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Abstract: Imbalanced learning is a common problem in remote sensing imagery-based land-use and
land-cover classifications. Imbalanced learning can lead to a reduction in classification accuracy
and even the omission of the minority class. In this paper, an impartial semi-supervised learning
strategy based on extreme gradient boosting (ISS-XGB) is proposed to classify very high resolution
(VHR) images with imbalanced data. ISS-XGB solves multi-class classification by using several
semi-supervised classifiers. It first employs multi-group unlabeled data to eliminate the imbalance of
training samples and then utilizes gradient boosting-based regression to simulate the target classes
with positive and unlabeled samples. In this study, experiments were conducted on eight study
areas with different imbalanced situations. The results showed that ISS-XGB provided a comparable
but more stable performance than most commonly used classification approaches (i.e., random
forest (RF), XGB, multilayer perceptron (MLP), and support vector machine (SVM)), positive and
unlabeled learning (PU-Learning) methods (PU-BP and PU-SVM), and typical synthetic sample-based
imbalanced learning methods. Especially under extremely imbalanced situations, ISS-XGB can
provide high accuracy for the minority class without losing overall performance (the average overall
accuracy achieves 85.92%). The proposed strategy has great potential in solving the imbalanced
classification problems in remote sensing.

Keywords: image classification; class imbalance; impartial semi-supervised learning strategy (ISS);
extreme gradient boosting (XGB); very-high-resolution (VHR)

1. Introduction

Classification with an imbalanced sample set is very common in real-world scenarios [1].
Many thematic classification maps can only be trained, calibrated, and validated with imbalanced
samples due to the high costs of obtaining labels and the lack of ancillary information for sampling [2].
However, these imbalanced samples often pose difficulties for learning algorithms. Because classifiers
are biased towards the majority class [3], the minority class, which may be a category of concern
for researchers, is omitted under this situation [4]. Inaccurate results introduce potential risks for
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decision-making and industry applications. Moreover, imbalanced learning is an issue that is often
ignored in land-use and land-cover classification.

Studies on class imbalance problems can be summarized based on three relevant tasks: processing
training data, improving the classification algorithm, and constructing a learning strategy [5]. From a
data perspective, resampling approaches that include resampling in data space and feature space
have been widely adopted and researched. In the data space, the under-sampling method [3,6–8],
the over-sampling method [9,10], and a combination of the two [11,12] are often used to balance
the sample sizes of different classes. Tomek link [13], NearMiss [14], and other variant methods
are representative of under-sampling approaches. For skills, synthetic techniques [15–17] that
join different weights when sampling [18] are commonly used during the resampling process.
Among the various over-resampling techniques used in data space, the SMOTE (synthetic minority
over-sampling technique) [16] method and its variants, such as Borderline-SMOTE [19] and Adaptive
Synthetic Sampling (ADASYN) [20], have been widely applied in academia and industry [21].
Meanwhile, feature selection—including filters, wrappers, and embedded methods—can be regarded
as a resampling technique implemented in the feature space, which is also a solution for
imbalanced learning issues [22,23]. However, choosing an appropriate method at the data level
is complicated [24,25]. Waldner [26] proposed an algorithm called F-race to identify an optimal or
sub-optimal resampling-based balancing method via interactive selection.

At the algorithm level, many methods and variants aimed at imbalanced learning have been put
forward. Cost-sensitive learning [27–29] and ensemble learning [11,30,31] are the most widely used
approaches. The former requires a cost matrix to adjust the error distribution of the classifier on different
classes during the training process. The latter is a strong classification system that combs several base
classifiers to generate predictions using specific generalization rules [25]. Moreover, various models and
modifications make the imbalanced training process more diversified, such as optimization in kernel
and activation functions [32], the mixed objective function method [33,34], fuzzy theory predictions [35],
and clustering [36]. The random forest (RF) [37] and support vector machine (SVM) [38] algorithms
have been used and optimized to predict tree classes in remote sensing data. The novel extreme gradient
boosting (XGB) technology has also been used to assess imbalanced land-cover classification [39].
In addition to the single perspectives mentioned above, other solutions have combined multiple
perspectives—for example, Li et al. [40] employed a cost-effective network extension scheme for the
convolutional neural network (CNN) to classify vehicle objects in very-high-resolution (VHR) images.
Krawczyk [41] and Hassan [42] adopted ensemble learning and under-sampling for breast cancer
malignancy grading and automobile insurance fraud detection, respectively. In general, data-level
approaches are more frequently used in practice [25]. These approaches provide a more direct and
convenient way to handle imbalanced data without modifying the learning algorithm.

From a strategy perspective, imbalanced problems are transformed to a relatively balanced
problem by redefining of the problem space or learning strategy. This kind of method mainly uses
the idea of decomposition. For example, ensemble learning combined with a one-on-one learning
strategy [43], pairwise learning with fuzzy rules [44], or learning with a hierarchical data structure [45].
One-class classification can deal with imbalanced learning problems by reducing the type and number
of the sample requirements [46].

However, although numerous solutions exist, it remains difficult to directly find the most
appropriate solution for imbalance issues. When adopting the cost-sensitive learning method,
the appropriate cost matrix is not easy to determine, even for experts [27]. The resampling method is
direct and simple, but the associated resampling approach is not fixed [25]. Each approach has its own
advantages and disadvantages. Under-sampling may lose potentially useful information, oversampling
may result in overfitting with a large number of duplicate samples, and a synthesized sample cannot
correspond to actual instances in remote sensing images. Some complex algorithms, such as CNN,
require large computational resources [40,47]. A good solution is to establish an unbiased strategy
that eliminates skewed distribution during training without increasing the sample’s labeling cost.
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Data and class decomposition can break up the data distribution of problems into multiple minority or
majority classes.

Semi-supervised learning methods, which explore the hidden distribution information from
unlabeled data for learning, may be effective methods for solving this difficulty [48]. Positive and
unlabeled learning (PU learning), proposed by Elkan and Noto [49], is one of the best semi-supervised
methods for remote sensing data [50]. This semi-supervised method handles the classes one by
one (OBO), which is different from the traditional all-in-one (AIO) framework (i.e., where the samples
of all classes are combined to train the classifier at the same time) [50]. The unlabeled data in PU
learning can provide the distribution information of the covariates for model training [51] and act as a
regularizer to prevent overfitting [48]. However, in the remote sensing field, this method has been
reformed for class-incomplete issues [50,52] or binary classification applications [51,53,54] but not for
sample imbalance problems.

In this paper, we proposed an impartial semi-supervised learning strategy based on PU learning
for sample imbalanced issues in remote sensing. This strategy utilizes unlabeled data to convert a
positive–positive (traditional all-in-one methods with all positive samples) classification scheme into a
positive–unlabeled scheme and compensated for the learning deficiency caused by the extreme rarity
of samples through multiple positive–unlabeled training. In this strategy, a simulator is needed for the
positive-unlabeled training, such as the back-propagation neural network (BP) [50,52,53] or support
vector machine (SVM) [51,55]. However, it is known that BP and SVM are sensitive to extremely rare
samples, which may lead to simulation bias [1,3,25]. Extreme gradient boosting (XGB) has proven
to be more predictive than non-boosting methods and uses iterative gradient boosters for regression
simulation with limited samples [56,57]. Thus, the proposed impartial semi-supervised learning
strategy employs XGB (an impartial semi-supervised learning strategy based on extreme gradient
boosting, ISS-XGB) as a simulator to improve the simulations and predictions for the positive class.

The rest of this paper is organized as follows. Section 2 describes the principle of ISS-XGB for
imbalanced learning. Section 3 outlines experiments conducted on two VHR remote sensing data
resources across eight study areas with different complexities. Section 4 demonstrates the performance
of ISS-XGB with imbalanced samples. Section 5 further evaluates the effectiveness of the proposed
strategy via two contrastive analyses: (1) a comparison with previous semi-supervised models in remote
sensing and (2) a comparison with synthetic resampling technique-based methods. The influence of
unlabeled data on ISS-XGB is also discussed in this section.

2. The Principle of ISS-XGB: Impartial Semi-Supervised Learning Strategy for Imbalanced Learning

ISS-XGB is an impartial semi-supervised learning strategy based on extreme gradient boosting.
It is built on the PU learning framework, and models are trained with positive samples and are
randomly selected as unlabeled data through the OBO strategy.

Suppose that x represents the covariates associated with an instance and y represents the property
of the instance, where y = 1 denotes positive data, and y = 0 denotes negative data. The target
of classification can be defined as a function of the probability that a pixel is positive based on its
characteristics (or covariates), denoted as f (x) = p(y = 1

∣∣∣x).
However, in ISS-XGB, the input datasets for each training procedure are only the positive samples

of a certain class and unlabeled data (s = 1 represents labeled, and s = 0 represents unlabeled). Thus,
for certain class i, the learner is a positive–unlabeled simulator g(x) = p(s = 1|x), which simulates the
probability that a pixel is labeled. For n-class classification problems, n positive–unlabeled models are
generated (Figure 1). The imbalanced learning problem is converted to multiple positive–unlabeled
problems. Such decomposition strategies can help to avoid inputting positive samples of minority
classes and majority classes into the simulator at the same time.
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Figure 1. Workflow of the impartial semi-supervised learning strategy based on extreme gradient
boosting (ISS-XGB) ensemble algorithm.

Since only positive data can be labelled, the probability of a negative datum to be labeled is zero:

p(s = 1
∣∣∣x, y = −1) = 0 (1)

The labeled samples are chosen randomly from all positive pixels; thus, the probability that a
positive pixel is labeled is a constant “c” regardless of x is as follows:

p(s = 1
∣∣∣x, y = 1) = p(s = 1

∣∣∣y = 1) = c (2)

With Equations (1) and (2), we have

g(x) = p(s = 1
∣∣∣x)

= p(y = 1∧ s = 1
∣∣∣x)

= p(y = 1
∣∣∣x)p(s = 1

∣∣∣y = 1, x)
= p(y = 1

∣∣∣x)p(s = 1
∣∣∣y = 1)

(3)

Therefore, there is a clear relationship between f (x) and g(x):

f (x) = g(x)/c. (4)

Li [52] provided an approach to obtain c by using an average of the predicted probabilities of
multiple positive pixels in a validation set. More detailed proofs can be found in [49].

The PU learning framework takes advantage of randomly selected unlabeled data by employing
auxiliary information of the positive sample distribution to simulate the target. Research based on this
framework often tends to use a large amount of unlabeled data (5000 in [51,52]) to provide sufficient
information. However, an inconsistent number of positive and unlabeled samples can still lead to
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imbalanced learning issues, especially when the positive samples are extremely rare. Thus, in ISS-XGB,
equal quantities of positive samples and unlabeled datasets are used for training a balanced one-class
classifier (Figure 1). Moreover, to obtain enough information on the whole distribution and ensure the
stability of the simulation, an ensemble of multiple unlabeled datasets (10 times in this paper) is created
for each class. In this way, the target f (x) can be identified as f j(x), where j = 10. Ten simulators
(g j(x)) and cj are integrated into a sub simulation system fclass−i(x). The final posterior probability is

calculated by the mean of the probability output, i.e., fclass−i(x) = f j(x), representing the probability of
an instance belonging to class i. The final label is assigned based on the maximum posterior probability
of each class (Figure 1).

The simulator g(x) is trained by a binary classifier, XGB. This is a scalable regularized gradient
boosting technology that provides predictive performance. As an ensemble tree model, XGB uses
iterative gradient boosters to construct a strong classification model. XGB has shown predictive
abilities for binary classification problems [57,58] and land-cover classification problems [39,47,59,60].
The gradient correction of XGB helps classifier learning and constant estimation from imperfect
representations of limited samples. The gradient correction of XGB is helpful for classifier learning and
constant estimations from the imperfect representation of limited samples.

In summary, ISS-XGB has two main optimizations aimed at imbalance issues. First, equal amounts
of the training data (positive and unlabeled) prevent the inner imbalance of the sample sets. Meanwhile,
multiple unlabeled datasets are used to offer substantial information on the distribution. Second, XGB
is employed as the simulator to improve the certainty of simulation via iterative gradient boosters. It is
worth noting that the unlabeled data are randomly selected from the images. ISS-XGB can handle the
imbalanced land-cover classification problem without extra labeling costs.

For n-class classification problems, the core idea of ISS-XGB is to use positive-unlabeled framework
to transform the tasks into n-binary learning components. Each positive-unlabeled sub-component
consists of 10 PU training routines. To compensates for learning deficiency caused by sample imbalance,
every routine is based on the same number of positive samples and unlabeled data. To establish the
relationship (estimate c) between f (x) and g(x), the training data in every routine is split, 75% for
training, and 25% for validation. Random splitting and multiple routines with different unlabeled
data can also help control overfitting. According to Equation (4), the conditional probability of one
routine is estimated by XGB. Then the average of 10 routines provides the estimations of current
class i. All n fclass−i(x) constitute the ISS-XGB ensemble model. Moreover, ISS-XGB adopts maximum
probabilities rule for label prediction (Figure 1).

3. Data and Experiment

3.1. Study Areas and Data

Eight study areas with different complexities were selected. Areas 1–7 (aerial images acquired
by ADS40 in 2014 with a 0.2 m spatial resolution) are located in Beihai, Guangxi, a normal suburban
area in China. Area 8 (GeoEye-1 data from the environment for visualizing images (ENVI) tutorial
data, an open-access data source acquired in 2009 with a 0.5 m spatial resolution) is located in
northwest Hobart (Tasmania, Australia). The landscape distributions of all 8 areas exhibit different
class imbalances without uncertain shadows caused by high buildings. (Figure 2)

All datasets use VHR data, which is beneficial for random sampling and evaluating the performance
of different methods [50]. VHR allows manual image interpretation to be carried out for labeling
land-cover types with higher confidence than that achieved with coarser resolution images. For accuracy
verification, manual interpretation was used to obtain the pixel labels. Based on China’s National
Standard “Current Land-use Classification, GB/T 21010-2017” and ancillary data (the production of
Second National Land Survey for Beihai), areas 1–7 cover several typical land classes: house, road,
tree grass, soil, water, farmland, and others. Meanwhile, the farmland class was further divided
into farmland with and without crops by manual interpretation, as to be consistent with the surface
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cover (Table 1). Referring to the same standards and labeling procedures above, area 8 was ultimately
finally divided into 11 classes (Table 1), including building-1 with red roofs, building-2 with grey
roofs, and building-3 with light green roofs in pseudo mode (R/G/B:4/3/2). Additionally, high-light
objects, such as ground vehicles, surface vessels, etc., were classified as one type. In every study area,
one land-cover class with a low proportion was specified as the minority class, and the rest were
all majority classes (Table 1). Eight second-order texture metrics (mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation) [50,52] for each spectral band were
also used for training. All features were extracted in ENVI 5.1 with a 3 × 3 pixel template along the
horizontal direction.
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Figure 2. Study areas. Areas 1 to 7 are aerial images with 3 bands (R: 610-660 nm; G: 535–585 nm; and B:
430–490 nm), Area 8 comprises GeoEye-1 images with 4 bands (R: 675 nm; G: 545 nm; B: 480 nm and NIR:
850 nm). Each area is limited to 1000 × 1000 pixels. Therefore, the numbers of positive samples are limited
to within 1.1% of the whole population (0.3%, 0.5%, 0.6%, 0.5%, 0.6%, 0.6%, 0.7%, and 1.1%, respectively).

To quantify the complexity and diversity of the study areas, the Shannon diversity index (SHDI),
which considers both species richness and abundance, was used [61]. This index was calculated using
the entropy equation with the proportions of classes existing in each area. The SHDI of the 8 study
areas ranged from 0.83 to 2.22 (acquired by Fragstats 4.2 [62]), meaning that the diversity of the areas
ranged from relatively simple to complex.

Table 1. SHDI (Shannon diversity index) and species of the 8 study areas (boldface in the table indicates
the minority class in the corresponding experiment).

Area SHDI Species

1 0.83 Farmland with crops, Farmland without crops, Soil
2 0.94 House, Tree, Farmland with crops, Farmland without crops, Others
3 1.02 Tree, Farmland with crops, Farmland without crops, Soil, Water, Others
4 1.19 Tree, Farmland with crops, Farmland without crops, Soil, Grass
5 1.21 House, Tree, Farmland with crops, Farmland without crops, Soil, Others
6 1.43 House, Tree, Road, Soil, Grass, Others
7 1.67 House, Tree, Farmland with crops, Farmland without crops, Soil, Grass, Others

8 2.22 Water, Road, Tree, Buildings, Grass, Waterweeds, High-light Objects, Soil, Others
(Buildings include three types of building roofs with different colors in pseudo mode)
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3.2. Experimental Set-up and Accuracy Assessment

To evaluate the performance of ISS-XGB on different sample imbalances, 50 sample sets with
different class proportions were randomly selected from each study area. Each sample set consisted
of 1000 × n (where n represents the number of classes) samples, whose class proportion was a:b
(a represents the minority class, and b represents the majority class). To generate different imbalanced
sample sets, a was increased from 1 to 50, while b was altered in the reverse manner (from 99 to 50) [63],
forming distributions ranging from extremely skewed to completely balanced. Here, we assumed that
due to the large distribution of the majority classes, it was easy to form abundant positive sample
data for the classes. Simultaneously, to reduce the impact of non-single changes in the number of
samples on the study of imbalanced classification patterns, the majority classes in the experiments
used a sample set with the same amount. Reproducible trials were conducted with datasets of different
class imbalances to ensure statistically reliable accuracy. The final reported results for each accuracy
measure represents the average values of 100 trials. Additionally, test sets were randomly selected
from whole images before the selection of training samples.

The performance of ISS-XGB with different imbalanced samples was also compared with that of
approaches dealing with imbalanced learning issues in the remote sensing and machine learning fields,
such as MLP [64], RF [37], and XGB [58,65]. It was also compared with SVM [38], which used a binary
training mode (one-vs.-rest strategy). However, SVM and ISS-XGB are quite similar in the learning
framework. The most significant difference is that SVM used negative samples, but ISS-XGB used
unlabeled data. Moreover, typical semi-supervised learning methods in remote sensing, including
PUL [52] (PU-BP in this paper) and PUL-SVM [55] (PU-SVM in this paper), were also compared with
the proposed strategy to develop on insightful analysis of the optimizations in ISS-XGB. In addition,
SMOTE [16], which uses relative positive neighbors to synthesize extra samples for the minority class,
is a popular and direct approach to deal with imbalanced learning issues [25]. Thus, we also explored
the performance of ISS-XGB and SMOTE-based methods.

To obtain complete insight into the performance of this multi-class imbalanced learning scenario,
not only the overall performance but also the accuracy of the minority class was quantified. The overall
accuracy (OA), Cohan’s Kappa coefficient (κ), and user and producer accuracy are the most frequently
used measures in the remote sensing field [66]. However, Pontius (2011) indicated that κ only focused
on the agreement and evaluated accuracy using randomness as a baseline, which was useless for
explaining the error. Thus, quantity disagreement (QD) and allocation disagreement (AD) were
recommended to assess disagreement performance [67]. Moreover, the recommended disagreement
measures [67] could convert the observed sample matrix into an estimated unbiased population matrix
to assess the performance of the population (this aspect is ignored in many applications). Thus,
this paper used QD and AD to quantify the disagreement of the label prediction. The F1 score [25]
represented the harmonic mean of user and producer accuracy, which reached its best value at 1
and worst at 0. Therefore, we used this indicator to evaluate the agreement of the minority class.
To this end, we followed the recommendations and routine to calculate OA, QD, and AD (based on the
population matrix [67]) to determine that overall performance and F1 score, QD’, and AD’ (based on
the confusion matrix [67]) for the minority class. These measures were divided into two categories:
agreement performances (OA, F1 score) and disagreement performances (QD, AD).

3.3. Parameter Optimization

The parameters of all methods were optimized in an empirical parameter space. For ISS-XGB
and XGB, five main parameters were optimized, including the number of estimators (1~1000), learning
rates (0.1~1), maximum tree depths (2~23), minimum leaf instances (1~29), and subsample rates (0.1~1).
Similar to XGB, RF is composed of many simple decision trees as a strong model. To ensure the same
complexity available in RF- and XGB-based methods, the number of simple trees was set to equal to the
optimized number of estimators in XGB. The max_features parameter was set to the square root of the
number of predictor variables [37,68]. For MLP and PU-BP, we used the same net structure [50], which
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mainly optimized the penalty parameter. This paper utilized the RBF kernel-based SVM, which is
widely used in remote sensing classifications [38]. Cost parameters were mainly optimized on a
validation set from balanced samples for every study area with a search scale of 1 to 200. For the
multi-class classification scenario in this paper, the "one against the rest" mode was employed for SVM
training. In addition, a data set with balanced positive and unlabeled samples is recommended for
PU-SVM [55]. Therefore, the amount of unbalanced data in PU-SVM was set as equal to the positive
samples of the current class, whereas 5000 unlabeled data were used in PU-BP, which is consistent
with [50]. For SMOTE, the parameters of k (number of neighbors participating in synthesis) were set
to 5, and the synthesis magnification was 100 (that is, equalization synthesis). All approaches were
implemented using the scikit-learn package for Python 3.6 [69] (Windows 10, 3.40 GHz, and 8.0 Gb
memory with an of Intel Xeon E3 CPU).

4. Results

Identification of the minority class is a difficult task in imbalanced classification. The proposed
method (ISS-XGB) aimed to improve the accuracy of the minority class without losing the accuracy
of the majority classes and the overall performance. Thus, we analyzed the performance of ISS-XGB
to both the minority class and entirety class. In addition, we further investigated the effectiveness of
ISS-XGB under different data complexities.

4.1. Performance on the Minority Class

Area 8, which contained 11 land-cover species (Table 1) and possessed the highest complexity
and diversity (SHDI = 2.22), was chosen as an example. We analyzed the performance of ISS-XGB,
MLP, RF, XGB, and SVM on the minority class under two class proportions. The proportion rate (2:98)
represented an extremely imbalanced situation, while the proportion rate (50:50) was the balanced
situation. The probability maps of the minority class (i.e., tree) and the quantity measures are shown in
Figure 3 and Table 2.

Under extremely imbalanced situations, the probability maps were significantly different (first row
in Figure 3). The highest probabilities of MLP, SVM, and RF were only 0.012, 0.234, and 0.062,
which may have led to a failure in identifying minority classes. Indeed, these methods omitted all tree
pixels in Area 8 with a QD’ of 100% (Table 2). Both XGB and ISS-XGB provided higher probabilities
(approximately 0.67 in Figure 3). However, XGB omitted most tree pixels with a QD’ of 99.64% and
AD’ of 0% (Table 2). The F1 score of the minority class in XGB was only 0.01, while ISS-XGB was
much higher, reaching 0.77 (Table 2). ISS-XGB successfully identified the minority class when the data
distribution was extremely skewed.

Table 2. Quantity accuracy of approaches with sample sets of different imbalances by MLP (multilayer
perceptron), SVM (support vector machine), RF (random forest), XGB (eXtreme gradient boosting),
and ISS-XGB (impartial semi-supervised learning strategy based on extreme gradient boosting).

Models

Quantity Accuracy of Models with Sample Sets of Different Imbalances

Minority:Majority = 2:98 Minority:Majority = 50:50

F1 |Z| QD’ (%) AD’ (%) F1 |Z| QD’ (%) AD’ (%)

MLP 0 31.39 * 100 0 0.86 28.30 * 7.71 26.88
SVM 0 30.05 * 100 0 0.84 25.47 * 2.69 28.67
RF 0 21.04 * 100 0 0.82 12.76 * 0 30.82

XGB 0.01 12.12 * 99.64 0 0.83 1.59 3.23 25.45
ISS-XGB 0.77 - 5.02 37.99 0.85 - 2.69 26.52

* indicates that accuracies differ at a 95 percent level of confidence compared with the performance of ISS-XGB.
The QD’/AD’ of the minority class is based on the confusion matrix. QD’/AD’ are the quantity/allocation disagreement
number divided by the amount of the minority class in the reference data.
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Figure 3. Predicted probability maps of the minority class (tree) of Area 8 with different imbalanced
samples (minority:majority = 2:98; minority:majority = 50:50). Sub-figure (a–e) shows the predicted
probability map by different methods with a sample ratio at 2:98 ((a): MLP; (b): SVM; (c): RF; (d): XGB;
(e): ISS-XGB). Sub-figure (f–j) shows the predicted probability map by different methods with a sample
ratio at 50:50 ((f): MLP; (g): SVM; (h): RF; (i): XGB; (j): ISS-XGB).

Under a balanced situation, ISS-XGB can achieve the same performance as the commonly used
methods. The probability maps of the minority class are visually similar (second row in Figure 3).
The F1 scores of different methods are also very close and range from 0.82 to 0.86 (Table 2). However,
the highest probability that ISS-XGB provides under different situations (Figure 3e,j) is more stable
than other methods.

This phenomenon is related to the role of unlabeled data in training. In different scenarios,
unlabeled data has different importance to the description of class heterogeneity and the general
information. The unlabeled data has different suppression effects in probability decision function in
ISS-XGB. Therefore, in the situation with more balanced sample data, the probability estimates by
ISS-XGB for the minority class do not increase as much as those of other methods (details in Section 5.1).

4.2. Overall Performance

As the contribution of the minority class to overall performance is limited in complex imbalanced
datasets, a relatively simple area (i.e., area 6) was used as an example. This area, exhibiting an SHDI
value of 1.43, contained six land-cover species: house, tree, soil, road, grass, and others. The minority
class was the house. The visualization maps and accuracy results are shown in Figures 4 and 5 and
Table 3. A detailed confusion matrix of one trial can be found in Table 4.

Under an extremely imbalanced situation, the difference in classification results was obvious
(First row in Figure 4). ISS-XGB demonstrated better performance than the other approaches, providing
an average OA of 85.92% (Figure 5a and Table 3). The mean F1 score of the minority class by ISS-XGB
was 0.83, which was much higher than RF (0.04), XGB (0.09), MLP, and SVM (almost 0). The house
pixels in parts A and B were successfully identified using ISS-XGB (Figure 4e), while the other four
methods misclassified them as soil or roads (Figure 4a–d).

Compared with the imbalanced situation, the performance with the balanced samples improved
(Figure 4). Notably, the F1 scores of MLP, SVM, RF, and XGB increased by over 0.8 (Figure 5). The growth
of the average OA and the F1 scores of ISS-XGB was low with less than 1.8% and 0.06, respectively
(Figure 5). ISS-XGB offered comparable performance in both imbalanced and balanced cases.
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Figure 4. Classification maps of MLP, SVM, RF, XGB, and ISS-XGB with different imbalanced samples
(minority:majority = 2:98 or 50:50). Sub-figure (a–e) shows the classification maps by different methods
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Figure 5. Box plots of OA and F1 scores for Area 6 with 100 trials using different imbalanced samples.
Left Column: performance with samples at minority:majority = 2:98; Right Column: performance with
samples at minority:majority = 50:50. Sub-figure (a,b) are the box plots on OA by five methods with
different sample imbalance ((a). 2:98; (b). 50:50). Sub-figure (c,d) are the box plots on F1 scores by five
methods with different sample imbalance ((c). 2:98; (d). 50:50).
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Table 3. Average accuracies and standard deviations of Area 6 for 100 trials of 5 approaches.

Models

Average Accuracies and Standard Deviations with Sample Sets of Different Imbalances

Minority:Majority = 2:98 Minority:Majority = 50:50

OA (Avg./STD) F1 (Avg./STD) OA (Avg./STD) F1 (Avg./STD)

MLP 74.65% /0.0077 0 0 84.87% /0.0093 0.8343 /0.0198
SVM 74.30% /0.0075 0 0 84.96% /0.0093 0.8491 /0.0180
RF 75.62% /0.0083 0.0424 /0.0588 85.69% /0.0093 0.8361 /0.0240

XGB 76.81% /0.0099 0.0895 /0.0864 87.85% /0.0075 0.8944 /0.0098
ISS-XGB 85.92% /0.0080 0.8333 /0.0179 87.69% /0.0077 0.8899 /0.0100

Table 4. Confusion matrix of Area 6 for one trial of 5 approaches.

Reference

Confusion Matrix of Classification with Sample Sets of Different Imbalances (Prediction)

Minority:Majority = 2:98 Minority:Majority = 50:50

House Tree Road Soil Grass Others House Tree Road Soil Grass Others

MLP (|Z| =
21.52 *)

House 0 10 451 283 20 28 560 11 147 50 14 10
Tree 0 798 4 6 80 61 1 807 4 6 73 58
Road 0 3 907 33 3 2 28 3 887 28 2 0
Soil 0 4 9 864 72 7 18 5 14 840 73 6

Grass 0 76 16 58 497 14 18 78 15 45 496 9
Others 0 70 6 9 9 951 13 79 2 7 8 936

OA = 75.07% QD = NaN AD = NaN OA = 84.58% QD = 8.05% AD = 6.52%

SVM (|Z| =
21.77 *)

House 0 6 551 176 27 32 616 6 91 48 20 11
Tree 0 791 4 5 89 60 1 792 4 5 89 58
Road 0 3 910 30 3 2 39 3 880 23 3 0
Soil 0 5 18 844 85 4 24 6 18 823 82 3

Grass 0 83 20 46 503 9 20 86 7 39 502 7
Others 0 75 4 8 9 949 12 82 3 7 6 935

OA = 74.70% QD = NaN AD = NaN OA = 84.99% QD = 7.60% AD = 6.80%

RF (|Z| =
20.98 *)

House 2 6 226 366 164 28 570 6 143 46 17 10
Tree 0 802 3 6 72 66 1 806 4 6 72 60
Road 0 3 908 34 2 1 31 2 883 28 4 0
Soil 0 3 14 861 73 5 22 4 7 845 74 4

Grass 0 74 7 55 520 5 20 75 6 45 511 4
Others 0 67 3 11 8 956 13 62 2 7 7 954

OA = 75.67% QD = 18.44% AD = 4.64% OA = 85.39% QD = 7.35% AD = 6.59%

XGB (|Z| =
18.56 *)

House 32 8 259 250 207 36 697 6 23 47 8 11
Tree 0 813 4 5 62 65 1 812 4 7 61 64
Road 0 4 917 21 6 0 48 3 876 19 2 0
Soil 1 5 11 857 78 4 19 5 10 841 77 4

Grass 0 73 7 51 524 6 18 73 5 50 511 4
Others 0 49 3 8 12 973 11 50 3 7 8 966

OA = 76.92% QD = 14.30% AD = 5.75% OA = 87.89% QD = 7.11% AD = 5.94%

ISS-XGB
(|Z| = 6.80 *)

House 697 8 24 35 16 12 700 6 20 49 7 10
Tree 1 820 4 6 63 55 1 821 4 6 61 56
Road 83 3 846 13 2 1 69 3 855 19 2 0
Soil 140 5 7 734 66 4 17 5 9 849 72 4

Grass 19 72 4 52 509 5 19 70 4 47 516 5
Others 12 55 2 8 5 963 12 52 2 8 7 964

OA = 85.38% QD = 7.26% AD = 8.15% OA = 87.93% QD = 7.16% AD = 5.99%

* indicates that the accuracy of one approach differs at a 95 percent level of confidence with different imbalanced
samples. QD and AD in Table 4 are the overall quantity disagreement incorporating all 6 classes using the population
matrix [67]. Because SVM and MLP fail at predicting the house class with imbalanced samples (2:98), the conversion
of the observed sample matrix into an estimated unbiased population matrix is invalid. Thus, the overall QD and
AD are invalid.

To analyze the statistical reliability of 100 trails, Table 3 shows the average and standard deviations
(STD) of OA and F1 scores for the minority class under two different imbalance scenarios. Under an
extremely imbalanced situation (minority:majority = 2:98), both in terms of OA and minority F1 scores,
the ISS-XGB method showed more excellent accuracy and stability. Especially, the STD of the minority
F1 scores via ISS-XGB was only 30% of that by RF, and 21% of the STD by XGB. It implied that ISS-XGB
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had better stability in this case than other methods. However, in imbalanced situations, ISS-XGB did
not have obvious advantages in extremely imbalanced situations (Table 3).

The QD and AD of ISS-XGB with imbalanced samples were similar to those with balanced samples
(Table 4). The slight increase with balanced samples was mainly due to a decrease of commission
errors in the minority class (e.g., Parts C and D in Figure 4e,g). Balanced samples provided more
helpful information for the minority class identification.

In general, ISS-XGB achieved a stable performance. Especially under extremely imbalanced
situations, ISS-XGB provided high accuracy for the minority class without losing overall performance.

4.3. The Performance under Different Levels of Data Complexity

To analyze the performance of ISS-XGB under different levels of data complexity, experiments
were conducted in 8 areas across 50 different sample distributions (i.e., the class proportions were 1:99,
2:98, 3:97, . . . , 50:50). The curves of the OA and F1 scores are shown in Figures 6 and 7.
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Figure 6. OA curves of all 8 areas for different imbalanced samples with ISS-XGB (red), XGB (yellow),
RF (green), MLP (brown), and SVM (purple). Sub-figure (a–h) shows the OA curves by different areas
((a): Area 1; (b): Area 2; (c): Area 3; (d): Area 4; (e): Area 5; (f): Area 6; (g): Area 7; (h): Area 8).
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Figures 6 and 7 showed that when the samples were extremely imbalanced (i.e., the class proportion
ranges from 2:98 to 10:90), the accuracy of ISS-XGB was higher than the other methods. For example,
in area 2, the OA of ISS-XGB (Figure 6b) converged to 87.63% when the class proportion was 10:90,
while other methods were close to or far below this value. MLP and SVM converged to approximately
82% when the sample distribution was balanced (50:50). RF generated better performance (87.31% at
the class proportion of 50:50) than MLP and SVM but much worse performance than that of XGB and
ISS-XGB. Although the maximum OA of XGB was slightly higher (90.19%), the requirements for the
samples also increased. In either case, the OA of ISS-XGB always converged within a short interval
(i.e., before the class proportion increases to 10:90). Moreover, this advantage of ISS-XGB was more
obvious in terms of the F1 scores for the minority class (Figure 7); i.e., the performance more quickly
converged under other approaches and ultimately achieved a comparable performance.

The proposed method performed well on extremely imbalanced remote sensing datasets regardless
of the data complexity.

5. Discussion

To explore the characteristics and advantages of the proposed ISS-XGB, this section discusses the
influence of unlabeled data (section A), the utility of the semi-supervised learning strategy (section B),
and develops comparisons with methods at the data level in imbalanced learning.

5.1. The Influence of Unlabeled Data on ISS-XGB

Unlabeled samples can provide supplementary information about the non-target class,
the influence of which is not the same under different imbalanced situations.

When the samples were extremely imbalanced, ISS-XGB had a significant advantage in identifying
the minority class. The methods that adopted AIO strategies (RF, XGB, and MLP) were always partial
to the majority class, generating biased results. ISS-XGB broke up multi-class problems into several
binary-class classification tasks, ensuring that the minority class received sufficient consideration. Thus,
the accuracy of ISS-XGB converged quickly to a higher value. Although this strategy was quite similar
to that for SVM, the unlabeled samples used in ISS-XGB offered extra distribution information while
the negative samples in SVM did not. In particular, when the samples suffered from extreme rarity,
SVM failed to fit in the hyperplane and made almost entirely incorrect predictions (Figures 3 and 4b,
Tables 2 and 3). Additionally, the unlabeled data in the training process of ISS-XGB provided the
general information of the data to remedy the incomplete description of the target class by rare positive
samples. Thus, ISS-XGB provided higher probability prediction for the minority class than the other
methods (Figure 3a–e).

When the data were relatively balanced, the advantages of ISS-XGB were not significant. For further
explanation, the 2D spectral spaces of each class in Area 6 were drawn (Figure 8). As the data tended
to be balanced, the descriptive ability of the target samples improved (Figure 8b–g). The unlabeled
samples were likely less intense or had a negative influence because the unlabeled data represented a
mixed class. The features of the data inevitably reflected the target class (Figure 8h), which blurred
the distinctions between the unlabeled data and the target samples. Thus, when the positive samples
were sufficient, the unlabeled samples interfered with PU heterogeneity and suppressed the class
description. Under this situation, the distinction of the positive–positive scheme was better, resulting
in a more accurate performance (e.g., XGB and RF in Figures 6 and 7) and higher possibility prediction
(Figure 3f–j).
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5.2. Comparison with PU-BP and PU-SVM

ISS-XGB, PU-BP, and PU-SVM are all semi-supervised methods based on the PU learning
framework. The main differences between ISS-XGB and the other two are the strategy patterns for
unlabeled data and the positive–unlabeled simulator. For the contrastive analysis, the same training
samples from Areas 6 and 8 were employed. Details of PU-BP and PU-SVM can be found in [50,55].

Figure 9 shows the OA and F1 scores for the minority classes of the three methods under different
imbalanced situations (i.e., the ratio of the minority and majority from 1:99 to 50:50). ISS-XGB
(the red line) had higher and more stable accuracy than PU-BP and PU-SVM. Notably, when the ratio
of the minority and the majority was under an extremely imbalanced situation (i.e., from 1:99 to 10:90),
the F1 score of ISS-XGB for the minority class was an average of 0.14 and 0.10 greater than that of
PU-BP and PU-SVM.

Unlabeled data were used in all three methods, but different usages resulted in significant
differences in accuracy. In PU-BP, 5000 unlabeled data were employed, which was more than 5 times
the number of positive samples for the minority. In this case, imbalanced learning still existed, while the
simulator of PU-BP (i.e., BP) was sensitive to the skewed sample distribution. Thus, the curves of
PU-BP (the blue line) strongly fluctuated in their OA and F1 scores. In PU-SVM, although the same
amount of unlabeled data and positive samples was used, this amount was not sufficient to provide
enough information to construct the hyperplane. Therefore, the accuracy under PU-SVM was much
lower than that under ISS-XGB (nearly 20% for OA, and approximately 15% for the F1 score of the
minority class). In ISS-XGB, impartial and multiple positive–unlabeled datasets were constructed.
Optimization of the strategy pattern and simulator of ISS-XGB helped the characteristics of the minority
be learned fairly and comprehensively.
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5.3. Comparison with SMOTE Sampling-Based Methods

SMOTE is a popular method in imbalanced learning [25]. This method uses k minority class
nearest neighbors to generate synthetic samples by operating in feature space [16], which can be
implemented directly at the data level without any modifications to the algorithms.

A comparison was conducted between ISS-XGB and SMOTE-based XGB (SXGB), RF (SRF),
MLP (SMLP), and SVM (SSVM). Five neighbors and 100% of the class proportion were set to create
new balanced sample sets via SMOTE. Then, the classifiers were trained with generated balanced sets.

Areas 6 and 8 were chosen as examples for discussion (Figure 10). In general, ISS-XGB (the red line)
provided comparable (even higher) performance to the SMOTE-based methods. As shown in Figure 10c,
the highest OA of ISS-XGB (91.25%) is similar to that of SXGB (the yellow line, 91.07%) and 5.23%
and 12.06% higher than that of SRF (the green line) and SSVM (the blue line), respectively. Moreover,
the OA and F1 scores of ISS-XGB were relatively more stable than those of the SMOTE-based methods.
For instance, in Area 6, the OA of SMLP (the brown line) fluctuated between 0.76 and 0.87 dramatically,
while that of ISS-XGB quickly converged to approximately 0.88 (Figure 10a). Under an extremely
imbalanced situation (i.e., class proportions ranging from 1:99 to 10:90), the advantages of ISS-XGB
were more obvious. The difference of the F1 score between ISS-XGB and SXGB and SSVM was at least
0.10 (Figure 10d).
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Figure 10. OA and F1 score curves for the minority classes in Areas 6 and 8 across different imbalanced
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(a,b) are the accuracy curves for Area 6 ((a): OA; (b): F1 score). Sub-figure (c,d) are the accuracy curves
for Area 8 ((c): OA; (d): F1 score).

SMOTE synthesized extra samples for the minority class but was not adopted in ISS-XGB because,
in remote sensing datasets, each sample corresponds to a certain object, while SMOTE-synthesized
samples may not be related to any objects. The synthesized samples may produce uncertainty in the
feature space, which could greatly impact some classifiers (e.g., SMLP). Thus, in ISS-XGB, cost-free
unlabeled data were introduced to provide extra information on the overall distribution, rather than
the synthesized positive data for the minority class. In addition, since the positive samples of the
minority class are extremely rare in many scenarios, multiple unlabeled data sets (10 in this paper)
were used for impartial semi-supervised training.

6. Conclusions

This study proposed an impartial semi-supervised learning strategy (i.e., ISS-XGB) for land-cover
classification with imbalanced remote sensing data. The results generated from the eight study
areas demonstrated that ISS-XGB can effectively identify minority classes, especially under extremely
imbalanced situations. This method provided high accuracy for the minority class without degrading
overall performance and was robust to data complexity. The cost-free unlabeled data utilized in
ISS-XGB could provide extra information about the non-target class. Moreover, compared with other
semi-supervised methods based on the PU learning framework, optimizing in the strategy patterns
and simulations of ISS-XGB can help the characteristics of the minority be learned more fairly and
comprehensively. This work provides a new strategy for solving imbalanced classification problems in
remote sensing. In the future, combinations of multiple strategies with ISS-XGB and computational
efficiency will be further investigated.
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