascend and descent on stairs. Since these smartwatches are often

Sensors 2020, 20, 6559 32 of 35

additionally equipped with a heart rate monitor, this combination could be extended to include the
work done by [64], which uses these vitals as input for activity recognition.

The technique based on statistical features achieved a good accuracy on the pocket-case, and a
poor accuracy on the hand-case. The benchmarks of both MFCC and AR-Coefficients showed
that these features in isolation are performing better than when the whole set of features is combined.
This suggests that some of the included features confuse the classifier instead of contributing to an
improved separation. Employing a feature selection approach, as some other works with similar
approaches have done [33,65], could prove helpful to find a better set of features for an efficient
separation. This would additionally also reduce computational complexity, since fewer features would
have to be computed in the first place.

For wider practical uses, the activity recognition should finally also support activities such as using
elevators and escalators. These activities would greatly benefit from barometers. However, research
has also been done on the detection of elevators by making use of the magnetometer sensor [66].
This could allow supporting these activities, while still only relying on commonly available sensors.

Author Contributions: Conceptualization, M.E.; Data curation, M.E. and T.F.; Investigation, M.E.; Methodology,
M.E.; Project administration, M.E. and T.F.; Software, M.E., T.F. and M.B.; Supervision, F.D. and M.G.; Validation,
T.F.; Visualization, M.E.; Writing original draft, M.E.; Writing review editing, T.F., M.B. and F.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Labrador, M.A.; Yejas, O.D.L. Human Activity Recognition: Using Wearable Sensors and Smartphones; CRC Press:
Boca Raton, FL, USA, 2013.

2. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors.
Commun. Surv. Tutor. 2012, 15, 1192–1209.

3. Bao, L.; Intille, S.S. Activity Recognition from User-Annotated Acceleration Data. In International Conference
on Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–17.

4. Maurer, U.; Smailagic, A.; Siewiorek, D.P.; Deisher, M. Activity Recognition and Monitoring Using Multiple
Sensors on Different Body Positions. In Proceedings of the International Workshop on Wearable and
Implantable Body Sensor Networks, Cambridge, MA, USA, 3–5 April 2006.

5. Zhou, B.; Li, Q.; Mao, Q.; Tu, W.; Zhang, X. Activity Sequence-Based Indoor Pedestrian Localization Using
Smartphones. Trans. Hum.-Mach. Syst. 2014, 45, 562–574.

6. Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems.
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 1067–1080.

7. Ebner, F.; Deinzer, F.; Köping, L.; Grzegorzek, M. Robust Self-Localization using Wi-Fi, Step/Turn-Detection
and Recursive Density Estimation. In Proceedings of the International Conference on Indoor Positioning
and Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; pp. 1–9.

8. Fetzer, T.; Ebner, F.; Bullmann, M.; Deinzer, F.; Grzegorzek, M. Smartphone-Based Indoor Localization within
a 13th Century Historic Building. Sensors 2018, 18, 4095.

9. Ebner, F.; Fetzer, T.; Deinzer, F.; Grzegorzek, M. On Wi-Fi Model Optimizations for Smartphone-Based
Indoor Localization. ISPRS Int. J. Geo-Inf. 2017, 6, 233–250.

10. Davidson, P.; Piché, R. A Survey of Selected Indoor Positioning Methods for Smartphones. IEEE Commun.
Surv. Tutor. 2016, 19, 1347–1370.

11. Ebner, F.; Fetzer, T.; Deinzer, F.; Köping, L.; Grzegorzek, M. Multi Sensor 3D Indoor Localisation.
In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff,
AB, Canada, 13–16 October 2015; pp. 1–11.

12. Ebner, F.; Fetzer, T.; Deinzer, F.; Grzegorzek, M. On Prior Navigation Knowledge in Multi Sensor
Indoor Localisation. In Proceedings of the 19th International Conference on Information Fusion (FUSION),
Heidelberg, Germany, 5–8 July 2016; pp. 557–564.

Sensors 2020, 20, 6559 33 of 35

13. Fetzer, T.; Ebner, F.; Deinzer, F.; Köping, L.; Grzegorzek, M. On Monte Carlo Smoothing in Multi Sensor
Indoor Localisation. In Proceedings of the International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–8.

14. Guo, X.; Ansari, N.; Hu, F.; Shao, Y.; Elikplim, N.R.; Li, L. A Survey on Fusion-Based Indoor Positioning.
IEEE Commun. Surv. Tutor. 2019, 22, 566–594.

15. Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of Posture and Motion by Accelerometry: A Validation Study
in Ambulatory Monitoring. Comput. Hum. Behav. 1999, 15, 571–583.

16. Bulling, A.; Blanke, U.; Schiele, B. A Tutorial on Human Activity Recognition Using Body-worn Inertial
Sensors. ACM Comput. Surv. (CSUR) 2014, 46, doi:10.1145/2499621.

17. Ordóñez, F.J.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal
Wearable Activity Recognition. Sensors 2016, 16, 115.

18. Shirahama, K.; Köping, L.; Grzegorzek, M. Codebook Approach for Sensor-based Human Activity
Recognition. In Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct; ACM: New York, NY, USA, 2016.

19. Shirahama, K.; Grzegorzek, M. On the Generality of Codebook Approach for Sensor-Based Human Activity
Recognition. Electronics 2017, 6, 44.

20. Lester, J.; Choudhury, T.; Borriello, G. A Practical Approach to Recognizing Physical Activities.
In International Conference on Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2006.

21. Quaid, M.A.K.; Jalal, A. Wearable Sensors Based Human Behavioral Pattern Recognition Using Statistical
Features and Reweighted Genetic Algorithm. Multimed. Tools Appl. 2020, 79, 60616083.

22. Su, X.; Tong, H.; Ji, P. Activity Recognition with Smartphone Sensors. Tsinghua Sci. Technol. 2014, 19, 235–249.
23. Morales, J.; Akopian, D. Physical Activity Recognition by Smartphones, a Survey. Biocybern. Biomed. Eng.

2017, 37, 388–400.
24. Saeedi, S.; El-Sheimy, N. Activity Recognition Using Fusion of Low-Cost Sensors on a Smartphone for

Mobile Navigation Application. Micromachines 2015, 6, 1100–1134.
25. Yang, J. Toward Physical Activity Diary: Motion Recognition Using Simple Acceleration Features with

Mobile Phones. In Proceedings of the International Workshop on Interactive Multimedia for Consumer Electronics;
ACM: New York, NY, USA, 2009.

26. Ustev, Y.E.; Durmaz Incel, O.; Ersoy, C. User, Device and Orientation Independent Human Activity
Recognition on Mobile Phones: Challenges and a Proposal. In Proceedings of the Conference on Pervasive and
Ubiquitous Computing Adjunct Publication; ACM: New York, NY, USA, 2013.

27. Siirtola, P.; Röning, J. Recognizing Human Activities User-independently on Smartphones Based on
Accelerometer Data. IJIMAI 2012, 1, 38–45.

28. Shoaib, M.; Scholten, H.; Havinga, P.J. Towards Physical Activity Recognition Using Smartphone Sensors.
In Proceedings of the International Conference on Ubiquitous Intelligence and Computing, Vietri sul Mere,
Italy, 18–21 December 2013.

29. Shoaib, M.; Bosch, S.; Incel, O.; Scholten, H.; Havinga, P. Fusion of Smartphone Motion Sensors for Physical
Activity Recognition. Sensors 2014, 14, 10146–10176.

30. Sun, L.; Zhang, D.; Li, B.; Guo, B.; Li, S. Activity Recognition on an Accelerometer Embedded Mobile Phone
with Varying Positions and Orientations. In International Conference on Ubiquitous Intelligence and Computing;
Springer: Berlin/Heidelberg, Germany, 2010.

31. Tran, D.N.; Phan, D.D. Human Activities Recognition in Android Smartphone Using Support Vector
Machine. In Proceedings of the International Conference on Intelligent Systems, Modelling and Simulation
(ISMS), Bangkok, Thailand, 25–27 January 2016.

32. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Human Activity Recognition on Smartphones
Using a Multiclass Hardware-Friendly Support Vector Machine. In Ambient Assisted Living and Home Care;
Springer: Berlin/Heidelberg, Germany, 2012.

33. Anjum, A.; Ilyas, M.U. Activity Recognition Using Smartphone Sensors. In Proceedings of the Consumer
Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2013.

34. Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M. Preprocessing Techniques for Context Recognition from
Accelerometer Data. Pers. Ubiquitous Comput. 2010, 14, 645–662.

Sensors 2020, 20, 6559 34 of 35

35. Lee, Y.S.; Cho, S.B. Activity recognition using hierarchical hidden markov models on a smartphone with 3D
accelerometer. In International Conference on Hybrid Artificial Intelligence Systems; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 460–467.

36. Euston, M.; Coote, P.; Mahony, R.; Kim, J.; Hamel, T. A Complementary Filter for Attitude Estimation of a
Fixed-Wing UAV. In Proceedings of the International Conference on Intelligent Robots and Systems, Nice,
France, 22–26 September 2008.

37. Mahony, R.; Hamel, T.; Pflimlin, J.M. Complementary Filter Design on the Special Orthogonal Group SO(3).
In Proceedings of the Conference on Decision and Control, Seville, Spain, 15 December 2005.

38. Madgwick, S. An Efficient Orientation Filter for Inertial and Inertial/Magnetic Sensor Arrays. Rep. X-Io
Univ. Bristol (UK) 2010, 25, 113–118.

39. Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of Imu and Marg Orientation Using a Gradient
Descent Algorithm. In Proceedings of the International Conference on Rehabilitation Robotics, Zurich,
Switzerland, 29 June–1 July 2011.

40. Yang, J.; Lu, H.; Liu, Z.; Boda, P.P. Physical Activity Recognition with Mobile Phones: Challenges, Methods,
and Applications. In Multimedia Interaction and Intelligent User Interfaces; Springer: Berlin/Heidelberg,
Germany, 2010.

41. Mohd-Yasin, F.; Nagel, D.; Korman, C. Noise in MEMS. Meas. Sci. Technol. 2009, 21, 012001.
42. Pedley, M. High Precision Calibration of a Three-Axis Accelerometer. Free Semicond. Appl. Note 2013, 1–41.
43. Maxwell Donelan, J.; Kram, R.; Arthur D, K. Mechanical and Metabolic Determinants of the Preferred Step

Width in Human Walking. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 1985–1992.
44. Wu, W.; Dasgupta, S.; Ramirez, E.E.; Peterson, C.; Norman, G.J. Classification Accuracies of Physical

Activities Using Smartphone Motion Sensors. J. Med. Internet Res. 2012, 14, e130.
45. Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.; Howard, D. A Comparison of Feature Extraction Methods for the

Classification of Dynamic Activities From Accelerometer Data. Trans. Biomed. Eng. 2008, 56, 871–879.
46. Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos.

Mag. J. Sci. 1901, 2, 559–572.
47. Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188.
48. Khan, A.M.; Lee, Y.K.; Lee, S.Y.; Kim, T.S. Human Activity Recognition via an Accelerometer-Enabled-

Smartphone Using Kernel Discriminant Analysis. In Proceedings of the International Conference on Future
Information Technology, Busan, Korea, 21–23 May 2010.

49. Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K.R. Fisher Discriminant Analysis with Kernels.
In Proceedings of the Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal
Processing Society Workshop, Madison, WI, USA, 25 August 1999; pp. 41–48.

50. Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity Recognition from Accelerometer Data.
In Proceedings of the Conference on Artificial Intelligence (AAAI), Pittsburgh, Pennsylvania, 9–13 July 2005;
Volume 5.

51. Dernbach, S.; Das, B.; Krishnan, N.C.; Thomas, B.L.; Cook, D.J. Simple and Complex Activity Recognition
through Smart Phones. In Proceedings of the International Conference on Intelligent Environments,
Guanajuato, Mexico, 26–29 June 2012.

52. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity Recognition Using Cell Phone Accelerometers.
SigKDD Explor. Newsl. 2011, 12, 74–82.

53. Morales, J.; Akopian, D.; Agaian, S. Human Activity Recognition by Smartphones Regardless of Device
Orientation. In Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications; International
Society for Optics and Photonics (SPIE): Toulouse, France, 2014; Volume 9030.

54. Cano, P.; Batle, E.; Kalker, T.; Haitsma, J. A Review of Algorithms for Audio Fingerprinting. In Proceedings
of the Workshop on Multimedia Signal Processing, St. Thomas, VI, USA, 9–11 December 2002.

55. Miluzzo, E.; Lane, N.D.; Fodor, K.; Peterson, R.; Lu, H.; Musolesi, M.; Eisenman, S.B.; Zheng, X.; Campbell,
A.T. Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe
Application. In Proceedings of the Conference on Embedded Network Sensor Systems; ACM: New York, NY,
USA, 2008.

56. Vavoulas, G.; Chatzaki, C.; Malliotakis, T.; Pediaditis, M.; Tsiknakis, M. The MobiAct Dataset: Recognition
of Activities of Daily Living using Smartphones. ICT4AgeingWell 2016, 143–151

Sensors 2020, 20, 6559 35 of 35

57. Ebner, M.; Ebner, F.; Fetzer, T.; Bullmann, M.; Köping, L. SensorReadoutApp. 2020. Available online:
https://github.com/simpleLoc/SensorReadoutApp (accessed on 24 April 2020).

58. Ebner, M.; Ebner, F.; Fetzer, T.; Bullmann, M.; Köping, L. Recording Walks With the simpleLoc SensorReadout
App. 2020. Available online: https://youtu.be/2Ea_crH0Ds4 (accessed on 15 September 2020).

59. Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer:
Berlin/Heidelberg, Germany, 2006.

60. Rao, C.R. The Utilization of Multiple Measurements in Problems of Biological Classification. J. R. Stat. Soc.
Ser. B (Methodol.) 1948, 10, 159–203.

61. Martínez, A.M.; Kak, A.C. PCA versus LDA. Trans. Pattern Anal. Mach. Intell. 2001, 23, 228–233.
62. Pires, I.M.; Marques, G.; Garcia, N.M.; Flórez-Revuelta, F.; Canavarro Teixeira, M.; Zdravevski, E.;

Spinsante, S.; Coimbra, M. Pattern Recognition Techniques for the Identification of Activities of Daily
Living Using a Mobile Device Accelerometer. Electronics 2020, 9, 509.

63. Wu, T.F.; Lin, C.J.; Weng, R.C. Probability Estimates for Multi-class Classification by Pairwise Coupling.
J. Mach. Learn. Res. 2004, 5, 975–1005.

64. Lara, O.D.; Pérez, A.J.; Labrador, M.A.; Posada, J.D. Centinela: A Human Activity Recognition System Based
on Acceleration and Vital Sign Data. Pervasive Mob. Comput. 2012, 8, 717–729.

65. Wang, A.; Chen, G.; Yang, J.; Zhao, S.; Chang, C.Y. A Comparative Study on Human Activity Recognition
Using Inertial Sensors in a Smartphone. Sens. J. 2016, 16, 4566–4578.

66. Kaiser, S.; Lang, C. Detecting Elevators and Escalators in 3D Pedestrian Indoor Navigation. In Proceedings
of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares,
Spain, 4–7 October 2016.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/simpleLoc/SensorReadoutApp
https://youtu.be/2Ea_crH0Ds4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Sensors and Locomotion Activities
	Sensors
	Locomotion Activities

	Activity Recognition
	Analytical Transformations
	Codebook
	Statistical Features

	Experiments
	Dataset and Measuring Setup
	Results for Analytical Transformations
	Results for Codebook
	Results for Statistical Features
	Comparison and Discussion

	Conclusions
	References

