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Abstract: The article presents a throughput maximization approach for UAV assisted ground
networks. Throughput maximization involves minimizing delay and packet loss through UAV
trajectory optimization, reinforcing the congested nodes and transmission channels. The aggressive
reinforcement policy is achieved by characterizing nodes, links, and overall topology through
delay, loss, throughput, and distance. A position-aware graph neural network (GNN) is used
for characterization, prediction, and dynamic UAV trajectory enhancement. To establish correctness,
the proposed approach is validated against optimized link state routing (OLSR) driven UAV assisted
ground networks. The proposed approach considerably outperforms the classical approach by
demonstrating significant gains in throughput and packet delivery ratio with notable decrements in
delay and packet loss. The performance analysis of the proposed approach against software-defined
UAVs (U-S) and UAVs as base stations (U-B) verifies the consistency and gains in average throughput
while minimizing delay and packet loss. The scalability test of the proposed approach is performed
by varying data rates and the number of UAVs.

Keywords: UAV; throughput; delay; packet loss; GNN; collaborative network; trajectory

1. Introduction

The flexible applicability and ability of unmanned aerial vehicles towards fast, cost-effective,
and temporary deployments has opened a broad spectrum of possibilities for future wireless
technologies. UAVs can be deployed in virtually every scenario, from cellular base stations to
disaster relief and response vehicles. Aerial networks have a line of sight (LoS) advantage and
the high altitude deployment itself is a major factor behind improved coverage. UAV-assisted
ground networks have already taken cooperative search, acquisition, and tracking (CSAT) to new
dimensions. Cooperative ad hoc network formations have led to major advances in civilian and
military applications. Aerial and ground communication networks, when laced in conjunction,
facilitate an efficient entourage for supervision, catastrophe reassurance, observation, investigation,
and supplementary applications [1–5].

The race of evolution in wireless technology has graduated the use of UAVs from the military
to the Civilian Concepts of Operations (CONOPS). Enhanced coverage, throughput maximization,
sustainable operating costs, and ease of deployment constitute the fundamental obligations towards
UAV-CONOPS. CBRN (chemical, biological, radiological, and nuclear reconnaissance)-CONOPS are
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focused on hazard containment and mitigation [6–9]. UAV collaborative networks have paved for a
level playing field for data dissemination, broadcast/multicast communications. The design goals
of multi-UAV collaborative networks have a major focus on altitude and position optimization and
spatial density for better coverage.

Generally, UAVs act as aerial base stations to support ground communications, be it cellular, sensor,
relief, and response or data dissemination and hence hovering altitude or geographical positioning
along the (x,y) axis can be jointly or separately optimized to achieve varying levels of performance
gains [10–13]. UAVs can also serve as a middle man for coverage enhancement and boosting
capacity [14–16]. With the emergence of 4G LTE and 5G communication technologies, cost-effective
coverage enhancement has been a topic of interest. The issue can be easily resolved by employing
UAVs as mobile base stations or temporary relays [17,18]. The UAV hovering and optimal placement
can boost overall capacity and throughput of the Internet of Things (IoT) communications [19,20].

The unexplored potential of UAV assisted networks brings certain challenges alongside. Trajectory
design, resource allocation, channel allocation, and tradeoffs between throughput and delays are a
few identified challenges towards maximized data rates in multi-UAV collaborative deployments [21].
UAV-assisted ground networks are due to gain significantly from considering and exploiting the
flexible mobility characteristics of aerial nodes. UAV nodes are highly maneuverable and can provide
greater opportunities for LoS channel availability and better capacity with on-demand trajectory
modifications [22,23]. The on-demand availability of UAV mobility instead of predetermined paths
can alleviate the restrictions incurring from high latency and transmission losses.

Dynamic control and state estimation of the aerial network are driving forces behind the
optimized UAV trajectory. The proposed approach models throughput maximization and capacity
enhancement of the multi-UAV assisted ground networks as a trajectory optimization paradigm and
considers UAV state as the criteria for UAV re-purposing. UAV re-purposing is effectively a technique
where available less congested UAVs are directed towards geographical sectors with high latency
and packet loss rates. The state of the aerial nodes is determined iteratively using graph neural
networks (GNN). GNN architectures use iterative message passing to produce a cumulative state
information vector employing aggregation schemes at each level [24–27]. The proposed GNN’s node
embedding incorporates UAV’s position concerning sector anchor in a 3D area and node features,
including throughput, latency, and packet loss. Incorporating UAV positioning is important for
feature state calculation as two aerial nodes with the same characteristics are indistinguishable
without geo-positioning.

The majority of approaches following multi-UAV-assisted throughput maximization have
studied trajectory optimization as a function of underlying ground nodes and application scenarios.
The proposed approach performs iterative learning at both local and global topological levels and
considers application scenario independent ground nodes, which makes it more reactive and adaptable
to sudden changes in geography, node failures, and bottlenecks as compared to the mathematical
optimization techniques proposed in the literature. Trajectory and throughput optimization require
tracking multiple aerial and ground nodes. The techniques proposed in the literature have traditionally
investigated linear tracking in a plane. The simplification reduces the throughput maximization
into an optimization problem but does not address the aerial node tracking when targets move in
a 3D plane. While multi-UAV trajectory optimization generally focuses on aerial nodes moving
in the 2D front parallel plane, this is an atypically simple, special case. The proposed approach
considers aerial nodes moving continuously in all three dimensions. Moreover, 2D tracking suffers
a steep performance decline when speed and distances increase, as overall mapping accuracy is
always higher in 3D than in 2D. The proposed approach employs separation and dimensionality
to provide more than additive improvements as the aerial nodes packed closely together in a 2D
front parallel perspective can be far apart if altitude is considered, and can be mapped accurately
in a 3D geography. Moreover, the mapping accuracy improves when aerial nodes are separated by
different altitude planes.
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In this paper, we present a multi-UAV assisted ground network, where UAVs are deployed as
transceivers as well as base stations in a given 3D area. A dynamically reconfigurable topology is
presented where state information of aerial nodes is generated and updated periodically to keep
track of congestions and declining throughput. The proposed approach aims at the throughput
maximization of UAV-assisted ground networks. The contributions of this paper are summarized
as follows.

1. Effectively monitoring the state of aerial nodes and aerial topology for traffic patterns and link
congestion. Modeling aerial nodes and associated links for traffic characterizations, delay, loss,
and throughput to estimate the topological re-configurations and capacity predictions.

2. Pushing data rates close to the throughput upper bound of UAV-assisted ground networks
through aerial node re-purposing, reinforcing burdened nodes, and links. Throughput is
maximized by pushing data through new routes created by adjusting UAV positions, which in
turn minimizes delays and loss.

3. The proposed approach can act as an overlay and can accommodate any kind of UAV-assisted
network configuration. It is feasible to scale the approach to accommodate any number of ground
and aerial nodes, given that the data rate is evenly matched.

The rest of the paper is organized as follows: Section 2 presents the most recent developments in
the field of UAV trajectory modeling and throughput maximization. Section 3 covers the foundations
of path problems in UAV networks and also discusses why Graph Neural Network (GNN) is more
suited as a solution than traditional neural network architectures. Section 4 provides a theoretical
and mathematical description of the proposed approach. For performance analysis, the proposed
approach is compared against software-defined UAVs (U-S) and UAVs as base stations (U-B) inspired
by the configurations in [28,29], respectively. Section 5 also presents proof of correctness and scalability
analysis of the proposed approach. Finally, Section 6 concludes the paper.

2. Related Works

Wu et al. [30] proposed a multi-UAV assisted ground wireless communication network,
where UAVs serve as mobile aerial base stations facilitating ground connectivity. To guarantee
fair performance among the ground nodes, minimum throughput criteria are maximized for the
downlink communications. The approach is directed towards optimized scheduling of multi-user
communication and association alongside UAV trajectory. The availability of UAV connectivity
as a result of geographical dynamics is achieved by means of a trajectory installation algorithm
based on circular trajectory and circle packing methods. In order to achieve minimum average data
rates, an iterative algorithm is proposed. The technique uses an interleaved trajectory and power
optimization with each iteration. Xie et al. [31] studied UAV coordinated (UAV) wireless powered
communication network (WPCN), where UAVs are employed as mobile access points to serve ground
nodes. The UAV uses radio frequency (RF) wireless power transfer (WPT) for downlink, while ground
nodes use harvested RF energy for uplink. The proposed technique aims at maximizing the minimum
throughput criteria by achieving an effective trajectory design and optimized resource allocation.

Lin and Saripalli [32] presented a route planning algorithm for UAV collision avoidance.
The technique features three variants of closed-loop rapidly-exploring random tree algorithm:
trajectory generation, intermediate way-point utilization, and prediction of obstacles and collision.
Qian et al. [33] proposed user association optimization for UAV enabled mobile edge computing
(MEC) applications. UAVs are employed as edge computing servers to allow user equipment and
ground nodes to offload tasks. Optimized UAV trajectory, user association, and uplink power of the
ground nodes facilitate maximized offload bit rates of ground nodes. An optimized UAV trajectory
for minimized localization errors is presented in [34]. The authors have studied that terrestrial node
localization is cost-effective, fast, and more accurate when aerial nodes are employed and proposed a
framework for node localization errors in dense urban environments. Altitude, flight time, the density
of waypoints, and distance characteristics are considered to solve the constrained localization problem.
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Sayeed and Kumar [35] proposed an intelligent selection of waypoints based on attraction factor,
for capacity enhancement in multi-UAV guided WSNs. The transmission density-based attraction
factor is calculated to achieve maximum throughput and coverage with minimized aerial node
deployment. Genetic algorithm-based UAV trajectory generation is discussed in [36]. The proposed
approach targets minimum fuel requirements and low altitude to avoid detection. A SDN-based
mobility mechanism for UAV-assisted ground networks is presented in [37]. The authors studied
that to maintain an efficient ground to air collaboration, securing the networked environment is of
paramount importance. The proposed technique addresses coverage requirements by a density-based
selection of UAV waypoints. The SDN controller sits on top of the overall network and issues
security certificates to guard against faulty nodes, selfish nodes, intrusions, and malicious attackers.
Dynamic trajectory generation and modification are discussed in [38].

Mardani et al. [39] proposed an offline algorithm to solve the optimal pathfinding problem in
two-dimensional space, in order to guarantee maximized throughput criterion for cellular video
streaming. The technique implements two variants of the classical A* algorithm directed towards
optimizing distance and UAV throughput. The proposed technique considers energy, the state of wind,
and the path post smoothing as the main players over which the problem is formulated. The algorithm
optimizes video streaming quality while preserving the overall system energy. Moreover, the proposed
solution is integrated into the real world by implementing the algorithms into the QGroundControl
(QGC) control station.

Ant colony optimization (ACO)-based UAV trajectory optimization for enhanced coverage
and collision avoidance is discussed in [40]. ACO-based trajectory optimization for search time
minimization is presented in [41]. ACO-based coordinated path planning for multi-UAV networks
under threat conditions is discussed in [42]. Three-dimensional path planning for robots to avoid
local maxima is elaborated in [43]. Parallel genetic algorithm-based multi-UAV path and trajectory
is discussed in [44]. Evolutionary trajectory planner for unrealistic multi UAV scenarios is discussed
in [45]. Genetic algorithm-based age optimal trajectory planning is implemented in [46].

Wu and Zhang [47] stated that UAV mobility is limited by the delay requirements of the overall
network, and aimed towards performance gains achieved via delay constrained communications.
The UAVs act as a mobile base station for the ground nodes and the minimum rate ratio is used to
manipulate the delay limited data traffic. The approach aims at optimizing global minimum average
throughput by means of optimized UAV trajectories and OFDMA resource allocations. The proposed
technique successfully translates the throughput-delay tradeoff of UAV networks and a trajectory
installation mechanism driven by a simple circular trajectory is proposed. Wu et al. [48] discussed
UAV-enabled wireless networks with UAVs serving as mobile base stations. The technique aims at
guaranteeing fair and equal performance to the underlying ground nodes by means of optimizing
minimum throughput. Global throughput optimization is achieved by the joint optimization of
trajectory and multiuser communication scheduling.

Ahmed et al. [49] presented an energy-efficient UAV trajectory modelling technique. The approach
aims at maximizing the network throughput while optimizing the required UAV propulsion energy, or
simply put, UAV energy. Two-dimensional geometry for UAV deployment is considered, as UAV is
assumed not to change its altitude in order to avoid collisions. Initially, optimal trajectory, transmit
power, UAV speed, and UAV scheduling is considered for throughput optimization. In the second
phase, UAV propulsion energy is considered as a function of UAV trajectory and speed. The UAV
energy is maximized in terms of energy consumed per bit of information transmitted between UAV
and ground nodes given a continuous flight.

Liu and Zhu [50] presented an effective transmission policy for UAV-assisted WSN networks and
trajectory optimization for aerial networks. The preplanned UAV trajectory focuses on energy-efficient
data transmissions and time-bound servicing of the ground nodes. A dynamic programming solution
is presented for optimizing the transmission policy. Then, recursive random search is employed for
developing a preplanned UAV route over the established dynamic transmission policy. Tang et al. [51]
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proposed a UAV trajectory planning algorithm that optimizes the UAV path by minimizing the
UAV deviations. The authors have studied that natural constraints always force UAV to deflect
from its preplanned course. The algorithm employs minimum snap trajectory methods to construct
triangles over the pre-planned trajectory coordinates and then applies corridor constraints to minimize
UAV deviations.

Li et al. [52] studied resource allocation in UAV powered networks, where UAV acts as a base
station or access point to service ground user nodes. The proposed technique aims at communication
throughput maximization through generating optimal UAV trajectory and carrier allocation policy,
given the minimum data rate required to service each ground node. Ouyang et al. [53] considered
an aerial communication system where laser transmitters are employed to charge the in-flight UAVs
and the UAV-harvested energy is used to facilitate aerial-ground communications. The framework
restricts the UAVs from exceeding the energy consumption to that of harvested energy. The proposed
technique maximizes the downlink throughput by joint optimization of trajectory and transmission
power. Bulut and Guevenc [54] considered UAV trajectory optimization where an in-flight UAV does
not lose cellular connection from the ground base station.

Tang et al. [55] proposed a multi-agent deep Q learning (DQL) strategy to optimize UAV
trajectory and resource allocation to maximize throughput in multi-UAV guided wireless powered
communication networks (WPCNs). The mobile UAV base stations are used to charge the underlying
internet of things (IoT) devices; in return, the IoT devices use this energy for data transmission between
the device and aerial nodes. The proposed technique optimizes the three dimensional UAV path and
channel resources with the added constraints of UAV speed and transmission power of IoT uplink.
Rahman et al. [28] defined UAV trajectory as the major factor affecting the overall network capacity
serving the ground nodes. The proposed technique aims at throughput maximization in disaster
areas. The UAV enabled a software-defined disaster area network to monitor the network topology at
all times and maintains flows. The data rate of overall topology is managed to provide maximized
throughput. Sivalingam [29] proposed that deploying multiple aerial nodes working as base stations
can help uplift the coverage problem and maximize throughput. The authors have proposed an
algorithm for determining locations within the pool of predetermined locations.

Xie et al. [56] considered UAV-driven two-user interface channels that are used to charge two
on-ground IoT devices. The charged devices in turn transmit information to the aerial nodes. For the
UAV driven WPCNs, the UAV trajectories are designed in a way that they boost the overall wireless
power transfer alongside canceling the channel interference. The proposed technique optimizes the
uplink throughput of the IoT devices by joint optimization of UAV path trajectory and resource
allocation of uplinks and downlinks. The algorithm is constrained by UAV speed, UAV collision
avoidance, and energy neutrality of IoT devices. Liu et al. [57] proposed a relay technique that
takes advantage of UAV mobility and performance. The proposed technique aims at throughput
maximization by optimizing UAV trajectory and transmission power.

Xu et al. [58] discussed multi-UAV-enabled wireless communication where aerial nodes are
deployed as a sink for the energy-restricted/-constrained ground terminals. The technique also
incorporates a security mechanism for UAV collision avoidance. The minimum throughput of the
ground nodes is optimized to dissipate fairness among the ground nodes. The optimal minimum
throughput is achieved by optimizing communication scheduling, energy, and UAV path trajectories.

Jiang et al. [59] employed UAVs for data transmission between disconnected ground nodes.
The proposed technique considers the changes induced into the transmission channel as a result
of UAV movements. The overall network throughput is maximized by optimizing transceiver
power allocations and UAV trajectory. Zeng and Zhang [60] introduced a circular UAV trajectory
to enhance the energy efficiency of the network by optimizing the path radius and flight speed.
A propulsion energy model is proposed, considering flight speed, direction, and acceleration as
parameters. The technique aims at optimizing overall network throughput and energy through
optimized trajectories.
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Zeng et al. [61] aimed to minimize the energy consumption of UAV-enabled ground
communication networks. The technique optimizes the UAV positioning and trajectory and develops
over a traveling salesman problem. The total energy consumption requirement is satisfied alongside
the minimum throughput requirements of the ground nodes utilizing UAV trajectory optimization and
time slot allocation for ground nodes. Zhang et al. [62] employed multi-hop UAV networks for data
dissemination between source and destination nodes. The proposed technique maximizes end-to-end
throughput via trajectory and transmission power optimization. Wu et al. [63] proposed throughput
maximization in multi-UAV powered WPCNs. The ground nodes use harvested energy from mobile
wireless energy transfer for uplink and downlink. Minimum throughput is maximized by optimizing
UAV trajectory and resource allocation.

Cheng et al. [64] proposed UAV trajectory optimization for data offloading at base stations.
The technique maximizes the combined throughput of the edge users through optimized
UAV trajectories. Hua et al. [65] proposed maximized system capacity by alternatively optimizing
trajectory, end-user scheduling, and transmit power available to the end-users. Zeng et al. [66] studied
data dissemination in multi UAV-enabled multi-cast ground networks. The proposed technique creates
an optimal trajectory design that ensures minimum data dissemination time and guarantees a high
probability of the ground node reception.

3. Network Model

UAV networks are complex design paradigms banking on effective trajectory selections,
situation awareness, and communication in conjunction with dynamic network reassessment and
load characterization. Without featuring a dynamic trajectory modification in accordance with the
iterative situational-updates, the overall system performance declines, given sufficient ground and
aerial resources. The proposed approach focuses on throughput maximization in multi-UAV assisted
ground networks. The technique employs UAV mapping and trajectory optimization using UAV
re-purposing to minimize delays and packet loss and maximize throughput. The network comprises
aerial and ground nodes. The UAVs act as both transceiver and base for the underlying ground network.
Aerial nodes initially follow a predetermined path through the sectors. A sector is a 3D volumetrically
equal division of the geographical topology. Sector anchor is a set of random points in a divided
3D plane such that each division has at least one anchor. A single UAV topology can be classified
into two categories within the same temporal instance. Local topology defines a node’s attributes
concerning its immediate neighbors. The global topology defines the UAV positioning concerning
the overall geographical deployment. Figure 1 details the complete network layout. The topological
characterization reveals the relationship dynamics of the UAV-assisted ground network deployment.
To perform trajectory optimization and UAV re-purposing, it is important to map aerial and ground
nodes to particular sectors. Unless intervened, UAVs fly autonomously over a predetermined trajectory
with constant velocity.

Each aerial and ground node is mapped to its corresponding sector in accordance with the local
network layout. The corresponding sector anchors for each sub-area are marked. The sector anchor can
be adjusted to the center of the node cluster within its specific sub-area. The connected mesh of aerial
nodes serves as the initial network map or graph. As the network progresses, with continued iterative
transmissions, each node calculates its own set of features and link characteristics of the adjoining
nodes. Every time the network gets up and running, graph depended shortest path algorithms are used
to initialize the network. The issue with the shortest path or multipath approaches is that they do not
take into account the distance and latency of the links while updating paths during their initialization
phase. The problems associated with the absence of steady and dynamic learning of network patterns
cause complete re-initializations of the paths around the node where the link is broken or congested.
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Figure 1. Proposed approach: Network model.

Collaborative networks rely on traditional multi-hopping techniques for data dissemination.
The data path from source to destination is calculated employing graph algorithms (example:
Dijkstra’s shortest path algorithm or Bellman–Ford algorithm). The network itself forms a dynamic
graph with temporary connections. The shortest and most efficient link from i to j can be a single
shortest path; however, it suffers from delay and packet loss due to congestion. The tremendous decline
in overall network performance and inefficient data transmissions result from slow reaction and path
reconstruction, link failures originating from the dynamic topological arrangements, flooding, network
clogging, and higher latency towards alternate route calculation. Moreover, the traffic originating from
one subsection of the network will start sharing the paths when destined to another subsection, further
increasing the latency and impacting overall throughput.

The solution can be found in multi-path techniques for providing alternate paths and reduced
latency, but it further increases the complexity and generates overheads for calculating and maintaining
multiple paths from source to destination. Maintaining all the multiple paths is generally not required
for multi hopping transmissions and can be avoided by employing efficient trajectory optimization,
thus boosting overall network performance. The article presents a solution that provides a multipath
arrangement for congested links and burdened nodes through UAV re-purposing. It starts by
calculating node and their link states, including the state of its neighbors, and updates the node
parameters. If an additional path is required by the network in an area, the UAV positioning is adjusted
and new paths are dynamically arranged. The UAV is re-positioned according to the criteria which
maintain old links alongside the new.

GNN has a specific ability to acknowledge the natural order of nodes in a graph, i.e., no particular
order but traversing the nodes in all possible orders. Traditional neural models process the patterns
in a stacked specific order which makes them less suited towards the dynamic nature of topology
and fast movement of the aerial nodes. In a network graph, a connection means the state of the node
which itself is dependent on the state of neighboring nodes and links. Traditional neural models
account for this interconnected dependency, as a feature of the node itself, whereas GNN performs
propagation guided by the graph structure instead of using it as part of features. GNN can retain
states up to arbitrary lengths, thereby better capturing the graph dependence of states via transmission
and movement characteristics. The GNN operations, in the proposed approach, can be summarized
as: calculate node state, propagate node state along the edges of the graph and re-calculate node
states according to the received updates. The functionality of GNN in coordination with the proposed
approach is detailed in Section 4. Equation (14) and Figure 2 elaborates on the operational GNN
feed-forward network and state output calculation. Figure 3 shows how UAVs propagate the feature
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vector to the neighboring UAVs. The recipient aerial nodes append their feature vectors according to
the received updated vector from the neighbors.

Figure 2. Graph neural network: Output generation.

Figure 3. (a) Topological relationship of ith UAV. (b) Aggregate state definition of ith UAV.

Example: The UAV re-positioning can facilitate alternative paths where a node/link is broken/
congested. The node state is used to decide upon moving in another UAV with desirable current
state characteristics. The path in a given set of UAV links is denoted by ABCD (Figure 4). ABCD
are weights whose values depend upon the feature vector. The GNN can learn this graph alongside
node features and link states. During steady network operation, suppose link B becomes congested.
A graph neural network will present this abrupt change in behavior in Oi Equation (11). The proposed
approach now estimates an aerial node close to UAV1 or UAV2 and re-purposes it to send packets
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from UAV1 to UAV5 using link E. The complete state estimation and UAV re-purposing techniques
are presented in Section 4.

Figure 4. Proposed approach: (a) Network graph with congested link B (b) UAV re-purposed to
activate link E alongside B.

4. Proposed Approach

The proposed approach aims at pushing the maximum data rate of UAV-assisted ground networks
towards the throughput upper bound of-UAV assisted ground network deployment. Maximum data
rates are achieved by minimizing the overall latency and packet loss. UAV re-purposing achieves
minimal packet loss and delays by allowing dynamic topological changes considering the state of the
UAV, state of the neighboring nodes, and the overall state of the sector. Individual UAV feature vectors
are used to collaboratively determine the state of an aerial node concerning its neighbors and load
characteristics. The initial feature vector is defined over the node’s latency, loss, observed throughput,
and distance from the sector anchor. GNN aggregation is used iteratively to determine each UAV state
with respect to its one-hop neighbors and so on. The dynamic and continuous node assessment keeps
track of each aerial node and its network statistics. The overall sector state is assessed against the UAV
states, and congested nodes (high latency and packet drop) are served using re-purposed UAVs.

Network latency is a numerical measure of delay and is described as the time it takes for a signal
to propagate across the network connection, towards its destination. The latency of a UAV-assisted
ground network is defined as Equation (1):

Lw = lr + lq + (lt × hc) + lp + lc, (1)

where Lw is the latency of a wireless link, lr is the router traversal latency, lq is queuing delay and
is defined as the amount of time that data packet spends in the queue before transmission, lt is
transmission delay and is a measure of time, it takes to place an entire packet on the transmission
channel. Transmission delay is the ratio between packet size and transmission rate. hc is hop count, lp is
the propagation delay, or the signal propagation time across the transmission channel. Propagation
delay is the ratio between the node displacement and speed of the communication channel. Connection
delay (lc) is the time it takes to establish the connection between aerial and ground nodes.

Packet loss rate or packet loss probability of a UAV-assisted ground network is defined as
Equation (2):

Lp =
Txp − Rxp

Txp
, (2)

where Lp is the packet loss ratio, Txp is the actual number of packets transmitted and Rxp defines the
packets received.
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Network throughput is the rate of packet delivery along with a communication network.
Mathis et al. [67] proposed the upper bound on the data transfer rate over a communication channel.
The throughput upper bound Thmax for a UAV-assisted ground network is defined as Equation (3):

Thmax ≤ MSS× 1
Ilet
× 1

Idel
, (3)

where MSS is the maximum packet size.

Ilet =
1
n

n

∑
i=1

Lwi =
1
n

n

∑
i=1

lri + lqi + (lti × hci ) + lpi + lci , (4)

Idel =
1
n

n

∑
i=1

Lpi =
1
n

n

∑
i=1

Txpi − Rxpi

Txpi

, (5)

and

Idel =


1 if Txpi = Rxpi

1
1
n ∑n

i=1 Lpi

otherwise (6)

In order to achieve the maximum data rates in UAV-assisted ground networks (Thmaxw), the
proposed approach minimizes the Ilet Equation (4) and Idel Equation (5), which in turn can be
minimized by minimizing the Lw Equation (1) and Lp Equation (2). The goal of the proposed approach
is to achieve Thmaxw values close to and approaching Thmax Equation (7).

Thmaxw→max ∝ min(Lw, Lp) (7)

An instance of a multi-UAV-assisted ground network constitutes n number of UAV nodes in a 3D
plane participating in a collaborative network formation. The dynamic movement of nodes in (x,y,z)
plane imposes significant difficulty in network reconfiguration for optimal channel utilization and
data rate maximization. A feature vector is designed to represent the link wise network state which
incorporates latency and congestion over each link. The feature vector δT at the ith node is defined as
Equation (8):

δT ←− {Lwi , Lpi , Th0i , di}, (8)

where Th0i is the observed data rate at ith node and d is node’s displacement from the sector anchor.
The di is the Mahalanobis distance [68] calculated between node positions and sector anchor. di is
defined as Equation (9):

di =
√
(y− µ)C−1(y− µ)′, (9)

where y is the set of anchor points, µ is the mean of UAV coordinates and C is the covariance matrix.
UAVs hover with random way-point selection or any other predefined mobility, but are ready

to change course and follow a newly set path as dictated by the proposed trajectory optimization
technique. The multi-hop UAVs will change their adjacency relationships more frequently than the
single hop nodes. The local and global arrangements can be represented as graph G(U(x,y,z), A) and
adjacent matrix A(i,j) Equation (10).

A(i, j) =

{
1 if uavi & uavj are single hop nodes

0 if uavi & uavj are multi hop nodes
(10)



Sensors 2020, 20, 6680 11 of 27

At any reference interval, the exact state of the aerial network must be accounted for to facilitate
the efficient positioning of the relay nodes. The state of the aerial network can be heuristically defined
using graph neural network [69]. The expected behavior of the node is required to adjust the positioning
of the nodes in advance to push the overall network capacity towards Thmaxw. With the graph neural
network, the ith UAV’s state Oi is given by Equation (11). This state is defined over the current state
of the UAV node and its neighboring UAVs, presenting the neural network output considering the
UAV’s feature vector and input vectors received from the neighboring UAVs. The number of layers
considered in the proposed model is equal to the graph levels formed by UAV nodes in a sector.
The arrangement of layers according to UAV topology is described by Figure 3. The UAV node’s state
vector hi concerning neighboring UAVs is described by Equations (11) and (12):

Oi = ρw(hi, δTi), (11)

hi = Υw(δTi, A[i], hne[i], δTne[i]), (12)

where δTi is the feature vector, A[i] is the adjacency matrix for ith node. hne[i] defines state of ith UAV’s
neighbours. δTne[i] define features of the neighbouring UAVs.

The state h of an aerial node at the 0th layer is given by Equation (13). The 0th layer UAV treats
its feature vector as its state. The 0th layer is the initial layer from the disjoint graph considered for
UAV state calculation.

h0
i = δTi. (13)

At kth layer, the state of ith node can be defined as Equation (14):

hk
i = σ

(
Wk Ag, Bkhk−1

i

)
, (14)

where Wk and Bk are weight and bias respectively, used for training the neural network at kth layer and
Ag is the aggregate function Equation (15) with parameters α, β, γ and δ Equation (16). Algorithm 1
presents the UAV state calculation process.

Ag =
n

∑
i=0

(
αLwi + βLpi + γTh0i + δdi

)
, (15)

where n is the number of nodes in a divided sector.
The proposed approach considers a maximum of three hop neighbors’ states. The actual UAV

topology over geography and the definition of UAV states derived from the geographical layout are
presented in Figure 3.

α + β + γ + δ = 1. (16)

UAVi will have a state corresponding to its latency, packet drop, instantaneous throughput, and
distance from sector anchor, given by Equation (11). UAV re-purposing is required to ensure consistent
and improved data rates if the throughput of a sector Zrate Equations (17) and (18) falls below the
expected throughput. The expected rate Zexp is proportional to the channel capacity Cs of the sector,
such that

Zrate ∝
1

∑n
i Oi

, (17)

Zrate < Zexp|Zexp =
Cs

2
. (18)
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The distance dai between a sector anchor Ai (Aix, Aiy, Aiz) and an aerial node UAVi (Uix, Uiy, Uiz) in a
w-dimensional space is given by Equation (21).

The candidate solution for UAV re-purposing is assigned according to Equation (19). UAV is
re-purposed to a designated overburdened high latency node such that its distance from the sector
anchor dai and current state Oi are minima. Algorithm 2 elaborates on the UAV trajectory optimization
and UAV re-purposing process. Figure 5 details the UAV re-purposing scenario.

min(Oi, dai). (19)

Tangent of the ith UAV towards the burdened node is used to set the re-purpose direction and
the minimum required movement dm is assigned according to the prorogation length Spi of the UAV
signals Equation (20).

dm =
Spi
2

. (20)

If no UAV nodes are available for re-purposing, a directly connected UAV with min current state
Oi value is considered.

dai =
√
(Aix −Uix)2 + (Aiy −Uiy)2 + (Aiz −Uiz)2 =

√
w

∑
r=1

(Air −Uir)2. (21)

To estimate the cost and complexity of the proposed solution, the initial training of the algorithm
is performed using 10 formations of UAV networks, and the GNN is trained over 5000 iterations,
followed by re-testing using 5 formations of the UAV network. Figure 6 gives training and testing
losses over each iteration, where 1000 iterations take 4 min to complete approximately. The results
suggest that the loss is quickly reduced and the GNN is able to correctly predict the node states.

Algorithm 1: UAV state identification
Output: Oi
Input: UAV Coordinates,
Feature Vector δT ←− {Lwi , Lpi , Th0i , di},
Distance di =

√
(y− µ)C−1(y− µ)′,

Adjacent Matrix A(x,y,z);
Begin
Initialization:
h0

i = δTi ;
while i in aerial nodes do

while k in layers do

hk
i ← σ

(
Wk Ag, Bkhk−1

i

)
AGGN ← ∑n

i=0
(
αLwi + βLpi + γTh0i + δdi

)
α + β + γ + δ = 1;

end
Oi = ρw(hi, δTi)

end
End
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Algorithm 2: UAV re-purposing
Output: dm

Input: Oi
Begin
Initialization:
Zrate ∝

1
∑n

i Oi
,

Zrate < Zexp|Zexp =
Cs

2
while i in serial nodes in a sector do

dai =
√
(Aix −Uix)2 + (Aiy −Uiy)2 + (Aiz −Uiz)2 =

√
∑w

r=1(Air −Uir)2

min(Oi, dai)

end
Re-purposing Distance:

dm =
Spi
2

End

Figure 5. An illustration of state-based UAV re-purposing.

Figure 6. Loss: Training and testing.
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5. Results and Discussion

To evaluate the proposed approach, simulations are carried using NS-3 (Python bindings) with
50–100 UAVs and an area of 2000× 2000 m. Comparisons are made on grounds of achieved throughput,
delay, packet loss, jitter, and packet delivery ratio. To demonstrate the accuracy and correctness,
the proposed approach is validated against OLSR driven UAV assisted ground networks. The proposed
approach is compared against software-defined UAVs (U-S) and UAVs as base stations (U-B) inspired
by the configurations and settings in [28,29] for performance and efficiency analysis. The scalability
of the proposed technique is verified by varying aerial node deployment and data rates. The section
is further discussed in four parts: Simulation settings, Accuracy and correctness, Performance and
efficiency analysis, Scalability test.

5.1. Simulation Settings

Simulation results are dependent on data rates and packet size. The complete simulation settings
are provided in Table 1. The following parameters are used to test the efficiency of the approach:

1. Throughput: Throughput is the measure of the amount of data successfully transmitted between
source and destination over a transmission media. The comparative analysis is performed by
equating maximum data rates in UAV-assisted ground networks Thmaxw.

2. Delay: Delay is a unit time measurement of end-point to end-point communication considering
network bottlenecks and unavailability of transmission media. Latency is the cumulative
measurement of propagation and serialization delays. Although there exists a subtle distinction
between latency and delay, but the proposed approach latency and delay are used interchangeably
as the delay is defined as a cumulative entity comprising of router traversal latency, queuing
delay, transmission delay, hop count, propagation delay, and connection delay.

3. Jitter: Jitter quantifies delay-sensitive dynamic network behavior. The proposed approach
considers jitter as the variation in delay.

4. Packet Delivery Ratio (PDR): Packet delivery ratio is the ratio of packets transmitted by the sender
to the actual number of packets received at the destination node.

5. Packet Loss: Packet loss accounts for the number of packets lost in transmission. The proposed
approach ascertains it as a proportion between unsuccessful transmissions and the actual number
of transmission over the transmission media. Packet loss can occur with UAV being out of range,
congestion, frequent broadcasts from ground nodes, dense ground sections, or the overall amount
of data being transmitted.

Table 1. Simulation Parameters.

Simulation Settings Values

No. of Ground Nodes 200
No. of Aerial Nodes 50–100
Ground Node Classification Wireless Ground Nodes
Dimension 1200× 1200 m2

Ground Communication IEEE 802.11, Direct Sequence Spread Spectrum (DSSS) Rate 11 Mbps
Aerial-Ground Communication Low Power Wide Area Network (LPWAN), 2 km Line of Sight Transmission
Aerial-Aerial Communication LTE
Loss Model Fiss Propagation Loss Model
Datagram/Segment Size 1460 bytes
Data Rate 1–4 Mbps
Data Burst Variable
Bit Rate Constant
Protocol Transmission Control Protocol (TCP)/User Datagram Protocol (UDP)
Simulation NS3 (Python Bindings)
Analysis Python
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5.2. Accuracy and Correctness

Multi-UAV-assisted ground networks are multi-hop network configurations where aerial nodes act
as transceivers or base stations. The correctness of the proposed approach is demonstrated by running
the multi-UAV-assisted ground network configuration in conjunction with the proposed approach.
The underlying ground configuration uses OLSR for multi-hop data routing. The largest contributor
to network latency in a multi-hop network is the number of hops between the communicating nodes
and the actual geographical distance between the nodes. Bottleneck congestions occurring as a
result of unequal data transmission capacity of links and devices also contribute substantially to
the overall network delays. Multi-hop networks also suffer from suboptimal routing conditions by
making suboptimal paths to the destination. Suboptimal path selection increases the overall data
arrival intervals. The proposed approach provides solutions to the multi-hop delays and bottleneck
congestions by facilitating additional resources in form of UAV re-purposing. The choice of more
than one aerial node reduces the suboptimal routing paths as well. Figure 7 reflects the decrease in
overall delay as the proposed approach features an average delay of 1.3 s compared to an 8.6-s delay
of OLSR configuration.

Figure 7. Delay: Proposed approach vs. OLSR configuration.

The average packet loss of the proposed approach is 4 as compared to the staggering 1672 of the
OLSR configuration (Figure 8). The average jitter, also considered as the variation in delay over time,
of the proposed approach is 0.03 and that of the OLSR configuration is 1.4 (Figure 9). The proposed
approach minimizes the distance as well as the number of hops between the source and destination,
resulting in fewer packets becoming lost in transition. Random non-optimized mobility of the aerial
nodes adds massively to the packet drop statistics. Packet loss is also directly equated to network
congestions and overloaded links and devices. Packets are dropped in volumes if the end device or
transmission channel cannot cope with the transmission rates. The unprecedented advantage of the
proposed approach towards delay minimization contributes to the advantage when it comes to packet
loss rates.

The proposed approach is directed towards throughput maximization by minimizing the overall
network delays and packet loss. The minimal packet loss rate converts to a high packet delivery ratio.
The PDR of the proposed approach is 0.99 as compared to the OLSR configuration’s 0.55 (Figure 10).
Minimized delay of 1.30 s, less average packet loss of 4, and high PDR of 0.99 result in maximized
throughput values. The throughput of the proposed approach is 1021.25 Kbps, as compared to
480.42 Kbps of OLSR network configuration (Figure 11). Table 2 details the comparative analysis
between the proposed approach and OLSR ground network configuration.
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Figure 8. Packet Loss: Proposed approach vs. OLSR configuration.

Figure 9. Jitter: Proposed approach vs. OLSR configuration.

Table 2. Comparison: Proposed approach vs. OLSR configuration.

Approach Delay Packet Loss Jitter PDR Throughput

Proposed Approach 1.30 4 0.03 0.99 1021.25 Kbps
OLSR 8.55 1672 1.4 0.55 480.42 Kbps

Figure 10. Packet delivery ratio: Proposed approach vs. OLSR configuration.
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Figure 11. Throughput: Proposed approach vs. OLSR configuration.

5.3. Performance and Efficiency Analysis

The performance and efficiency of the proposed approach are evaluated against software-defined
UAVs (U-S) and UAVs as base stations (U-B). The three approaches are tested on the same testbed
with 50 UAVs. The packet size is 1460 bytes. The data rate is 1 Mbps with a constant bit rate and
variable bursts.

The proposed approach features an average delay of 1.30 s as compared to 5.8 s and 3.67 s of
U-S and U-B respectively (Figure 12). The proposed approach dynamically tracks the aerial topology
for bottleneck congestions by keeping track of individual delays and packet loss of the aerial nodes,
as well as the sector, where nodes are deployed. Both U-S and U-B feature geographical positioning
of nodes with respect to the load characteristics of the underlying geography. U-B has a slight edge
over U-S because after fixing the UAV positions U-B keeps them static. Thus, featuring fewer average
delays in the regions where UAVs are deployed which bring down the overall average delay.

The average delay and packet loss of the system depends massively on the distance and number
of hops over which data is transferred. The proposed approach not only re-purposes the UAV towards
over-burdened nodes but also takes distance and hop count into account by measuring the 3D distance
in terms of signal propagation. U-S and U-B have average packet loss of 13 and 16 respectively as
compared to four of the proposed approaches (Figure 13). The low average packet drop is derived
from the predictive dynamic tracking of the proposed approach. The packet loss of U-B is higher
than U-S despite boasting lesser delays is because after keeping UAV positioning static, the remaining
sectors experience a steep decline in packet delivery. The proposed approach, U-S, and U-B feature
average jitter of 0.03, 0.99, and 1.04, respectively (Figure 14).

Figure 12. Delay: Proposed Approach, U-S, U-B.
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Figure 13. Packet Loss: Proposed Approach, U-S, U-B.

Figure 14. Jitter: Proposed Approach, U-S, U-B.

Less delay and near-optimal packet loss result in maximized PDR and throughput of the proposed
approach are obtained compared to its counterparts. The PDR values of the proposed approach, U-S
and U-B are 0.99, 0.95 and 0.93 respectively (Figure 15). The efficient re-purposing and dynamic
tracking of nodes and overall topology result in maximum throughput gains. The average throughputs
of the proposed approach, U-S and U-B are 1021.25 Kbps, 609.81 Kbps, and 569.94 Kbps, respectively
(Figure 16). Table 3 details the comparative analysis between the three approaches.

Figure 15. Packet delivery ratio: Proposed Approach, U-S, U-B.
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Figure 16. Throughput: Proposed Approach, U-S, U-B.

Table 3. Comparison: Proposed approach vs. U-S vs. U-B.

Approach Delay Packet Loss Jitter PDR Throughput

Proposed Approach 1.30 4 0.03 0.99 1021.25 Kbps
U-S 5.80 13 0.99 0.95 609.81 Kbps
U-B 3.67 16 1.04 0.93 569.94 Kbps

5.4. Scalability Test

The scalability of the proposed approach is tested by varying the number of aerial nodes and data
rates. Simulations are performed by varying the data rate 1–4 Mbps. Another test was performed by
keeping the data rate constant to 1 Mbps and varying the deployed UAVs between 50–100. The packet
size is 1460 bytes with a constant bit rate and variable bursts.

Delay and packet loss increases slightly when data rates are gradually incremented. Increasing
data rate but keeping the number of UAVs constant reverses the gains of higher data rates when it
comes to delay and packet loss. The transmission capacity of the ground and aerial devices increases
but the number of UAVs available for reception and re-purposing remains the same. The higher data
generation with lesser available sinks pushes back the networks towards multi-hoping and sub-optimal
path selections. This abrupt behavior is effectively managed by the proposed approach which sees
only a slight variation in delay values. The average delay values at 1 Mbps, 2 Mbps, and 4 Mbps are
1.30 s, 2.78 s, and 4.70 s, respectively (Figure 17). With increasing data rates, the packet drop at the
interface queue is affected. High data rates cause congestion and overflow in the forwarding node
resulting in packet drops. The average packet drop at 1 Mbps, 2 Mbps, and 4 Mbps are 4, 8, and 17,
respectively (Figure 18). The average jitter at 1 Mbps, 2 Mbps, and 4 Mbps are 0.03, 0.05, and 0.04,
respectively (Figure 19).

Figure 17. Delay: 1 Mbps, 2 Mbps, 4 Mbps respectively.
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Figure 18. Packet Loss: 1 Mbps, 2 Mbps, 4 Mbps respectively.

Figure 19. Jitter: 1 Mbps, 2 Mbps, 4 Mbps respectively.

The microscopic variations in delay and packet loss rates keep the average PDR levels constant
(Figure 20). Throughput is affected marginally with data rate being increased from 1 Mbps to 2 Mbps,
with values shifting from 1021.25 Kbps to 2039.26 Kbps. The only noticeable difference in throughput
arrives when the data rate is further doubled from 2 Mbps to 4 Mbps and the throughput levels
rise from 2039.26 Kbps to 3284.56 Kbps (Figure 21). Table 4 details the performance of the proposed
approach with varying data rates. Simulation tests over iteratively increasing data rates suggest that
an efficient compromise between the available number of nodes and data rate is required to achieve
consistent performance levels.

Figure 20. Packet delivery ratio: 1 Mbps, 2 Mbps, 4 Mbps respectively.
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Figure 21. Throughput: 1 Mbps, 2 Mbps, 4 Mbps respectively.

Table 4. Scalability Test: 1 Mbps, 2 Mbps and 4 Mbps.

Data Rate Delay Packet Loss Jitter PDR Throughput

1 Mbps 1.30 4 0.03 0.99 1021.25 Kbps
2 Mbps 2.78 8 0.05 0.99 2039.26 Kbps
4 Mbps 4.70 17 0.04 0.99 3284.56 Kbps

The second scalability run is performed by keeping the data rate constant at 1 Mbps and varying
the number of aerial nodes between 50, 75, and 100. Iteratively increasing the number of nodes
witnesses a gradual but slow rise in delay and packet loss. The increased delay and packet loss are
a result of more devices contending for the same transmission channels resulting in congestion and
backoffs. An aerial node anticipates congestion in the network resulting from more and more nodes
competing for the same channel. The node initializes its backoff counter and waits for a random
amount of time before retransmitting. When the transmission is re-attempted, congestion is detected
again, resulting in an incremented backoff value. The congestion persists as a result of increasing the
number of aerial nodes but not maintaining sufficient data rates. The average delay values of 50 UAVs,
75 UAVs and 100 UAVs are 1.30, 1.34 and 1.71 respectively (Figure 22). The average packet losses after
deploying 50 UAVs, 75 UAVs, and 100 UAVs are 4, 7, and 12 respectively (Figure 23). The average
jitters at 50 UAVs, 75 UAVs and 100 UAVs are 0.03, 0.04 and 0.06 respectively (Figure 24).

Once again, the microscopic variations in delay and packet loss rates have less impact on average
PDR (Figure 25). The throughput on the other hand witnessed a steep decline as the number of aerial
nodes increase. One of the factors behind the decline is that more and more nodes contest for channel
access causing congestion and nodes to back off, the other reason being the congestion and backoffs
activate the proposed approach towards re-purposing UAVs. The high re-purposing results in high
mobility of the aerial nodes, which in turn affects the overall throughput. The average throughputs
at 50 UAVs, 75 UAVs, and 100 UAVs are 1021.25 Kbps, 728.57 Kbps, and 696.34 Kbps, respectively
(Figure 26). Table 5 details the contrast in the execution of the proposed technique when the numbers
of aerial nodes are varied.

Table 5. Scalability Test: 50 UAVs, 75 UAVs and 100 UAVs.

No. of UAVs Delay Packet Loss Jitter PDR Throughput

50 1.30 4 0.03 0.99 1021.25 Kbps
75 1.34 7 0.04 0.99 728.57 Kbps
100 1.71 12 0.06 0.99 696.34 Kbps
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Figure 22. Delay. 50 UAVs, 75 UAVs, 100 UAVs respectively.

Figure 23. Packet Loss. 50 UAVs, 75 UAVs, 100 UAVs respectively.

Figure 24. Jitter. 50 UAVs, 75 UAVs, 100 UAVs respectively.
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Figure 25. Packet delivery ratio. 50 UAVs, 75 UAVs, 100 UAVs respectively.

Figure 26. Throughput. 50 UAVs, 75 UAVs, 100 UAVs respectively.

6. Conclusions

In this article, a UAV re-purposing-based approach for throughput maximization, delay,
and packet loss minimization is presented. The proposed approach employs GNN-based dynamic
learning and prediction mechanism to re-purpose available UAVs towards the congested and
over-burdened sectors of the topology. The state monitoring neural network architecture makes the
approach more reactive and aggressive while at the same time channel prorogation based distancing
makes the solution more efficient. The proposed approach is compared against the OLSR-driven
UAV-assisted ground network model to demonstrate the correctness. The proposed UAV re-purposing
technique tremendously outperforms the classical approach with notable gains in throughput and
packet delivery ratio while at the same minimizing the losses. Moreover, a comparative study of the
proposed approach is provided by comparing it against U-S and U-B. The approach establishes its
supremacy by demonstrating considerable gains over U-S and U-B when compared on the merits
of throughput while at the same time achieves lesser delays and packet loss as compared to the
two models. The scalability analysis of the proposed approach demonstrates the effectiveness of
the approach under adverse scenarios. Scalability test also establishes another important general
network characteristic that the data rate and the number of devices must work together under guided
compromise to archive significant gains.

Future works include developing a software defined network (SDN) controller for trajectory
optimization. Mid-flight routine modification and network independence facilitated by the SDN
controller will make the framework more robust and flexible while boosting scalability at the same
time. The interface independent transition supported by SDN will make the proposed approach
more reactive and fast to abrupt network changes. The framework can be modified to incorporate
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energy levels of aerial and ground nodes as part of the feature vector to avoid transmission black holes.
A separate algorithm can be developed for monitoring parameter changes over time and facilitate
more robust parameter predictions.

The simulation results prove that an efficient compromise between the data rate and the number
of nodes is required to maintain consistent system performance levels. Increasing data rates without
changing the number of nodes or increasing the number of nodes without improving the data rate
leads to a gradual decline in system performance.
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3. Bekmezci, I.; Sahingoz, O.K.; Temel, Ş. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Netw. 2013,
11, 1254–1270. [CrossRef]

4. Sahingoz, O.K. Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. J. Intell.
Robot. Syst. 2014, 74, 513–527. [CrossRef]

5. Sharma, V.; Kumar, R. A cooperative network framework for multi-UAV guided ground ad hoc networks.
J. Intell. Robot. Syst. 2015, 77, 629–652. [CrossRef]

6. Nalepka, J.; Hinchman, J. Automated aerial refueling: Extending the effectiveness of UAVs. In Proceedings
of the AIAA Modeling and Simulation Technologies Conference and Exhibit, San Franclsco, CA, USA, 15–18
August 2005; p. 6005.

7. Madni, A.M.; Sievers, M.W.; Humann, J.; Ordoukhanian, E.; Boehm, B.; Lucero, S. Formal methods in
resilient systems design: Application to multi-UAV system-of-systems control. In Disciplinary Convergence in
Systems Engineering Research; Springer: Berlin/Heidelberg, Germany, 2018; pp. 407–418.

8. Daniel, K.; Wietfeld, C. Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security
Operations; Technical Report; Dortmund University: Dortmund, Germany, 2011.

9. Pratt, K.S.; Murphy, R.; Stover, S.; Griffin, C. CONOPS and autonomy recommendations for VTOL small
unmanned aerial system based on Hurricane Katrina operations. J. Field Robot. 2009, 26, 636–650. [CrossRef]

10. Galkin, B.; Kibilda, J.; DaSilva, L.A. UAVs as mobile infrastructure: Addressing battery lifetime.
IEEE Commun. Mag. 2019, 57, 132–137. [CrossRef]

11. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel.
Commun. Lett. 2014, 3, 569–572. [CrossRef]

12. Lyu, J.; Zeng, Y.; Zhang, R.; Lim, T.J. Placement optimization of UAV-mounted mobile base stations.
IEEE Commun. Lett. 2016, 21, 604–607. [CrossRef]

13. Galkin, B.; Kibilda, J.; DaSilva, L.A. Coverage analysis for low-altitude UAV networks in urban environments.
In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8
December 2017; pp. 1–6.

14. Sharma, V.; Bennis, M.; Kumar, R. UAV-assisted heterogeneous networks for capacity enhancement.
IEEE Commun. Lett. 2016, 20, 1207–1210. [CrossRef]

15. Galkin, B.; Kibiłda, J.; DaSilva, L.A. A stochastic model for UAV networks positioned above demand
hotspots in urban environments. IEEE Trans. Veh. Technol. 2019, 68, 6985–6996. [CrossRef]

http://dx.doi.org/10.1109/MVT.2015.2481560
http://dx.doi.org/10.1002/dac.4170
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://dx.doi.org/10.1007/s10846-013-9959-7
http://dx.doi.org/10.1007/s10846-014-0091-0
http://dx.doi.org/10.1002/rob.20304
http://dx.doi.org/10.1109/MCOM.2019.1800545
http://dx.doi.org/10.1109/LWC.2014.2342736
http://dx.doi.org/10.1109/LCOMM.2016.2633248
http://dx.doi.org/10.1109/LCOMM.2016.2553103
http://dx.doi.org/10.1109/TVT.2019.2916429


Sensors 2020, 20, 6680 25 of 27

16. Galkin, B.; Kibilda, J.; DaSilva, L.A. Deployment of UAV-mounted access points according to spatial user
locations in two-tier cellular networks. In Proceedings of the 2016 Wireless Days (WD), Toulouse, France,
23–25 March 2016, pp. 1–6.

17. Sharma, V.; Srinivasan, K.; Chao, H.C.; Hua, K.L.; Cheng, W.H. Intelligent deployment of UAVs in 5G
heterogeneous communication environment for improved coverage. J. Netw. Comput. Appl. 2017, 85, 94–105.
[CrossRef]

18. Sharma, V.; Jayakody, D.N.K.; Srinivasan, K. On the positioning likelihood of UAVs in 5G networks.
Phys. Commun. 2018, 31, 1–9. [CrossRef]

19. Wang, J.; Jiang, C.; Wei, Z.; Pan, C.; Zhang, H.; Ren, Y. Joint UAV hovering altitude and power control for
space-air-ground IoT networks. IEEE Internet Things J. 2018, 6, 1741–1753. [CrossRef]

20. Jiang, B.; Yang, J.; Xu, H.; Song, H.; Zheng, G. Multimedia data throughput maximization in
Internet-of-Things system based on optimization of cache-enabled UAV. IEEE Internet Things J. 2018,
6, 3525–3532. [CrossRef]

21. Wu, Q.; Liu, L.; Zhang, R. Fundamental trade-offs in communication and trajectory design for UAV-enabled
wireless network. IEEE Wirel. Commun. 2019, 26, 36–44. [CrossRef]

22. Sharma, V.; You, I.; Jayakody, D.N.K.; Reina, D.G.; Choo, K.K.R. Neural-blockchain-based ultrareliable
caching for edge-enabled UAV networks. IEEE Trans. Ind. Inform. 2019, 15, 5723–5736. [CrossRef]

23. Sharma, V.; Kumar, R. UAVs assisted queue scheduling in ground ad hoc networks. Int. J. Hoc Ubiquitous
Comput. 2019, 30, 1–10. [CrossRef]

24. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling relational data
with graph convolutional networks. In Proceedings of the European Semantic Web Conference, Heraklion,
Greece, 3–7 June 2018; pp. 593–607.

25. You, J.; Ying, R.; Leskovec, J. Position-aware graph neural networks. arXiv 2019, arXiv:1906.04817.
26. Zhang, M.; Chen, Y. Link prediction based on graph neural networks. In Advances in Neural Information

Processing Systems; NIPS: Montréal, QC, Canada, 2018; pp. 5165–5175.
27. Scarselli, F. A Short Description of the Graph Neural Network Toolbox; University of Siena: Siena, Italy., 2011.
28. ur Rahman, S.; Kim, G.H.; Cho, Y.Z.; Khan, A. Positioning of UAVs for throughput maximization in

software-defined disaster area UAV communication networks. J. Commun. Netw. 2018, 20, 452–463.
[CrossRef]

29. Sivalingam, T.; Manosha, K.S.; Rajatheva, N.; Latva-aho, M.; Dissanayake, M.B. Positioning of Multiple
Unmanned Aerial Vehicle Base Stations in future Wireless Network. In Proceedings of the 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–6.

30. Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for multi-UAV enabled wireless
networks. IEEE Trans. Wirel. Commun. 2018, 17, 2109–2121. [CrossRef]

31. Xie, L.; Xu, J.; Zhang, R. Throughput maximization for UAV-enabled wireless powered communication
networks. IEEE Internet Things J. 2018, 6, 1690–1703. [CrossRef]

32. Lin, Y.; Saripalli, S. Sampling-based path planning for UAV collision avoidance. IEEE Trans. Intell.
Transp. Syst. 2017, 18, 3179–3192. [CrossRef]

33. Qian, Y.; Wang, F.; Li, J.; Shi, L.; Cai, K.; Shu, F. User association and path planning for UAV-aided mobile
edge computing with energy restriction. IEEE Wirel. Commun. Lett. 2019, 8, 1312–1315. [CrossRef]

34. Sallouha, H.; Azari, M.M.; Pollin, S. Energy-constrained UAV trajectory design for ground node localization.
In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab
Emirates, 9–13 December 2018; pp. 1–7.

35. Sayeed, M.; Kumar, R.; others. An efficient mobility model for improving transmissions in multi-UAVs
enabled WSNs. Drones 2018, 2, 31. [CrossRef]

36. Roberge, V.; Tarbouchi, M.; Labonté, G. Fast genetic algorithm path planner for fixed-wing military UAV
using GPU. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2105–2117. [CrossRef]

37. Kumar, R.; Sayeed, M.A.; Sharma, V.; You, I. An SDN-based secure mobility model for UAV-ground
communications. In Proceedings of the International Symposium on Mobile Internet Security, Jeju, Korea,
25–28 October 2018. pp. 169–179.

38. Yao, W.; Qi, N.; Liu, Y. Online trajectory generation with rendezvous for UAVs using multistage path
prediction. J. Aerosp. Eng. 2017, 30, 04016092. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2016.12.012
http://dx.doi.org/10.1016/j.phycom.2018.08.010
http://dx.doi.org/10.1109/JIOT.2018.2875493
http://dx.doi.org/10.1109/JIOT.2018.2886964
http://dx.doi.org/10.1109/MWC.2018.1800221
http://dx.doi.org/10.1109/TII.2019.2922039
http://dx.doi.org/10.1504/IJAHUC.2019.097090
http://dx.doi.org/10.1109/JCN.2018.000070
http://dx.doi.org/10.1109/TWC.2017.2789293
http://dx.doi.org/10.1109/JIOT.2018.2875446
http://dx.doi.org/10.1109/TITS.2017.2673778
http://dx.doi.org/10.1109/LWC.2019.2913843
http://dx.doi.org/10.3390/drones2030031
http://dx.doi.org/10.1109/TAES.2018.2807558
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000694


Sensors 2020, 20, 6680 26 of 27

39. Mardani, A.; Chiaberge, M.; Giaccone, P. Communication-aware UAV path planning. IEEE Access 2019,
7, 52609–52621. [CrossRef]

40. Pérez-Carabaza, S.; Scherer, J.; Rinner, B.; López-Orozco, J.A.; Besada-Portas, E. UAV trajectory optimization
for Minimum Time Search with communication constraints and collision avoidance. Eng. Appl. Artif. Intell.
2019, 85, 357–371. [CrossRef]

41. Perez-Carabaza, S.; Besada-Portas, E.; Lopez-Orozco, J.A.; Jesus, M. Ant colony optimization for multi-UAV
minimum time search in uncertain domains. Appl. Soft Comput. 2018, 62, 789–806. [CrossRef]

42. Huang, L.; Qu, H.; Ji, P.; Liu, X.; Fan, Z. A novel coordinated path planning method using k-degree
smoothing for multi-UAVs. Appl. Soft Comput. 2016, 48, 182–192. [CrossRef]

43. Wang, L.; Kan, J.; Guo, J.; Wang, C. 3D path planning for the ground robot with improved ant colony
optimization. Sensors 2019, 19, 815. [CrossRef] [PubMed]

44. Sahingoz, O.K. Generation of bezier curve-based flyable trajectories for multi-UAV systems with parallel
genetic algorithm. J. Intell. Robot. Syst. 2014, 74, 499–511. [CrossRef]

45. Besada-Portas, E.; de la Torre, L.; Jesus, M.; de Andrés-Toro, B. Evolutionary trajectory planner for multiple
UAVs in realistic scenarios. IEEE Trans. Robot. 2010, 26, 619–634. [CrossRef]

46. Liu, J.; Wang, X.; Bai, B.; Dai, H. Age-optimal trajectory planning for UAV-assisted data collection.
In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; pp. 553–558.

47. Wu, Q.; Zhang, R. Common throughput maximization in UAV-enabled OFDMA systems with delay
consideration. IEEE Trans. Commun. 2018, 66, 6614–6627. [CrossRef]

48. Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for UAV-enabled multiple access.
In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8
December 2017; pp. 1–6.

49. Ahmed, S.; Chowdhury, M.Z.; Jang, Y.M. Energy-Efficient UAV-to-User Scheduling to Maximize Throughput
in Wireless Networks. IEEE Access 2020, 8, 21215–21225. [CrossRef]

50. Liu, B.; Zhu, H. Energy-effective data gathering for UAV-aided Wireless Sensor Networks. Sensors 2019,
19, 2506. [CrossRef]

51. Tang, G.; Hou, Z.; Claramunt, C.; Hu, X. UAV Trajectory Planning in a Port Environment. J. Mar. Sci. Eng.
2020, 8, 592. [CrossRef]

52. Li, R.; Wei, Z.; Yang, L.; Ng, D.W.K.; Yang, N.; Yuan, J.; An, J. Joint trajectory and resource allocation design
for UAV communication systems. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps),
Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

53. Ouyang, J.; Che, Y.; Xu, J.; Wu, K. Throughput maximization for laser-powered UAV wireless communication
systems. In Proceedings of the 2018 IEEE International Conference on Communications Workshops
(ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

54. Bulut, E.; Guevenc, I. Trajectory optimization for cellular-connected UAVs with disconnectivity constraint.
In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops),
Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

55. Tang, J.; Song, J.; Ou, J.; Luo, J.; Zhang, X.; Wong, K.K. Minimum Throughput Maximization for Multi-UAV
Enabled WPCN: A Deep Reinforcement Learning Method. IEEE Access 2020, 8, 9124–9132. [CrossRef]

56. Xie, L.; Xu, J.; Zeng, Y. Common throughput maximization for UAV-enabled interference channel with
wireless powered communications. IEEE Trans. Commun. 2020, 68, 3197–3212. [CrossRef]

57. Liu, X.; He, D.; Ding, H. Throughput maximization for UAV-enabled full-duplex relay system in
5G communications. Phys. Commun. 2019, 32, 104–111. [CrossRef]

58. Xu, Y.; Xiao, L.; Yang, D.; Wu, Q.; Cuthbert, L. Throughput maximization in multi-UAV enabled
communication systems with difference consideration. IEEE Access 2018, 6, 55291–55301. [CrossRef]

59. Jiang, X.; Wu, Z.; Yin, Z.; Yang, Z. Power and trajectory optimization for UAV-enabled amplify-and-forward
relay networks. IEEE Access 2018, 6, 48688–48696. [CrossRef]

60. Zeng, Y.; Zhang, R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wirel.
Commun. 2017, 16, 3747–3760. [CrossRef]

61. Zeng, Y.; Xu, J.; Zhang, R. Energy minimization for wireless communication with rotary-wing UAV.
IEEE Trans. Wirel. Commun. 2019, 18, 2329–2345. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2911018
http://dx.doi.org/10.1016/j.engappai.2019.06.002
http://dx.doi.org/10.1016/j.asoc.2017.09.009
http://dx.doi.org/10.1016/j.asoc.2016.06.046
http://dx.doi.org/10.3390/s19040815
http://www.ncbi.nlm.nih.gov/pubmed/30781539
http://dx.doi.org/10.1007/s10846-013-9968-6
http://dx.doi.org/10.1109/TRO.2010.2048610
http://dx.doi.org/10.1109/TCOMM.2018.2865922
http://dx.doi.org/10.1109/ACCESS.2020.2969357
http://dx.doi.org/10.3390/s19112506
http://dx.doi.org/10.3390/jmse8080592
http://dx.doi.org/10.1109/ACCESS.2020.2964042
http://dx.doi.org/10.1109/TCOMM.2020.2971488
http://dx.doi.org/10.1016/j.phycom.2018.11.014
http://dx.doi.org/10.1109/ACCESS.2018.2872736
http://dx.doi.org/10.1109/ACCESS.2018.2867849
http://dx.doi.org/10.1109/TWC.2017.2688328
http://dx.doi.org/10.1109/TWC.2019.2902559


Sensors 2020, 20, 6680 27 of 27

62. Zhang, G.; Yan, H.; Zeng, Y.; Cui, M.; Liu, Y. Trajectory optimization and power allocation for multi-hop
UAV relaying communications. IEEE Access 2018, 6, 48566–48576. [CrossRef]

63. Wu, F.; Yang, D.; Xiao, L.; Cuthbert, L. Minimum-throughput maximization for multi-UAV-enabled
wireless-powered communication networks. Sensors 2019, 19, 1491. [CrossRef]

64. Cheng, F.; Zhang, S.; Li, Z.; Chen, Y.; Zhao, N.; Yu, F.R.; Leung, V.C. UAV trajectory optimization for data
offloading at the edge of multiple cells. IEEE Trans. Veh. Technol. 2018, 67, 6732–6736. [CrossRef]

65. Hua, M.; Yang, L.; Pan, C.; Nallanathan, A. Throughput maximization for full-duplex UAV aided small cell
wireless systems. IEEE Wirel. Commun. Lett. 2019, 9, 475–479. [CrossRef]

66. Zeng, Y.; Xu, X.; Zhang, R. Trajectory design for completion time minimization in UAV-enabled multicasting.
IEEE Trans. Wirel. Commun. 2018, 17, 2233–2246. [CrossRef]

67. Mathis, M.; Semke, J.; Mahdavi, J.; Ott, T. The macroscopic behavior of the TCP congestion
avoidance algorithm. ACM SIGCOMM Comput. Commun. Rev. 1997, 27, 67–82. [CrossRef]

68. Mahalanobis, P.C. On the Generalized Distance in Statistics; National Institute of Science of India: Kolkata,
India, 1936.

69. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model.
IEEE Trans. Neural Netw. 2008, 20, 61–80. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2018.2868117
http://dx.doi.org/10.3390/s19071491
http://dx.doi.org/10.1109/TVT.2018.2811942
http://dx.doi.org/10.1109/LWC.2019.2959527
http://dx.doi.org/10.1109/TWC.2018.2790401
http://dx.doi.org/10.1145/263932.264023
http://dx.doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Network Model
	Proposed Approach
	Results and Discussion
	Simulation Settings
	Accuracy and Correctness
	Performance and Efficiency Analysis
	Scalability Test

	Conclusions
	References

