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Abstract: Nowadays, autonomous vehicles have achieved a lot of research interest regarding the
navigation, the surrounding environmental perception, and control. Global Navigation Satellite
System/Inertial Navigation System (GNSS/INS) is one of the significant components of any vehicle
navigation system. However, GNSS has limitations in some operating scenarios such as urban regions
and indoor environments where the GNSS signal suffers from multipath or outage. On the other
hand, INS standalone navigation solution degrades over time due to the INS errors. Therefore, a
modern vehicle navigation system depends on integration between different sensors to aid INS for
mitigating its drift during GNSS signal outage. However, there are some challenges for the aiding
sensors related to their high price, high computational costs, and environmental and weather effects.
This paper proposes an integrated aiding navigation system for vehicles in an indoor environment
(e.g., underground parking). This proposed system is based on optical flow and multiple mass flow
sensors integrations to aid the low-cost INS by providing the navigation extended Kalman filter (EKF)
with forward velocity and change of heading updates to enhance the vehicle navigation. The optical
flow is computed for frames taken using a consumer portable device (CPD) camera mounted in
the upward-looking direction to avoid moving objects in front of the camera and to exploit the
typical features of the underground parking or tunnels such as ducts and pipes. On the other hand,
the multiple mass flow sensors measurements are modeled to provide forward velocity information.
Moreover, a mass flow differential odometry is proposed where the vehicle change of heading is
estimated from the multiple mass flow sensors measurements. This integrated aiding system can be
used for unmanned aerial vehicles (UAV) and land vehicle navigations. However, the experimental
results are implemented for land vehicles through the integration of CPD with mass flow sensors to
aid the navigation system.

Keywords: inertial navigation system; optical flow; mass air flow; differential odometry

1. Introduction

The Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) integration
is the main integrated navigation component in land vehicles. GNSS provides reliable long-term
estimates for position and velocity [1]. However, open sky conditions should be fulfilled [2]. INS
provides accurate short-term position, velocity, and attitudes estimates for navigation applications [3].
However, this navigation information is degraded over time because of the INS drift due to the sensors
(accelerometers and gyroscopes) errors [1], especially when using low-cost INS (MEMS-based) [4].
Therefore, GNSS/INS integration overcomes the drawbacks of each sensor if used in standalone mode
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and provides a better navigation estimate [5] where GNSS provides position and velocity as updates to
the navigation filter, and the INS is responsible for the prediction stage in the integration filter [6].

GNSS/INS integration may suffer in some operating environments such as urban canyons, tunnels,
and underground parking [7] where the GNSS signals are degraded or blocked for a long time [8],
and the INS only provides the navigation solution, which is deteriorated after a short time because of
drifts and biases of accelerometer and gyroscopes [9]. For example, Equation (1) shows the position
error due to the INS biases.

δP =
1
2

bat2 +
1
6

bωgt3 (1)

where δP is the position error due to the accelerometer bias (ba), and the gyroscope bias (bω), g is the
gravitational acceleration, t is the time of operation in standalone mode.

Therefore, INS should be aided by other sensors to reduce the drift of the final navigation solution.
Odometers [10], magnetometers [11], ultrasonic sensors [12], light detection and ranging (LIDAR) [13],
radio detection and ranging (RADAR) [14], and cameras [15] are examples of the aiding sensors that
can be used for aiding INS. Moreover, land vehicle motion constraints can also be applied to aid
the INS during GNSS signal outages [16]. Non-holonomic constraints (NHC), Zero velocity UPdaTe
(ZUPT), and Zero Integrated Heading Rate (ZIHR) [17] are examples of the motion constraints. Finally,
maps may be used to aid the land vehicle navigation [18] to reduce the INS large drift. However, some
drawbacks are accompanied when using these sensors.

Odometer is the most common sensor that provides velocity information for land vehicles.
Unfortunately, some errors affect the precision of the estimated forward velocity using a regular
encoder. The wheel, the road surface, and the encoder itself are three sources of odometer errors.
The wheel misalignment and the unequal wheel diameter are examples of the errors related to the
wheel [19]. The road surface may affect the estimated forward velocity using odometers such as
slippery surfaces due to ice or rain. Mountainous roads may cause wheel slipping and skidding [20].
The encoder resolution and sampling rate may affect the precision of the estimated velocity [19].

Magnetometer aids the INS to mitigate its heading drift during GNSS signal outages by providing
heading updates. However, the estimated heading may be affected by the magnetic interference of
the surrounding environment [21], especially in indoor scenarios (e.g., underground parking) for
land vehicles. Ultrasonic sensors are typically used for obstacle avoidance [22] in land vehicles.
However, [23] used the ultrasonic sensor as an aiding sensor by providing velocity and change of
heading updates [24] to the navigation filter. Nevertheless, the sensor installment process and the
estimated velocity and the heading change precision are the major drawbacks when using ultrasonic
in land vehicle navigation.

LiDAR is used in environmental perception and navigation in land vehicles [25]. Unfortunately,
there are major drawbacks related to their high price, the computational and processing cost, and the
surrounding environment effects (i.e., the LiDAR measurements are affected by the dynamic objects),
which lead to mismatching issues. Moreover, LiDAR data is affected by rainy weather. RADAR is
usually used for collision avoidance [26], lane detection [27] as well as navigation in land vehicles
though the high computational costs and high power consumption are major RADAR problems.

In the case of indoor scenarios, a beacon-based navigation [28,29] system may be used as aiding
sensors for land vehicles [30]. However, additional hardware setups for the beacons transmitters
and receivers is one of the main drawbacks of using such a system. Vision sensor is used in land
vehicles as environmental awareness. Vision can also contribute in the navigation solution either by
vision-based [31] or vision-aided navigation system [16]. Visual odometry (VO) is based on the camera
motion estimation between successive images [32], where it is implemented by using a single vision
sensor or stereo cameras [33].

Optical flow is one of the VO approaches, which is based on the bird and insects flight
navigation [34]. The optical flow sensors are typically employed for platform velocity estimation.
Previous researches integrated VO with INS [35], and/or magnetometers [34], or fused with motion
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constraints to aid INS [16]. VO can be integrated with maps, for example; [36] proposed a
geo-localization land vehicle system based on visual odometry and public domain map sources
for GNSS denied environment. A similar land vehicle navigation system for the urban environment
was proposed by [37], where stereo VO using weighted non-linear estimation is implemented and
fused with digital maps in which probabilistic map matching is used to limit the VO errors. A VO
is proposed by [38] using the rear parking camera of land vehicles and integrated with the GNSS to
provide an enhanced navigation solution. Reference [39] has proposed a tightly coupled integration
between GNSS and visual information from a single sky pointing camera. The visual information is
used to detect the open sky condition for GNSS and to estimate the ego-motion of the vehicle in the
non-open sky regions. The VO is based on estimating the essential matrix in which the oriented fast
and rotated BRIEF (ORB) is used for the feature extraction and matching in addition to the random
sample consensus (RANSAC) algorithm is implemented for outlier rejection.

Another research adopting vision aided inertial navigation system for UAV applications is shown
in [40], their approach is based on optical flow and machine learning Gaussian process regression
(GPR) to enhance the estimation of the vehicle velocity. They accommodate real-time incremental
training session during GNSS availability, then during the unavailability of GNSS the GPR attempt to
correct the drift in both INS and VO systems.

There are some challenges for VO in land vehicle navigation. For example, for the camera that is
mounted downwards, there are lack of features because of the narrow field of view in addition to the
shadowing problems. For the cameras that are mounted facing the vehicle forward direction suffers
from the dynamic objects, which lead to false matching. Therefore, a CPD camera that is faced in the
upward direction solves some of the challenges regarding the narrow field of view, the shadowing,
and the moving objects issues, especially for the indoor environment. Moreover, there are many
features in the ceiling for such an environment (underground parking and tunnels) such as ducts and
pipelines, which enhance the features detection and matching process. Finally, the vision sensors are
not affected by the weather condition in the indoor environment scenarios.

Differential wheel odometry concept has been employed in many robotics and vehicle
researches [41]. The idea is based on the vehicle model where the change of heading is estimated
using the velocity estimated from multiple sensors mounted on the latitude (transverse) axis of the
vehicle or robot. Different researches implemented the differential wheel odometry using different
sensors such as [42] used multiple RADAR sensors, [23] used dual ultrasonic sensor, [43,44] used the
anti-lock braking system (ABS) to provide velocity and heading information to the navigation system.
CAN (Controller Area Network) bus may provide some useful information on the vehicle dynamics
such as the forward velocity and steering angle data. However, the commercial on-board diagnostics
(OBD-II) provides the velocity information and does not typically provide the steering angle data unless
additional customized hardware and software designs are developed [45]. Previous researches used
consumer portable devices (CPD) in many land vehicle applications such as monitoring the driving
condition, evaluating the road surface quality [46], telematics [47], roadside signs recognition [48],
lane tracking [49,50], mapping [51], and navigation [52]. CPDs are used to provide a full navigation
solution as in [53] utilized the iPhone 4 inertial sensors along with the NHC for land vehicle navigation
states estimation. Other researches used CPDs in aiding the land vehicle navigation, as in [54], which
mounted CPDs on a land vehicle steering wheel to estimate the steering wheel angle by the CPD
accelerometers and compute the heading change which is used as an update in the navigation filter to
aid the low-cost INS during GNSS signal outage.

Therefore, searching for a new configuration for the typical aiding sensors (up-looking camera)
and new aiding sensors (Mass Flow meter) to assist the low-cost INS during GNSS signal outage to
improve the land vehicle navigation solution.

Section 2 describes the system overview for the proposed integrated aiding navigation system
that is composed of a monocular camera and mass air flow sensors then the integration scheme is
illustrated along with different integration navigation schemes (measurements based and federated
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based fusion techniques). Section 3 discusses the experimental results where the velocity and heading
change estimation results are described along with the navigation solution. Finally, the conclusion
results are illustrated.

2. System Overview

An integrated system is proposed to aid the INS during GNSS signal outage, especially in indoor
scenarios such as underground parking and tunnels. The aiding system is composed of a CPD camera
and multiple mass flow meters to provide the navigation filter with both velocity and change of
heading information. The next subsections describe in detail the used aiding sensors in the proposed
integrated system.

2.1. Monocular Visual Odometry

A VO is proposed using an up-looking CPD camera where X and Y optical flows are extracted
through feature detection by Speeded Up Robust Features (SURF) detector and M-estimator Sample
Consensus (MSAC) algorithm for outlier detection.

The camera is mounted in the up-looking direction and parallel to the ceiling. This setup avoids
the dynamic objects in the camera scene and simplifies the velocity estimation by alleviating roll and
pitch compensation. This setup uses the ceiling features such as pipes/ducts but suffers from the abrupt
illumination changes due to the lights. The optical flow equations are described in [55] as shown in
Equation (2).

p =
f
Z

P (2)

where P is the space point with coordinate (X,Y,Z) and p is the image point with (x,y,f ) coordinates,
and f is the focal length of the camera. Z is the range between the camera and the ceiling of the
underground parking or tunnel, which may be estimated using an ultrasonic sensor. The image
features displacements are multiplied by the observation rate to determine the optical vectors. MSAC
is used to choose a single representative optical vector (u, v) based on observation consensus. Then the
velocity is calculated in Equation (3) where s is the pixel size.

VVO =
−s
f

uZ (3)

2.2. Mass Flow Sensors

The mass flow sensor is used to measure the flow rate of the air and gases. It is typically used
in laboratory and medical applications. In this paper, multiple mass flow sensor measurements are
manipulated to estimate the forward velocity and the change of heading of land vehicles to aid the
INS in indoor environments such as tunnels and underground parking where GNSS signal is not
available. This section is divided into two subsections where the first one describes the forward velocity
estimation using the mass flow sensors while the second subsection illustrates the land vehicle heading
estimation using the proposed mass flow differential wheel odometry

2.2.1. Mass Flow Velocity Estimation

The relation between the multiple mass flow sensors measurements and the computed velocity
from a reference tactical grade INS is estimated through a linear regression model as shown in Figure 1.
The mass flow velocity regression model is expected in an indoor environment to avoid the effect of
the wind for outdoor scenarios.
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Figure 1. Flowchart of the mass flow velocity regression model estimation.

For indoor scenarios, the multiple mass flow sensors use the predetermined regression model
to estimate the land vehicle forward velocity to aid the low-cost INS for mitigating its large drift.
Figure 2 exhibits the forward velocity estimation by multiple mass flow sensors and its integration
with low-cost INS during GNSS signal outage.

Figure 2. Flowchart of the proposed mass flow velocity aiding low-cost Inertial Navigation System
(INS) through extended Kalman filter (EKF).

2.2.2. Mass Flow Heading Change Estimation

The change of heading computation is based on the differential wheel odometry, which depends
on the vehicle model concept [56]. Figure 3 and Equations (4)–(6) describe the heading change
computation using multiple mass flow sensors.

Figure 3. Proposed differential mass flow odometry concept.

VMFl = V cos(δ) −
Spacing

2
(Heading change) (4)

VMFr = V cos(δ) +
Spacing

2
(Heading change) (5)
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Heading change =
VMFr −VMFl

Spacing
(6)

where the velocity (V) and the rotation angle (δ) is at the vehicle’s center of gravity.
The land vehicle heading change is estimated by differencing the velocities computed from the

left and right mass flow sensors and divided by the spacing between them. The spacing between
the multiple mass flow sensors is determined using linear measurements. However, there are two
sources of errors when estimating the heading change, which are the two mass flow velocities and the
spacing distance. Therefore, the system is calibrated using tactical grade INS through linear regression
to compute the bias and the scale factor for the heading computation, as shown in Figure 4.

Figure 4. Flowchart of the mass flow heading change regression model estimation.

The scale factor and the bias are used to compensate for the errors of the heading change estimation
using the proposed differential mass flow odometry. Figure 5 exhibits the flowchart of the differential
mass flow odometry to aid the low-cost INS during GNSS signal outage.

Figure 5. Flowchart of the proposed differential mass flow odometry for aiding low-cost INS
through EKF.

It is worth mentioning that the Z gyroscope is integrated with the mass flow sensors in estimating
the land vehicle change of heading as it provides a straight motion constraint to the proposed estimating
method with the same concept that was described by [23]. Figure 6 shows the flowchart of the straight
motion constraint using Z gyroscope.

On the one hand, when the Z gyroscope angular rate measurements are less than a certain threshold,
then the vehicle is in a nearly straight motion, and there is no need to acquire any heading information
from the multiple mass flow sensors. On the other hand, when the gyroscope measurements exceed
this threshold, then the vehicle is in a turn motion state, and the proposed differential mass flow
odometry provides the navigation filter with the change of heading updates.
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Figure 6. Flowchart of the straight motion constraint using Z gyroscope.

2.3. Integration Scheme

Two sensors integration techniques are implemented, which are the measurement integration and
federated integration methods. On one side, the integration of the measurement is based on fusing the
aiding sensors’ observations with the INS in one navigation filter, which is the extended Kalman filter
(EKF).

On the other side, the federated integration scheme depends on integrating the navigation solution
where each aiding sensor is fused separately with the INS through banks of KF to provide a navigation
solution and then these solutions are fused through weighted average least square adjustment (LSA)
to determine one integrated solution.

During GNSS availability, GNSS/INS loosely coupled integration is used to estimate the navigation
solution through EKF. On the other hand, the proposed aiding navigation system provides the navigation
filter with the velocity and heading change updates to aid the low-cost INS during GNSS signal outage.

EKF states include the navigation states’ errors as well as the INS sensor error states (biases and
scale factors). The error states vector δx consists of 21 states as follows:

δx1×21 =
[
δP1×3 δv1×3 δα1×3 biasa1×3 biasg1×3 SFa1×3 SFg1×3

]
where δP, δv, and δα are the position, the velocity, and the attitude error states, respectively. biasa and
biasg are the biases of the accelerometers and the gyroscopes, respectively. Finally, SFa and SFg are the
scale factor of the accelerometers and gyroscopes, respectively.

KF main phases are the prediction and the update stages [57]. The system model defines the time
evolution of the navigation states and counts for the prediction stage while the observation model
affords the updates to the navigation filter.

The system and the prediction stages equations are described in the following equations [57].
The system stage:

.
x(t) = F(t)x(t) + G(t)w(t) (7)

xk+1 = φk,k+1xk + w k. (8)

φk,k+1 = (I + F∆t) (9)

Qk = E(wkwT
k ). (10)

The prediction stage:

x−k = φk,k−1
_
x
+

k−1 (11)

P−k = φk,k−1P+
k−1φ

T
k,k−1 + Qk−1 (12)
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where
.
x is the state vector rate of change, F is the dynamics matrix, x is the error state vector, G is the

shaping matrix, and wk is the white noise. φk,k+1 is the transition matrix, I is the identity matrix, and ∆t
is the time interval, Qk is the process noise matrix which describes the uncertainty of the system model.
Finally, Pk is the states covariance matrix. (−) refers to the predicted elements, and finally, (+) refers to
updated elements [57].

The observation model is described in Equations (13) and (14)

zk = Hkxk + ηk (13)

Rk = E(ηkη
T
k ) (14)

where zk is the observational vector, Hk is the design matrix, ηk is the measurement noise. Rk is the
covariance matrix of the measurement noise, describes the uncertainty of the observations.

When the forward velocity updates vb=[vMF 0 0]T (for example mass airflow velocity updates)
are applied to the navigation filter, the observation model and the design matrix are described in
Equations (15) and (16)

δzVMF = (Cl
b)
−1

vl
− vb (15)

HVMF(3×21) = [03×3 (Cl
b)
−1

3×3 −(Cl
b)
−1
[vl
×]3×3 03×12 ] (16)

where vb is the velocity update vector while is vMF is the estimated forward velocity from the Mass
Flow sensors, Cl

b is the rotational matrix between the body frame to the local level frame. vlx is the
skew-symmetric matrix of the velocity measured in the local level frame.

On the other side, the heading update observation model and the design matrix are explained in
Equations (17) and (18).

δzAMF = AINS −AMF (17)

HAMF(1×21) = [ 01×3 01×3 [0 0 1] 01×12 ] (18)

where AINS and AMF are the headings from the INS and the Mass Flow sensors differential
odometry respectively.

The update stage is illustrated in Equations (19)–(21) [57].

Kk = P−k HT
k [HkP−k HT

k + Rk]
−1

(19)

_
x
+

k =
_
x
−

k + Kk[zk −Hk
_
x
−

k ] (20)

P+
k = [I −KkHk]P−k . (21)

The proposed aiding navigation system consists of an up-looking CPD camera, multiple mass
flow sensors, and in-vehicle sensors (odometer). The CPD camera provides the filter with the forward
velocity through the optical flow concept. In contrast, the multiple mass flow sensors provide both
the velocity and the heading change of the land vehicle. Finally, the vehicle sensors provide velocity
update through odometer. These updates are used to aid the low-cost INS to reduce its drift in GNSS
denied environment and more specifically, the indoor scenarios such as the tunnels and underground
parking. Figure 7 exhibits the flowchart of the proposed aiding system based on the measurement
integration scheme.
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Figure 7. Flowchart of the proposed aiding navigation system measurements integration scheme.

Figure 8 shows the proposed aiding navigation system based on the federated integration scheme.
Each aiding sensor is integrated separately with INS through EKF to provide a navigation solution
then, these navigation solutions, along with their precision (P matrix) are fused through weighted
average LSA.

Figure 8. Flowchart of the proposed aiding navigation system federated integration scheme.

The mass flow sensors measurements are modeled using the tactical grade INS from the first
beginning. For example, the mass flow regression models are created once. For typical indoor scenario,
the CPD camera velocity is regressed using the mass flow estimated velocities for some time before
providing the navigation filter with the optical flow speed i.e., estimating the optical flow velocity bias
and scale factor for some time from the mass flow sensor, then providing the filter with the regressed
optical flow speed. It is essential to mention that the mass flow regression models could be enhanced
using the final integrated navigation solution by providing the integrated forward velocity and heading
change backward from the EKF.

3. Experimental Results

A real data set was collected at the University of Calgary region, where a part of the trajectory
was in the underground parking. Pixhawk 2 board is used, which consists of an Invensense MPU-9250
IMU with 50 Hz data rate and a U-blox GNSS with 5 Hz data rate.

Two mass flow sensor of the model (SFM3000) and an iPhone 6 camera with up-looking setup
were used in the test. The iPhone 6 camera is of model Sony Exmor RS with 1.471 µm pixel size,
29.89 mm focal length, with video resolution 1920 × 1080 pixels and 30 frames per second. The mass
flow sensor measure flow rate from range −200 slm to +200 slm (slm is the standard liter per minute,
which is a unit of volume flow rate of air corrected to temperature and pressure standard conditions)
with operating temperature from −20 ◦C to +80 ◦C. Figure 9 exhibits the mass flow sensor used in
the experiment
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Figure 9. Mass flow sensor (SFM3000).

The mass flow sensors were mounted on the roof of the car, and the spacing between the mass
flow sensors was 0.99 m. A reference navigation system was used in the experiment to form the
linear regression of the mass flow sensors and evaluate the performance of the proposed aiding
navigation system. The reference system is based on SPAN technology, which consists of NovAtel
OEMV GNSS receiver and tactical grade IMU iMAR FSAS. The tactical grade IMU gyroscopes and
accelerometers performance are as follows: The angular random walk is 0.1◦/

√
hr, the rate bias is less

than 0.75◦/hr. In contrast, the accelerometer bias is 1.0 mg, and the scale factor is 300 PPM for both. The
gyroscope input range is ± 500◦/s, while the accelerometer range is ±5 g. The position performance is
around 4 m RMS and 0.15 m/s for velocity RMS for 60 s GNSS signal outage. Uni-link Mini ELM327
OBD-II Bluetooth Scanner Tool is used to access the regular odometer data. It is worth mentioning
here that the SPAN data (SPAN GNSS/INS integrated system) was post-processed through a loosely
coupled scheme with EKF employing NHC and ZUPT as updates. Moreover, a forward and backward
smoothing process is implemented to estimate the reference solution to help evaluating the proposed
navigation system.

3.1. Velocity Estimation Results

The proposed aiding navigation system is based on estimating the forward velocity from different
aiding sensors (CPD camera and mass flow sensors). The forward velocity estimated by the CPD
camera is based on the optical flow, as discussed before, where the vertical distance (Z) between the
CPD camera and the underground parking ceiling is pre-surveyed using linear tape measurements.
This range may be measured using any ranging sensor such as an ultrasonic sensor.

The mass flow sensors velocity is based on a linear regression model for estimating the relation
between the mass flow sensors measurements, and the reference velocity estimated from the tactical
grade INS is shown in Figure 10.Sensors 2020, 20, x 11 of 18 
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Figure 11 shows the velocity estimated from different aiding sensors and the reference velocity
determined from the tactical grade INS in the underground parking.

Figure 11. Visual odometry (VO) velocity and mass flow sensors velocity versus SPAN reference velocity.

The difference between the forward velocity estimated by the VO and mass flow sensors and
the SPAN reference velocity is calculated to evaluate the proposed methods. The root mean square
error (RMSE) of the forward velocity estimation is 0.62 m/s and 0.27 m/s for the VO and the mass flow
sensors methods, respectively.

3.2. Heading Change Estimation Results

The heading change is estimated using multiple mass flow sensors. The proposed method is
based on the differential odometry concept, as described before in Equation (8).

Figure 12 exhibits the heading change estimated by the proposed method and the reference
heading change computed from the SPAN tactical grade INS.

Figure 12. Mass flow change of heading versus SPAN reference heading change.

The difference between the heading change estimated by the mass flow sensors and the SPAN
heading change is calculated to assess the proposed differential mass flow odometry method. The RMSE
of the heading change estimation is 2.9◦/s.
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3.3. Navigation States Estimation Results

Loosely coupled GNSS/INS integration is implemented to estimate the navigation solution for the
trajectory. The GNSS signal outage occurred for 190 s. when the vehicle entered the underground
parking. The position RMSE of the INS stand-alone solution is around 1.98 km. It is worth mentioning
that the low-cost INS standalone solution is implemented without any accelerometers and gyroscopes
calibration and without the aid of the motion constraints such as Non-Holonomic Constraints (NHC).

The navigation states are estimated using different updates to investigate their effect on the final
navigation solution, as shown in Figure 13.

Figure 13. The trajectory of the underground parking using different updates for 190 s. Global
Navigation Satellite System (GNSS) signal outage (measurements fusion method).

The velocity updates are computed from the VO, mass flow meters, and an odometer, which is
based on the measurement’s fusion technique. The difference between the trajectory of the reference and
the estimated navigation solution using different updates are computed to calculate the position RMSE
to assess the impact of each update on the final result as shown in Table 1 that describes the position
RMSE of different navigation solution using various updates by a measurements fusion technique.

Table 1. Position root mean square error (RMSE) for different navigation solution methods using
measurements fusion technique.

Navigation Solution RMSE (m)

INS stand-alone 1980
INS/non-holonomic constraints (NHC) 14.30

INS/odometer velocity update 4.85
INS/velocity update 3.96
INS/velocity/NHC 4.00

INS/velocity/heading change 3.60

Table 1 shows that aiding the INS with the proposed velocity and heading change updates provide
more reliable navigation solution that aid the INS with the regular odometer only during GNSS signal
outage as the level of enhancement when using the proposed aiding system reached to around 35%
when compared with aiding the INS with the typical odometer.
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The Federated fusion technique is implemented to estimate different navigation solutions using
various updates to show the difference between this kind of navigation solution integration and
the measurement fusion method. Table 2 shows the position RMSE of different solutions using the
federated fusion method.

Table 2. Position RMSE for different navigation solution methods using federated fusion technique.

Navigation Solution RMSE (m)

INS stand-alone 1980
INS/NHC 14.30

INS/velocity update 7.94
INS/velocity/NHC 6.07

INS/velocity/heading change 6.74

Tables 1 and 2 show that the measurement fusion technique provides a better navigation solution
than the federated one. The performance difference between the measurement integration and federated
integration schemes are mainly due to the mechanization correction step adopted in the measurement
integration scheme. Any miss estimation of the position at early epoch(s) will be propagated to the
next epochs, which induces this bias effect. Figure 14 exhibits the trajectory of the INS/velocity/heading
change updates using both the measurements and the federated fusion methods.

Figure 14. The trajectory of the underground parking INS/velocity/heading change updates for 190 s
GNSS signal outage (measurements and federated fusion method).

4. Conclusions

A multi-modal aiding navigation system based on optical and mass air flow is proposed to aid
the low-cost INS in autonomous vehicle navigation for the indoor environment. The proposed system
consists of an up-looking camera (CPD) and multiple mass flow sensors where the camera provides
forward velocity information through VO while mass flow sensors provide the navigation filter with
both velocity and change of heading updates.

The up-looking camera overcomes the lack of features issues for indoor environment in addition
to avoiding the dynamic objects, which makes the features detection and matching more reliable.
Redundant velocity information for the land vehicle navigation from different sensors is implemented
for fault detection and identification to overcome some of the odometers’ drawbacks.
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The proposed aiding system provides the heading change information, which is not affected by
magnetic interference as the case of the magnetometers. Moreover, the estimated velocity from the
mass flow sensors is based on the quantity of air that passes through the sensors due to the land
vehicle motion and therefore overcomes the slipping and skidding problems facing the regular wheel
odometer and therefore the mass flow sensors better reflect the car motion.

The proposed aiding navigation system may be applied for both land vehicles and unmanned
aerial vehicles, especially for the up-looking camera for indoor rescue. The mass flow sensors provide
both velocity and heading change with a high data rate up to 120 Hz with good accuracy for the
velocity and performance for the heading change, which can be helpful for some applications that face
the challenge of harsh dynamics.

The cost of the mass air flow sensors is relatively higher than the other sensors (around 200 dollars)
which could be reduced if massively produced for land vehicle navigation. Moreover, extreme light
variations of the ceiling may deteriorate the optical flow accuracy.

A land vehicle experiment was conducted, and the results showed that the proposed aiding
system enhances the navigation solution dramatically compared with the INS stand-alone solution.
Different fusion schemes were implemented, which are the measurement integration scheme and the
federated scheme, and the results showed that the measurements based provide a better solution than
the federated one.
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