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Abstract: Detecting and classifying real-life small traffic signs from large input images is difficult
due to their occupying fewer pixels relative to larger targets. To address this challenge, we proposed
a deep-learning-based model (Dense-RefineDet) that applies a single-shot, object-detection
framework (RefineDet) to maintain a suitable accuracy–speed trade-off. We constructed a dense
connection-related transfer-connection block to combine high-level feature layers with low-level
feature layers to optimize the use of the higher layers to obtain additional contextual information.
Additionally, we presented an anchor-design method to provide suitable anchors for detecting
small traffic signs. Experiments using the Tsinghua-Tencent 100K dataset demonstrated that
Dense-RefineDet achieved competitive accuracy at high-speed detection (0.13 s/frame) of small-,
medium-, and large-scale traffic signs (recall: 84.3%, 95.2%, and 92.6%; precision: 83.9%, 95.6%,
and 94.0%). Moreover, experiments using the Caltech pedestrian dataset indicated that the miss
rate of Dense-RefineDet was 54.03% (pedestrian height > 20 pixels), which outperformed other
state-of-the-art methods.

Keywords: deep learning; neural network; object detection; traffic sign recognition; dense connection;
anchor design

1. Introduction

Traffic sign recognition plays a key role in advanced driver-assistance systems and automatic
driving and is a hot topic in computer vision research and applications. Traffic sign-recognition systems
are usually divided into detection and classification subtasks because signs can be first classified into
different categories based on their function (such as warnings or prohibitory signs), followed by those
with the same functional meaning being further classified into different subclasses according to their
details [1]. Traffic sign detection aims to identify all functional categories for the signs in original
images, which separates it from common object detection, which involves locating and classifying
target objects simultaneously. Traffic sign classification aims to divide detected traffic signs into
sub-classes [2].

The German traffic sign database is widely used for researching traffic sign detection and
classification, and includes German Traffic Sign Recognition Benchmark (GTSRB) [3] and German
Traffic Sign Detection Benchmark (GTSDB) [4]. However, data in the GTSRB and GTSDB do not
represent real-world driving situations, because the signs in the GTSRB occupy a large proportion
of the image, whereas real-world traffic signs usually occupy a smaller image area, whereas GTSDB
signs only involve four categories [1]. The Tsinghua-Tencent 100K dataset is a recently proposed
traffic sign benchmark that is more realistic, given that the obtained images are from vehicles and
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shoulder-mounted equipment [1] and has been applied in recognition methods [5,6] to evaluate their
effectiveness at detecting and classifying small traffic signs.

Deep-learning-based methods have been applied for traffic sign detection and classification
due to their effectiveness in feature representation [7–9]. Previous studies applied the convolutional
neural network (CNN) either for detection or classification processes [2,9–11], whereas others regarded
traffic sign recognition as a common object-detection task [5–7,12]. These methods used one CNN
structure to effectively locate and classify traffic signs simultaneously; however, the challenge lies
in accurately locating and classifying small traffic signs from large input images. For CNN-based
methods, small traffic signs usually occupy less pixels compared with large objects, resulting in limited
information contained in CNN features. Typical ways to enhance the detection of small objects include
enlarging the small regions or exploiting contextual information [13]. Compared with enlarging small
regions, which usually decreases speed, exploiting contextual information is preferred due to its ability
to provide additional information for related target objects [14–16]. This method has been widely used
in CNN-based small-object detection methods, such as using deconvolution or atrous convolution [17]
to generate additional information [5,18,19].

A suitable trade-off between accuracy and speed is essential for traffic sign detection and
classification. CNN-based object-detection methods can be classified into single-stage and two-stage
methods. Two-stage methods are preferred in traffic sign recognition for their ability to achieve high
detection accuracy, whereas single-stage methods achieve results with high speed. In the present study,
we applied a single-stage method for traffic sign recognition and demonstrated its competitive results
with state-of-the-art two-stage methods at locating and classifying real-life traffic signs. The single-shot
multibox detector (SSD) [20] model is a typical single-stage method, where anchors are designed to
match with objects. We found that establishing the centers of the anchors of each feature map cell as
the center of the cell was not optimal for detecting small traffic signs, which motivated our use of a
new anchor-design method. Additionally, to address the limited information problem, we used dense
deconvolution to obtain contextual information. The resulting method based on Refinedet [21] and
built on an SSD framework is named Dense-Refinedet. Our contributions are as follows:

1. We proposed an anchor-design method to detect small traffic signs using k-means clustering,
followed by establishment of the center of the anchors of the shallowest feature layer at four
points of each cell [namely (0.25, 0.25), (0.25, 0.75), (0.75, 0.25) and (0.75, 0.75)].

2. We built a feature-transformation module based on a dense connection in order to deliver
semantic information contained in high-level layers to low-level layers and provide additional
information for detecting small traffic signs.

3. Experiments using the Tsinghua-Tencent 100K and Caltech pedestrian datasets demonstrated
that the Dense-Refinedet model enhanced the detection accuracy of the original RefineDet
and achieved competitive performance with other state-of-the-art methods used for detecting
real-world traffic signs and pedestrians.

2. Related Work

2.1. Context-Related CNN-Based Object-Detection Methods

Contextual information is important in object detection, because related objects or environment
can be useful in detecting target objects [22]. Exploiting essential contextual information has been
widely applied in CNN-based object detection methods. Bell et al. [15] proposed Inside-Outside Net
using recurrent neural networks with rectified linear unit (ReLU) recurrent transitions and pooling
multi-scale feature layers to obtain contextual information outside and inside of regions of interest
(ROIs). Additionally, Zhu et al. [16] built CoupleNet by enlarging ROIs by 2-fold in order to exploit
contextual information, and Li et al. [23] presented an Auto-Context R-CNN model that gained
information in context-related ROIs surrounding the original region of interest (ROI).
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Other methods focused on adding contextual information for small objects. Sommer et al. [24]
showed that applying deconvolution to high-level features in the backbone of a Faster RCNN achieved
additional context information for small objects. Cui et al. [25] described MDSSD, which forms a new
fusion feature by building a skip connection between high- and low-level features (the lower feature is
4-fold smaller than the higher one). Xie et al. [19] proposed a deconvolution integrated faster R-CNN by
building a deconvolution module and applying atrous convolution to generated deconvolution features
in order to obtain additional contextual information for detecting small pedestrians. Lim et al. [26]
described an FA-SSD model that integrated the feature-fusion technique and residual attention mechanism
with a baseline SSD model by concatenating features from different layers with different scales after
deconvolution and using a normalization operation to generate fusion features.

2.2. CNN-Based Traffic Sign-Detection and -Classification Methods

CNN-based methods for traffic sign detection and classification can be classified into those that
separately or simultaneously detect and classify traffic signs. Luo et al. [9] used Maximally Stable
Extremal Regions (MSERs) to extract ROIs, followed by application of a multi-tasking CNN model
to refine and classify ROIs. Zhu et al. [10] proposed a traffic sign-recognition framework based on a
fully convolution network (FCN) and CNN, with the FCN mainly used to extract traffic sign areas
from an image, and the CNN used to classify traffic sign areas provided by the FCN. Yang et al. [2]
built a real-time traffic sign-recognition system by designing a fast detection model and using a
CNN to classify detected traffic signs. Habibi et al. [11] presented a lightweight and accurate traffic
sign-detection method using a dilated convolution algorithm and a real-time classification ConvNet.

Other studies combined traffic sign-detection and -classification tasks into one network.
Meng et al. [7] proposed an SSD-based SOS-CNN model requiring small image patches decomposed
from the original image as input. Zhu et al. [1] provided a CNN model to detect and classify traffic signs
simultaneously, finding this method superior to Faster RCNN at detecting traffic signs. Li et al. [8]
proposed a perceptual generative adversarial network (GAN) model focused on representing small
objects in a way similar to large objects by allowing its generator to obtain a super-resolved version
of small objects in order to limit the difference between small and large objects. Liu et al. [6]
presented a small traffic sign-detection model based on Faster RCNN (DR-CNN) by concatenating three
shallow layers in a backbone via deconvolution and normalization to obtain additional information.
Liu et al. [5] proposed MR-CNN, with contextual regions selected based on concatenated features in the
MR-CNN to provide additional information for small objects. Noh et al. [27] proposed a GAN-based
model to detect small objects by generating super-resolution features with the guidance of target
features extracted from original images, after which the generated super-resolution features were used
to predict small objects. Song et al. [28] presented a lightweight CNN model for mobile platforms to
detect small traffic signs, with network cropping and convolutional kernel decomposition techniques
applied to reduce parameters.

3. The Proposed Method

3.1. RefineDet Rrevisited

RefineDet [21] is a single-stage method based on the SSD framework and comprises an
anchor-refinement module (ARM) and an object-detection module (ODM). The ARM passes negative
hard-refined anchors and positive-refined anchors to the ODM, which attempts to locate and classify
target objects in input images. Features in the ARM are transferred to the ODM by a designed transfer
connection block (TCB), which collects two adjacent feature layers (low-level and high-level) from
the ARM as input and applies a deconvolution operation to the high-level layer in order to obtain
features of the same size as the low-level layer to generate fusion features by element-wise summation.
The designed TCB can provide additional contextual information. In the present study, we used
RefineDet as a baseline model to detect and classify traffic signs for the following reasons: (1) it
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is highly efficient due to its single-stage architecture; and (2) it uses a refine process that mimics a
“detection process” to find possible regions in target traffic signs, regardless of their categories. Here,
our “detection process” differed from that used in traditional traffic sign detection (i.e., identify all
function categories specific among traffic signs in original images).

RefineDet is a powerful object-detection method used to detect objects with high speed and accuracy;
however, it is not competitive with state-of-the-art methods at small-object detection. We speculate
that this is due to two reasons. First, features of shallow layers in RefineDet and used to detect small
objects contain limited information, which is not powerful enough to effectively detect small objects.
Multi-scale features are output in RefineDet, and the shallowest feature maps with the largest resolution
are scaled at 1/8 the size of the input image. Due to down-sampling convolution and pooling
operations, information loss occurs, even for the shallowest output layer. Small-sized traffic signs
defined in the Tsinghua-Tencent 100K dataset have a bounding-box area of <32 × 32 pixels; therefore,
the corresponding size of the small traffic signs are <4× 4 pixels, making accurate detection challenging
for RefineDet. Second, anchors designed using RefineDet are not suitable for detecting small objects,
because the centers of all the anchors are fixed at the center of each cell (0.5, 0.5). This would make it
difficult to detect objects with a smaller size and located at the junction area of two adjacent cells or
small-sized objects next to each other.

3.2. Framework Overview

Based on the RefineDet model, we proposed Dense-RefineDet model (Figure 1) by building a
new Dense-TCB module based on a dense connection and incorporating an anchor-design method.
According to RefineDet, the backbone architecture we chose was VGG-16 [29]. We output four different
scale-feature maps (specifically, conv4_3, conv5_3, and conv7 layers were selected for output), and only two
additional convolution layers were added, with the second extra layer used for output. The Dense-TCB
module was applied to transfer additional semantic information from deeper (high-level) feature
layers to shallower (low-level) feature layers and especially for the shallowest feature layer (conv4_3)
in order to gain rich contextual information for detecting small-sized traffic signs. The newly designed
anchors were used to address the anchor problem of RefineDet related to small-object detection.

ARM features

ODM features

Dense-TCB

Classification loss

Localization loss

Classification loss

Localization loss

Feature map cell

Center of the anchor

×

× ×

×

Figure 1. The framework of Dense-RefineDet model.TCB, transfer connection block. ARM,
anchor refinement module. ODM, object-detection module.

3.3. Anchor Design

Anchors in RefineDet are used to locate target objects of an input image and need to be designed
before the training process. For each ground-truth bounding box (GTB), the designed anchor with
the highest intersection over union (IoU) value is chosen as a match. Anchors with IoU values higher
than a threshold (usually 0.5) are also chosen as matches. During training, the ARM initially refines
the anchors and then transfers them to the ODM. The network needs to predict the offsets between



Sensors 2020, 20, 6570 5 of 16

ground-truth bounding boxes (GTBs) and their matched anchors. A previous study [21] designed
anchors by setting them at a constant 4-fold larger size than the stride size of each feature layer and
setting three aspect ratios (i.e., 0.5, 1.0, and 2.0). Additionally, the designed anchors were placed at
the center of each feature map cell. To detect small traffic signs, we found that the anchor-design
method in the previous study [21] was not optimal, because the anchor shapes were suitable for objects
with GTBs of different aspect ratios (i.e., objects in VOC and COCO), despite the fact that real-world
traffic signs usually share similar aspect ratios. Additionally, establishing the center coordinates of
the anchors at (0.5, 0.5) for each feature map cell can result in missed matches of small target objects
with small-sized GTBs. In this work, the coordinates are represented as the relative coordinates of each
feature map cell.

The black boxes in Figure 2a,b are feature map cells from the shallowest feature map with the
largest resolution. The yellow boxes are GTBs. The red boxes are anchors, and they have the same
centers as the cells (coordinates: (0.5, 0.5)). Blue boxes share the same shape with the red anchors.
In Figure 2a, the yellow GTB represents a small-sized traffic sign locates at the corner of the cell.
The center coordinate of the blue anchor is (0.25, 0.75). Considering the IoU between the GTB and the
blue anchor and the IoU between the same GTB and the red anchor, the blue anchor is more suitable.
In Figure 2b, the yellow GTBs represent two small-sized traffic signs next to each other. The center
coordinates of the blue anchors are (0.25, 0.75) and (0.75, 0.75). The red anchor can only match one of
the GTBs. The blue anchors can match the two GTBs simultaneously.

Feature map cell

GTB

Anchor

×

×

(a) Objects locate at the corners of feature-map cells

Feature map cell

GTB1
Anchor

GTB2

× ×

×

(b) objects next to each other

Figure 2. Explanation of the limitations in anchors provided by RefineDet. (a) Objects locate
at the corners of feature-map cells, (b) objects next to each other.

To address these challenges, we proposed a new anchor-design method for detecting small traffic
signs with two steps:

1. Apply k-means clustering to obtain the anchor shapes. All GTBs in the training set were used for
k-means clustering to obtain anchor shapes, with k set to four.

2. Determine the anchor coordinates. Four scaled feature maps were output in our model, with the
anchors shapes obtained in step 1 corresponding to different scales of the target objects. Two sets
of the anchor shapes were applied to the shallowest output feature maps, and the center
coordinates of these anchors were set to (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), and (0.75, 0.75),
making the number of anchors for the shallowest feature map cell eight. All four anchor shapes
were then applied to the remaining three output feature layers with center coordinates of (0.5, 0.5),
making the number of anchors for each feature map cell four.

3.4. Building the Dense-TCB

The TCB transfers features from the ARM to the ODM in order to provide multi-scale, fine-gained
features and semantic information via deconvolution-based feature fusion. The transmission pattern
in the baseline RefineDet can be expressed as Equation (1):
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Ok = ϕk(Ck(Fl,k) + Dk(Fh,k−1)) k = 2, 3, 4 (1)

where the second extra layer, conv7, conv5_3 and conv4_3 layers are represented as the first (k = 1),
the second (k = 2), the third (k = 3) and the fourth (k = 4) layers. Ok is the kth layer of features in
the ODM, ϕk is a function comprising convolution and ReLU and indicating that the feature map is
mapped to the ODM in a particular scale, Fl,k is the original kth layer (lower-level) feature map in
the ARM with larger resolution, Fh,k−1 is the original (k − 1)th layer (higher-level) feature map in
the ARM with smaller resolution, Ck is the convolution related operation (including one convolution,
a Relu and another convolution), and Dk is the deconvolution operation that converts Fh,k−1 to the
same resolution as Fl,k.

This transition mode of the TCB demonstrates that shallow feature maps (feature maps in
lower-level layers) are gradually integrated with deep feature maps (feature maps in higher-level layers).
Shallow feature maps of the CNN structure contain rich detail (spatial) information, and deep-feature
maps contain rich semantic information [22,30]. Combining shallow feature maps with deep feature maps
is an efficient way to obtain additional information and enhance small-object-detection accuracy [31].
To better exploit contextual information, we created a new TCB module (Dense-TCB) by embedding
a dense connection [32] to improve the transmission performance of the original TCB. In Dense-TCB,
the transmission principle is that all layers higher than the target layer are used to build a feature-fusion
layer, which is delivered to the ODM. Compared with the original TCB, Dense-TCB can obtain more
strong contextual information for detecting small objects. The proposed Dense-TCB is shown in Figure 3,
and its transmission pattern is described in Equation (2):

Ok = ∅k(Bk(Fl,k) + Gk−1(Fh,k−1) + · · ·+ G1(Fh,1)) k = 2, 3, 4 (2)

where ∅k is a function that uses convolution and ReLU to output features of different scales. Bk is
the convolution related operation (including one convolution, batch normalization (BN) and a Relu),
and G is the operation that guarantees that the features in higher-level layers have the same resolution
as those in the target lower-level layer (Fl,k).

In Dense-TCB, for each feature layer in the ARM, features in the higher layers are used to
generate fusion features according to a feature-fusion block (Figure 3). Four layers are output in the
ARM (conv4_3, conv5_3, conv7, and the second extra layer). For the conv7 feature layer, we used one
convolution (kernel size: 3× 3), followed by BN and a ReLU. The deconvolution operation was applied
to the second extra layer, followed by one convolution, BN and a ReLU. The two output features were
then fused by element-wise summation to obtain the fusion-feature maps. One convolution (kernel
size: 3 × 3) was applied to the fusion-feature maps to generate features transformed to the ODM.
For the conv4_3 and conv5_3 feature layers, the deconvolution block in Figure 3a was replaced with
blocks shown in Figure 3b,c, respectively. The extra layer was directly transferred to the ODM.
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Figure 3. Cont.
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Deconv block Relu

BN

Conv 3 3, s=1

Deconv block

Deconv block

Conv 3 3, s=1

Relu

Element-wise 

summation

(b) the transfer connection structure for conv5_3 layer (the third layer)

Deconv block Relu

BN

Conv 3 3, s=1

Deconv block

Deconv block

Conv 3 3, s=1

Relu

Element-wise 

summation

Deconv block

Deconv block

Deconv block

(c) the transfer connection structure for conv4_3 layer (the fourth layer)

Figure 3. The architecture of our proposed Dense-TCB. (a) The transfer connection structure
for conv7 layer (the second layer), (b) The transfer connection structure for conv5_3 layer
(the third layer), (c) the transfer connection structure for conv4_3 layer (the fourth layer).

4. Experiments and Results

4.1. Datasets and Experimental Setup

Datasets: We used the Tsinghua–Tencent 100K and Caltech pedestrian [33] datasets to evaluate the
performance of our proposed model. Tsinghua–Tencent 100K contains traffic signs capable of reflecting
the driving situation in real life. Following the information provided by the previous study [1],
we used 45 classes traffic signs. The official released training set includes 6105 images and test set
includes 3071 images. The Caltech pedestrian dataset contains 11 sets of videos with the first 6 sets
being training data and the rest 5 sets being test data. Following the idea in previous studies [34–36],
10 times augmented training images were utilized to train our model. Two versions of the annotations,
the original version [33] and the new version [34], were used to evaluate our model.

Experimental setup: In this work, VGG-16 [29] was performed as backbone to build our model.
The Pytorch framework was applied to train our model with an NVIDIA GeForce GTX 2080Ti GPU.
We sed random cropping, distorting, expanding [20] and mirroring to augment the training images.
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For the Tsinghua–Tencent 100K dataset, the weight used to initialize Dense-RefineDet was trained on
the ImageNet [37]. The initial learning rate was 1× 10−4. It was decayed at 100 and 120 epochs with the
decay rate 1 × 10−1. The training time was 79 h. For the Caltech pedestrian dataset, The weight used to
initialize Dense-RefineDet was trained on the CityPersons dataset [38]. The initial learning rate was
1 × 10−4. It was decayed at 60 and 80 epochs with the decay rate 1 × 10−1. The training time was 16 h.

4.2. Detection Performance

4.2.1. Performance on the Tsinghua-Tencent 100K Dataset

To evaluate the performance of Dense-RefineDet at traffic sign recognition, we compared it
with other deep-learning-based methods on the Tsinghua-Tencent 100K dataset. All traffic signs
were classified into three groups according to their instance sizes. Traffic signs with instance areas
between 0 and 322 pixels, 322 and 962 pixels, 962 and 4002 pixels belonged to the small, medium,
and the large scales, respectively. As previously described, we used precision and recall metrics to
evaluate all of the methods [1,5,6,20,39–42]. As shown in Table 1, for small-scale images, the recall of
Dense-RefineDet was 84.3%, which was 5.0% lower than DR-CNN [6] and MR-CNN [5] (both 89.3%),
and the precision was 83.9%, which was 0.8% higher than DR-CNN and 1.0% higher than MR-CNN.
For medium-scale images, Dense-RefineDet outperformed DR-CNN and MR-CNN, with recall values
0.4% and 0.8% higher and precision values 3.9% and 3.0% higher, respectively. For large-scale images,
Dense-RefineDet achieved the best performance among the methods tested, with recall values 3.0%
and 4.4% higher than DR-CNN and MR-CNN, respectively, and precision values 1.6% and 2.0% higher
than DR-CNN and MR-CNN, respectively.

Table 1. Comparisons of detection results on the Tsinghua-Tencent 100K dataset.

Methods Testing Time (s/Frame) Metrics Small Medium Large

Faster RCNN [39] 0.23 recall 49.8 83.7 91.2
precision 24.1 65.6 80.8

SSD [20] - recall 43.4 77.5 86.9
precision 25.3 67.8 81.5

Pon et al. [41] - recall 24.0 54.0 70.0
precision 65.0 67.0 75.0

RFB [40] 0.14 recall 73.5 84.3 85.1
precision 76.2 79.5 91.5

Zhu et al. [1] 0.77 recall 87.4 93.6 87.7
precision 81.7 90.8 90.6

Song et al. [42] - recall 88.0 94.0 87.0
precision 83.0 91.0 91.0

MR-CNN [5] - recall 89.3 94.4 88.2
precision 82.9 92.6 92.0

DR-CNN [6] 0.26 recall 89.3 94.8 89.6
precision 83.1 91.7 92.4

Dense-RefineDet 0.13 recall 84.3 95.2 92.6
precision 83.9 95.6 94.0

The results of Faster RCNN, RFB, SSD and the model provided by Zhu et al. were published in previous
studies [5,6].

We designed the anchor shapes according to GTBs of all the traffic signs in the training set.
We obtained the anchor coordinates by establishing the anchor centers of the shallowest feature layer
at four points of each cell and the anchor centers of the other output feature layers at the center of
each cell. Anchors were used to match with GTBs before the training process, making them full of
importance. Additionally, the proposed Dense-TCB can provide output feature layers with additional
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contextual information by transferring information from high-level feature layers to low-level feature
layers in a dense-connected way. The designed anchors and Dense-TCB enhanced the performance of
our model in detecting traffic signs.

For traffic sign recognition, a suitable speed–accuracy trade-off is important. At the testing
times shown in Table 1, the speed of Dense-RefineDet was 0.13 s/frame, which was competitive
with that of RFB [40] (0.14 s/frame) bases on use of the single-stage detection framework. However,
the detection accuracy of RFB was not as good as Dense-RefineDet, DR-CNN, or MR-CNN. The speed
of Dense-RefineDet was faster than that of DR-CNN, which showed a testing time 0.13 s slower for an
input image. These results showed that Dense-RefineDet was competitive with other state-of-the-art
methods at detecting traffic signs.

Figure 4 shows some exemplary detection results for the correct and incorrect detections. We believe
the cause of the false detections is that some traffic signs have a small gap between classes (the false
positive detection result in Figure 4c). The main reason for the missed detections is that the pixels
occupied by some small-sized traffic signs are really few, making the information used for detection is
limited, such as the ’ph4’ (19 × 19 pixels) in Figure 4a and ’pne’ (14 × 22 pixels) in Figure 4b.

FN (ph4)

TP 

TP 

(a) Results with missed detections

FN (pne)

TP

TP

(b) results with missed detections

Figure 4. Cont.
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TP

TP

FN

(pl50,  ph4 ) 

FP

(c) results with missed and false detections

TP

TP

TP

(d) results with all correct detections

Figure 4. Detection results of images from the Tsinghua-Tencent 100K test set. True positive
(TP), false positive (FP), false negative (FN). The red boxes are ground-truth bounding
boxes, the green boxes are detection results. (a) Results with missed detections, (b) results
with missed detections, (c) results with missed and false detections, (d) results with all
correct detections.

Furthermore, comparison with the MR-CNN model in each traffic sign category indicated that
Dense-RefineDet demonstrated better recall (Figure 5a) and precision (Figure 5b), suggesting that
Dense-RefineDet outperformed other methods in traffic sign detection. For traffic sign classes, such as
’p6’, ’p23’, ’p19’ and ’p12’, the recall and precision of the other two models were both higher than those
of our Dense-RefineDet, or only one of the models obtained similar results with our Dense-RefineDet.
We found that the instance numbers of the aforementioned traffic sign classes in the Tsinghua-Tencent
100K training set was relatively small (between 69 and 163). The detection performance of these traffic
signs might be improved by new augmentation tricks.
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Figure 5. Comparisons of detection results on 45 categories. (a) Recall, (b) precision.

4.2.2. Performance on the Caltech Pedestrian Dataset

To demonstrate the effectiveness of our proposed Dense-RefineDet, we evaluated Dense-RefineDet
with other state-of-the-art deep learning-based models [38,43–48] on the Caltech pedestrian dataset.
The metric we employed was log-average miss rate (MR), which was calculated by computing average
of the miss rate at false positive rates [49]. We focused on evaluating pedestrians with heights more
than 20 pixels (all scale pedestrians).

For the new version annotations, we can observe from Figure 6a that the MR of Dense-RefineDet
was 47.12%, which was 4.21% lower than the second-best method Faster RCNN + ATT [45]. For the
original version annotations, Figure 6b indicated that the MR of Dense-RefineDet was 54.03%. It was
0.48% lower than Faster RCNN + ATT, which was 54.51%. Considering the comparison between our
Dense-RefineDet and other deep learning-based models on the Caltech pedestrian dataset, we can
conclude that our proposed model was capable of obtaining competitive performance.

We compared the running time of our model with other deep learning-based methods. The results
are shown in Table 2. The input size of our Dense-RefineDet was 640× 640. The corresponding running
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time was 0.06 s/frame, indicating that Dense-RefineDet was faster than other methods in detecting
pedestrians.We believe the reason is that Dense-RefineDet is built on a single-stage framework.

Table 2. The computational efficiency comparison of Dense-RefineDet with other methods on the
Caltech pedestrian dataset.

Methods Input Size MR (New) MR (Original) Runtime (s/Frame)

DeepParts [47] - 60.61 64.78 1.00
SA-FastRCNN [44] 720 × 960 57.02 62.59 0.59

MS-CNN [43] 720 × 960 55.69 60.95 0.40
AR-Ped [48] 720 × 720 55.24 58.83 0.09

Dense-RefineDet 640 × 640 47.12 54.03 0.06

The run time of MS-CNN was reported in the previous study [19]. The run time of DeepParts was reported in
the previous study [50].

(a) MR according to the new annotations (b) MR according to the original annotations.

Figure 6. Comparisons of detection results on the Caltech pedestrian dataset. (a) MR
according to the new annotations, (b) MR according to the original annotations.

4.2.3. Ablation Study

In Dense-RefineDet, we provided a new anchor-design method and proposed a Dense-TCB
module based on dense connection. To exploit the effectiveness of the new anchor-design method
and the Dense-TCB module, we experimented to evaluate the associated improvements. As shown
in Table 3, the newly designed anchors improved the mean average precision (mAP) by 1.30% for
all traffic sign instances, and the recall and precision values were improved for small-, medium-,
and large-scale traffic signs (recall: 3.25%, 5.40% and 5.91%; precision: 3.99%, 4.00%, and 3.76%).
Additionally, using the armed Dense-TCB improved the mAP by 1.19% for all traffic sign instances,
as well as improved the recall and precision values for small-, medium-, and large-scale traffic signs
(recall: 0.35%, 1.03%, and 0.42%; precision: 0.34%, 1.22%, and 0.79%). These results demonstrated
that the new anchor-design method and the Dense-TCB module effectively enhanced the detection
performance of baseline RefineDet in detecting traffic signs.
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Table 3. Improvements brought by the designed anchors or the proposed Dense-TCB on the
Tsinghua-Tencent 1009K test set.

Metrics RefineDet Only RefineDet +
Designed Anchors

RefineDet +
Designed Anchors +

Dense-TCB

mAP 80.76 82.06 83.25

Small recall 61.38 64.63 64.98
precision 62.72 66.71 67.05

Medium recall 84.26 89.66 90.69
precision 86.70 90.70 91.92

Large recall 87.48 93.39 93.81
precision 90.13 93.89 94.68

5. Conclusions

In this study, we proposed a method for recognizing small traffic signs (Dense-RefineDet) based
on RefineDet. We proposed a new anchor-design method for detecting small traffic signs located at the
corners of feature-map cells or small traffic signs next to each other. A Dense-TCB was incorporated to
deliver semantic information from all of the higher-level layers to the target lower-level layer and generate
rich contextual information for small-sized traffic signs. Evaluation using the Tsinghua-Tencent 100K
dataset demonstrated that Dense-RefineDet was competitive with state-of-the-art methods at detecting
small-sized traffic signs (<322 pixels) and achieved better performance at detecting medium-and
large-sized traffic signs (322 pixels < medium < 962 pixels; 962 pixels < large < 4002 pixels). Moreover,
Dense-RefineDet was faster than other deep-learning-based methods due to its use of a single-stage
framework. Furthermore, we verified the performance of Dense-RefineDet at detecting pedestrians
using the Caltech pedestrian dataset, with the results confirming its competitive performance relative
to other state-of-the-art methods. Our future work will improve upon the accuracy of Dense-RefineDet
in detecting small-sized traffic signs and exploit its lightweight backbone for possible embedding into
mobile systems.

Author Contributions: Conceptualization, C.S. and Y.A.; methodology, C.S.; software, C.S. and S.W.; supervision,
W.Z.; validation, C.S.; funding acquisition, Y.A. and W.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for Central Universities of China
(Nos. FRF-GF-18-009B, FRF-MP-19-014 and FRF-BD-19-001A) and the 111 Project (grant No. B12012)

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhu, Z.; Liang, D.; Zhang, S.; Huang, X.; Li, B.; Hu, S. Traffic-sign detection and classification in the wild.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 2110–2118.

2. Yang, Y.; Luo, H.; Xu, H.; Wu, F. Towards real-time traffic sign detection and classification. IEEE Trans. Intell.
Transp. Syst. 2015, 17, 2022–2031. [CrossRef]

3. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition. Neural Netw. 2012, 32, 323–332, [CrossRef] [PubMed]

4. Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; Igel, C. Detection of Traffic Signs in Real-World Images:
The German Traffic Sign Detection Benchmark. In Proceedings of the International Joint Conference on
Neural Networks, Dallas, TX, USA, 4–9 August 2013; Number 1288.

5. Liu, Z.; Du, J.; Tian, F.; Wen, J. MR-CNN: A multi-scale region-based convolutional neural network for small
traffic sign recognition. IEEE Access 2019, 7, 57120–57128. [CrossRef]

6. Liu, Z.; Li, D.; Ge, S.S.; Tian, F. Small traffic sign detection from large image. Appl. Intell. 2020, 50, 1–13.
[CrossRef]

http://dx.doi.org/10.1109/TITS.2015.2482461
http://dx.doi.org/10.1016/j.neunet.2012.02.016
http://www.ncbi.nlm.nih.gov/pubmed/22394690
http://dx.doi.org/10.1109/ACCESS.2019.2913882
http://dx.doi.org/10.1007/s10489-019-01511-7


Sensors 2020, 20, 6570 14 of 16

7. Meng, Z.; Fan, X.; Chen, X.; Chen, M.; Tong, Y. Detecting small signs from large images. In Proceedings of
the 2017 IEEE International Conference on Information Reuse and Integration (IRI), San Diego, CA, USA,
4–6 August 2017; pp. 217–224.

8. Li, J.; Liang, X.; Wei, Y.; Xu, T.; Feng, J.; Yan, S. Perceptual generative adversarial networks for small object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 1222–1230.

9. Luo, H.; Yang, Y.; Tong, B.; Wu, F.; Fan, B. Traffic sign recognition using a multi-task convolutional neural
network. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1100–1111. [CrossRef]

10. Zhu, Y.; Zhang, C.; Zhou, D.; Wang, X.; Bai, X.; Liu, W. Traffic sign detection and recognition using fully
convolutional network guided proposals. Neurocomputing 2016, 214, 758–766. [CrossRef]

11. Aghdam, H.H.; Heravi, E.J.; Puig, D. A practical approach for detection and classification of traffic signs
using convolutional neural networks. Robot. Auton. Syst. 2016, 84, 97–112. [CrossRef]

12. Dewi, C.; Chen, R.C.; Yu, H. Weight analysis for various prohibitory sign detection and recognition using
deep learning. Multimed. Tools Appl. 2020, 79, 32897–32915. [CrossRef]

13. Cao, G.; Xie, X.; Yang, W.; Liao, Q.; Shi, G.; Wu, J. Feature-fused SSD: Fast detection for small objects.
In Proceedings of the Ninth International Conference on Graphic and Image Processing (ICGIP 2017),
Qingdao, China, 14–16 October 2017; International Society for Optics and Photonics: San Diego, CA, USA,
2018; Volume 10615, p. 106151E.

14. Chu, W.; Cai, D. Deep feature based contextual model for object detection. Neurocomputing 2018,
275, 1035–1042. [CrossRef]

15. Bell, S.; Lawrence Zitnick, C.; Bala, K.; Girshick, R. Inside-outside net: Detecting objects in context with skip
pooling and recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2874–2883.

16. Zhu, Y.; Zhao, C.; Wang, J.; Zhao, X.; Wu, Y.; Lu, H. Couplenet: Coupling global structure with local parts for
object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 4126–4134.

17. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell. 2017, 40, 834–848. [CrossRef]

18. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017,
arXiv:1701.06659.

19. Xie, H.; Chen, Y.; Shin, H. Context-aware pedestrian detection especially for small-sized instances with
Deconvolution Integrated Faster RCNN (DIF R-CNN). Appl. Intell. 2019, 49, 1200–1211. [CrossRef]

20. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector.
In European Conference on Computer Vision; Springer: Amsterdam, The Netherlands, 2016; pp. 21–37.

21. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 4203–4212.

22. Tong, K.; Wu, Y.; Zhou, F. Recent advances in small object detection based on deep learning: A review.
Image Vis. Comput. 2020, 97, 103910. [CrossRef]

23. Li, B.; Wu, T.; Zhang, L.; Chu, R. Auto-context r-cnn. arXiv 2018, arXiv:1807.02842.
24. Sommer, L.; Schumann, A.; Schuchert, T.; Beyerer, J. Multi feature deconvolutional faster r-cnn for precise

vehicle detection in aerial imagery. In Proceedings of the 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 635–642.

25. Lisha, C.; Lv, P.; Xiaoheng, J.; Zhimin, G.; Bing, Z.; Mingliang, X. MDSSD: Multi-scale Deconvolutional
Single Shot Detector for Small Objects. Sci. China Inf. Sci. 2020, 63, 120113.

26. Lim, J.S.; Astrid, M.; Yoon, H.J.; Lee, S.I. Small Object Detection using Context and Attention. arXiv 2019,
arXiv:1912.06319.

27. Noh, J.; Bae, W.; Lee, W.; Seo, J.; Kim, G. Better to Follow, Follow to Be Better: Towards Precise Supervision
of Feature Super-Resolution for Small Object Detection. In Proceedings of the IEEE International Conference
on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9725–9734.

28. Song, S.; Que, Z.; Hou, J.; Du, S.; Song, Y. An efficient convolutional neural network for small traffic sign
detection. J. Syst. Archit. 2019, 97, 269–277. [CrossRef]

http://dx.doi.org/10.1109/TITS.2017.2714691
http://dx.doi.org/10.1016/j.neucom.2016.07.009
http://dx.doi.org/10.1016/j.robot.2016.07.003
http://dx.doi.org/10.1007/s11042-020-09509-x
http://dx.doi.org/10.1016/j.neucom.2017.09.048
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1007/s10489-018-1326-8
http://dx.doi.org/10.1016/j.imavis.2020.103910
http://dx.doi.org/10.1016/j.sysarc.2019.01.012


Sensors 2020, 20, 6570 15 of 16

29. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

30. Lu, J.; Tang, S.; Wang, J.; Zhu, H.; Wang, Y. A review on object detection based on deep convolutional neural
networks for autonomous driving. In Proceedings of the 2019 Chinese Control And Decision Conference
(CCDC), Nanchang, China, 3–5 June 2019; pp. 5301–5308.

31. Zheng, L.; Fu, C.; Zhao, Y. Extend the shallow part of single shot multibox detector via convolutional neural
network. In Proceedings of the Tenth International Conference on Digital Image Processing (ICDIP 2018),
Shanghai, China, 11–14 May 2018; Volume 10806, p. 1080613.

32. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4700–4708.

33. Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian detection: An evaluation of the state of the art.
IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 743–761. [CrossRef]

34. Zhang, S.; Benenson, R.; Omran, M.; Hosang, J.; Schiele, B. How far are we from solving pedestrian detection?
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 1259–1267.

35. Mao, J.; Xiao, T.; Jiang, Y.; Cao, Z. What can help pedestrian detection? In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3127–3136.

36. Liu, W.; Hasan, I.; Liao, S. Center and Scale Prediction: A Box-free Approach for Pedestrian and Face
Detection. arXiv 2019, arXiv:1904.02948.

37. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
[CrossRef]

38. Zhang, S.; Benenson, R.; Schiele, B. Citypersons: A diverse dataset for pedestrian detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 3213–3221.

39. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 91–99.

40. Liu, S.; Huang, D. Receptive field block net for accurate and fast object detection. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400.

41. Pon, A.; Adrienko, O.; Harakeh, A.; Waslander, S.L. A hierarchical deep architecture and mini-batch selection
method for joint traffic sign and light detection. In Proceedings of the 2018 15th Conference on Computer
and Robot Vision (CRV), Toronto, ON, Canada, 8–10 May 2018; pp. 102–109.

42. Song, S.; Zhu, Y.; Hou, J.; Zheng, Y.; Huang, T.; Du, S. Improved Convolutional Neutral Network Based Model
for Small Visual Object Detection in Autonomous Driving. In Proceedings of the 2019 IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan, 18–20 March 2019;
pp. 179–183.

43. Cai, Z.; Fan, Q.; Feris, R.S.; Vasconcelos, N. A unified multi-scale deep convolutional neural network for fast
object detection. In European Conference on Computer Vision; Springer: Amsterdam, The Netherlands, 2016;
pp. 354–370.

44. Li, J.; Liang, X.; Shen, S.; Xu, T.; Feng, J.; Yan, S. Scale-aware fast R-CNN for pedestrian detection.
IEEE Trans. Multimed. 2017, 20, 985–996. [CrossRef]

45. Zhang, S.; Yang, J.; Schiele, B. Occluded pedestrian detection through guided attention in CNNs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 8–22 June 2018; pp. 6995–7003.

46. Cai, Z.; Saberian, M.; Vasconcelos, N. Learning complexity-aware cascades for deep pedestrian detection.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 3361–3369.

47. Tian, Y.; Luo, P.; Wang, X.; Tang, X. Deep learning strong parts for pedestrian detection. In Proceedings of
the IEEE International Conference on Computer vision, Santiago, Chile, 7–13 December 2015; pp. 1904–1912.

http://dx.doi.org/10.1109/TPAMI.2011.155
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TMM.2017.2759508


Sensors 2020, 20, 6570 16 of 16

48. Brazil, G.; Liu, X. Pedestrian detection with autoregressive network phases. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–21 June 2019;
pp. 7231–7240.

49. Yun, I.; Jung, C.; Wang, X.; Hero, A.O.; Kim, J.K. Part-level convolutional neural networks for pedestrian
detection using saliency and boundary box alignment. IEEE Access 2019, 7, 23027–23037. [CrossRef]

50. Lin, C.; Lu, J.; Wang, G.; Zhou, J. Graininess-aware deep feature learning for pedestrian
detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 732–747.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2899105
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Context-Related CNN-Based Object-Detection Methods
	CNN-Based Traffic Sign-Detection and -Classification Methods

	The Proposed Method
	RefineDet Rrevisited 
	Framework Overview
	Anchor Design
	Building the Dense-TCB

	Experiments and Results
	Datasets and Experimental Setup
	Detection Performance
	Performance on the Tsinghua-Tencent 100K Dataset
	Performance on the Caltech Pedestrian Dataset
	Ablation Study


	Conclusions
	References

