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Abstract: Deep learning models are widely employed in hyperspectral image processing to integrate
both spatial features and spectral features, but the correlations between them are rarely taken into
consideration. However, in hyperspectral mineral identification, not only the spectral and spatial
features of minerals need to be considered, but also the correlations between them are crucial to
further promote identification accuracy. In this paper, we propose hierarchical spatial-spectral feature
extraction with long short term memory (HSS-LSTM) to explore correlations between spatial features
and spectral features and obtain hierarchical intrinsic features for mineral identification. In the
proposed model, the fusion spatial-spectral feature is primarily extracted by stacking local spatial
features obtained by a convolution neural network (CNN)-based model and spectral information
together. To better exploit spatial features and spectral features, an LSTM-based model is proposed to
capture correlations and obtain hierarchical features for accurate mineral identification. Specifically,
the proposed model shares a uniform objective function, so that all the parameters in the network
can be optimized in the meantime. Experimental results on the hyperspectral data collected by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in the Nevada mining area show
that HSS-LSTM achieves an overall accuracy of 94.70% and outperforms other commonly used
identification methods.

Keywords: feature extraction; mineral identification; hyperspectral imagery; convolutional neural
network (CNN); long short term memory (LSTM)

1. Introduction

Minerals tend to form unique spectra due to their distinct constituents [1], and the corresponding
regional characteristics are formed during the process of mineralization [2]. With the development of
hyperspectral remote sensing, the spectral resolution and spatial resolution have become higher and
higher, so lots of novel mineral identification methods have been proposed [3,4]. Traditional mineral
identification methods are mainly aimed at the spectra of minerals, including methods based on spectral
similarity and methods based on spectral characteristics [5–7]. The mineral identification methods based
on spectral similarity establish standards to measure the similarity between the identified spectrum
and a reference spectrum. Spectral libraries are established to store spectra of various minerals under
different conditions for reference, such as the Jet Propulsion Laboratory (JPL) spectral library and
United States Geological Survey (USGS) spectral library [8,9]. The spectral angle mapper (SAM) takes
the angle between the target spectral vector and the reference spectral vector in the multidimensional
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space as the criteria to evaluate the similarity [10,11], compared with the spectral correlation mapper
(SCM) with the Pearsonian correlation coefficient [12,13] and the spectral information divergence (SID)
with the relative information entropy [14,15]. Resemblances between some minerals and differences in
the same mineral induce misidentification, and selections of reference spectra of different minerals
under various conditions bring challenges to the identification methods based on spectral similarity.
Minerals generally present diagnostic absorption bands due to the differences in their respective
ions and groups [16]. It is possible to identify minerals by extracting spectral characteristics of the
diagnostic absorption bands. In order to better extract the characteristics, continuum removal (CR) is
usually performed on the spectrum to enhance and normalize absorption features [17,18]. There exist
several common absorption characteristics including absorption depth, absorption width, absorption
area, absorption position and absorption symmetry [19]. In addition, the spectral absorption index
(SAI) is an absorption characteristic based on spectral diagnostic absorptions to determine the mineral
composition and corresponding contents [20]. However, a single absorption characteristic cannot
describe adequate features of a diagnostic absorption band, so multiple absorption characteristics
are combined to explain the absorption features of minerals accurately and further improve mineral
identification accuracy [21]. The relative absorption band-depth (RBD) method produces an RBD image
formed of the sum of several channels near absorption shoulders divided by the sum of several channels
located near the corresponding absorption valley [22]. Due to various conditions of hyperspectral
imaging, spectral absorption features of minerals are easily affected. On the other hand, features of a
single absorption band cannot describe the complete features of minerals.

In recent years, deep learning has made great achievements in imagery analysis, especially
in feature extraction [23–25]. It usually captures abstract features through a multi-layer network,
especially the convolutional neural network (CNN), which is able to extract local spatial features
of images through convolutional filters [26,27]. A small number of training samples in the specific
dataset are selected to fine tune the parameters, which produces deep learning models more resistant
to interference from external factors [28]. More and more researchers in remote sensing are applying
deep learning to classification of hyperspectral imagery, making full use of both spatial and spectral
features and improving the classification accuracy [29–31]. Mei et al. presented a novel five-layer CNN
that integrated the spectrum of a pixel and the contextual features of the pixel’s surrounding area as
input such as the mean and standard deviation of each band to fulfil classification of hyperspectral
imagery [32]. However, too few spatial statistic features were utilized to obtain enough complete
features. In [33], a spectral-spatial feature based classification (SSFC) that stacked the spectral features
extracted with a balanced local discriminant embedding algorithm and the spatial features extracted
with a CNN model was proposed for hyperspectral image classification. However, spatial features
and spectral features were extracted and trained separately so that there was not a uniform objective
function to optimize them. Zhang et al. proposed a recurrent neural network (RNN)-based model to
obtain high-level spatial features from combing low-level features, including texture and differential
morphological profiles [34]. However, spectral features were not taken into consideration to obtain
spatial-spectral features. Hu et al. proposed a convolutional long short term memory (ConvLSTM)
method to extract more discriminative spatial-spectral features, which replaced the full connection
layer between the input layer and the hidden layer in long short term memory (LSTM) with the
convolution layer [35]. However, the method mainly extracted the correlations in the spatial domain,
and less attention was paid to the spectrum of the identified pixel, which could not obtain correlations
between the spatial features and the spectral features. Xu et al. proposed a spectral-spatial unified
network (SSUN) that extracted spectral features with a LSTM-based model and spatial features with a
multiscale CNN (MSCNN) [36]. Then, the spectral features and the spatial features were concatenated
to extract the spectral-spatial feature through fully connections. However, correlations between spatial
features and spectral features were not further explored to obtain hierarchical features. Moreover, Li et
al. proposed a multi-scale CNN to extract multi-scale spectral-spatial features, follow by a LSTM-based
model to capture correlations for hierarchical feature extraction [37]. However, the method strengthened
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the correlations between features maps in different scales, and the pixels in the neighborhood were
equally important as input, which greatly reduced the attention to the identified pixel.

To overcome the aforementioned drawbacks, the hierarchical spatial-spectral feature extraction
with LSTM (HSS-LSTM) method is proposed to extract hierarchical spatial-spectral features in
this paper, which considers correlations between primary spatial features and spectral features.
The main contributions of this paper can be summarized as follows: (1) To obtain local spatial
features, a CNN-based model is constructed to extract local spatial features of a pixel from the first
several principle components of the pixel’s neighborhood region. (2) To construct the primary fusion
spatial-spectral feature, the local spatial features of the pixel and its spectrum are stacked together.
(3) To reveal the correlations between the components of the fusion feature and obtain intrinsic features,
an LSTM-based model is established to refine deep hierarchical spatial-spectral features.

The remainder of this paper is organized as follows. In Section 2, the structure of HSS-LSTM
is introduced in detail. Experimental results and corresponding analyses are presented in Section 3.
Section 4 provides the conclusions.

2. Proposed HSS-LSTM Framework

The architecture of HSS-LSTM for mineral identification using hyperspectral imagery is shown
in Figure 1. Overall, there are three main steps in the proposed model. First, local spatial features
are extracted with a CNN-based model which consists of several convolution layers, max pooling
layers and a fully connected layer. Then, a fusion spatial-spectral feature is presented which stacks
the spectrum of a pixel with its local spatial features. Finally, an LSTM-based model is established
to further extract the deep hierarchical spatial-spectral feature from the fusion feature, followed by a
softmax layer to fulfil mineral identification.
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Figure 1. Architecture of HSS-LSTM for mineral identification using hyperspectral data.

2.1. Spatial Features with CNN-Based Model

CNN is a special neural network which connects the local receptive field with convolution filters,
so that it is able to extract local spatial features from images. Generally, a typical CNN model is usually
composed of several pairs of convolutional layers and max pooling layers followed by a few fully
connected layers [38]. Since the pixels which are closer to the identified pixel have greater influences
on its local spatial features, a 10 × 10 neighborhood region of the identified pixel is taken as the input
data of the proposed CNN-based model. To obtain spatial features, the proposed CNN-based model
consists of two convolution layers with the kernel size of 3 × 3, two max pooling layers with the kernel
size of 2 × 2 and a fully connected layer, as shown in Figure 2.
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Figure 2. Framework of the proposed CNN-based model for spatial feature extraction. The illustration
below each data shows the dimension of the data. For example, a@m × n indicates that the data has
channels, and the height and width of the data are m and n, respectively.

Considering that hyperspectral imagery has hundreds of bands, it leads to redundant information
and intensive calculations [39]. Principal components analysis (PCA) is introduced to reduce the
dimensionality of the raw hyperspectral data in the spectral domain, while maintaining the spatial
information of the data in the meantime [40]. The first k principle components, whose eigenvalues
account for more than 99% of all the principle components, are fed into the proposed CNN-based
model as input [41].

As shown in Figure 2, the proposed CNN-based model has five layers, and the output of the lth
layer is denoted as Hl, where l ∈ {1, 2, 3, 4, 5}. In addition, H0 is denoted as the input data. On the
condition that the lth layer is a convolution layer, a 2-D convolution operation is conducted on Hl to
capture features and form a set of feature maps, named as Hl. The process can be formulated as:

Hl = σ(Hl−1
∗WCl + bCl) (1)

where σ(·) denotes the activation function, and ∗ denotes the convolution operation. In addition,
WCl and bCl represent the weight matrix and the bias vector that connect lth layer and its previous
layer, respectively.

When the lth layer is a max pooling layer, the data is compressed by replacing the neighborhood
region of 2 × 2 with the maximum value of the region. Thus, the nonlinearity of the model is improved.
The process is formulated as:

Hl = pool(Hl−1) (2)

where pool(·) denotes the max-pooling operation.
At the end of the proposed CNN, a fully connected layer is presented to extract the spatial features

denoted as Fsaptial. Mathematically, the step can be written as:

Fspatial = H5 = σ(WFH4 + bF) (3)

where WF and bF represent the weight matrix and the bias vector that connect the fifth layer and the
fourth layer.

In order to accelerate the convergence of the proposed model, the sigmoid function is selected as
the activation function.

In the proposed CNN-based model, the spatial feature vector of a pixel denoted as Fspatial ={
p1, p2, . . . , p f

}
, which has f elements with values between 0 and 1, is extracted from the first several

components of its 10 × 10 neighborhood region.

2.2. Fusion Spatial-Spectral Feature

Since various minerals present certain characteristics in spectral domain and spatial domain in
hyperspectral imagery, it is crucial to capture both spectral features and spatial features when identifying
minerals accurately. The spectrum of a pixel contains complete information in spectral domain, which
can provide sufficient spectral features for mineral identification. Let Fspectral = {a1, a2, . . . , ab} denote
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the spectrum of a pixel with b bands, and the fusion spatial-spectral feature F of the pixel is constructed
by stacking its spatial feature vector Fsaptial with the spectral vector Fspectral, which can be written as:

F = [Fspatial, Fspectral]= {p1, p2, . . . , p f , a1, a2, . . . , ab
}

(4)

Due to the fact that the fusion spatial-spectral feature F concatenates the spatial features and the
spectral features primitively without considering correlations between them, it is necessary to extract
deep hierarchical features to achieve high-efficiency mineral identification.

2.3. Hierarchical Spatial-Spectral Feature with LSTM-Based Model

Although the fusion feature incorporates the spectral features and the spatial features, there is
still a lack of exploration on their correlations to obtain hierarchical features for accurate mineral
identification. Unlike other neural networks, RNN is able to process sequential inputs, and the output
of the latter subsequence is related to the previous ones due to the connections between their hidden
units [42]. In this manner, RNN is generally applied to the situations that data is interrelated, especially
sequential data.

As shown in Figure 3, for a simple RNN model, the input whose length is T can be denoted as
X = {x1, x2, . . . , xT}, and each item xt, where t ∈ {1, 2, . . . , T}, is a subsequence. At time step t, given the
previous hidden layer state ht-1, the hidden layer state ht and the output layer state yt of the current
subsequence xt can be calculated as:

ht = σR(Whxt + Uhht−1 + bh) (5)

yt = σR(Woht + bo) (6)

where Wh and Uh represent the input-to-hidden and the hidden-to-hidden weight matrices respectively,
and Wo denotes the hidden-to-output weight matrix. In addition, bh and bo denote the input-to-hidden
and the hidden-to-output bias vectors separately, and σR denotes the activation function, which is
generally the tanh function.
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In order to tackle vanishing gradient and exploding gradient problems in a simple RNN, a variant
of RNN is proposed, namely long short-term memory (LSTM) [43,44]. In LSTM, the sigmoid function
σL is used as the activation function of three gates, which determine the information transmitted in the
network and preserve the errors that can be back-propagated through sequences, as shown in Figure 4.
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Figure 4. A basic LSTM block. ft, it and ot are outputs of the forget gate, the input gate and the output
gate respectively at time step t. Ct−1 and Ct correspond to the cell state of the time t and time t-1. C̃t

represents the fresh information brought in at time step t.

Compared with a simple RNN, LSTM introduces cell state dominated by three gates with the
sigmoid function as the activation function to generate outputs between 0 and 1, which is used to
determine how much information retained from the previous steps. The states of the three gates are
calculated as:

ft = σL(W f ·[ht−1, xt] + b f ) (7)

it = σL(Wi·[ht−1, xt] + bi) (8)

ot = σL(Wo·[ht−1, xt] + bo) (9)

where Wf, Wi and Wo denote the weight matrices between the input xt and the forget gate, the input
gate and the output gate, respectively. Moreover, bf, bi and bo correspond to the bias vectors of the
three gates.

The cell state Ct is updated by adding in new information C̃t and discarding part of the information
memorized in cell state Ct−1 as follows:

C̃t = σR(WC·[ht−1, xt] + bC) (10)

Ct = it � C̃t + ft �Ct−1 (11)

where WC and bC correspond to the weight matrix and the bias vector between the input layer and the
hidden layer. � denotes an elementwise multiplication.

The hidden state ht at time step t is determined by ot and Ct written as:

ht = ot � σR(Ct) (12)

It is obvious that the hidden state ht incorporates the effective information of the previous t
time steps in LSTM. In view of the specialty, an LSTM-based model is constructed to extract the
deep hierarchical feature from the fusion spatial-spectral feature, as shown in Figure 5. Considering
that the proposed LSTM-based model takes sequential data as input, the fusion feature F needs to
be preprocessed. F contains a total of f + b items and is equally divided into T dices, so each dice
constructs a subsequence of length l = ( f + b)/T. In order to facilitate subsequent calculations, l needs
to be an integer, and F is denoted as:

F= {s1, s2, . . . , sT} (13)

where si, i ∈ {1, 2, . . . , T} is a vector of l elements.
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Since the fusion spatial-spectral feature F is decomposed into T subsequences, each subsequence
contains partial features and correlates with others. Under the control of the input gate and the forget
gate, the cell state Ct of the LSTM-based model is able to select the last cell state Ct−1 and the current
subsequence st to remain the effective features of the first t subsequences and abandon the redundant
features. The output gate refines Ct to acquire the hidden unit ht, which not only integrates the effective
features contained in these t subsequences, but also removes the excrescent parts.

As above, with the continuous extension of the proposed LSTM-based model, a growing number
of features are stored in the cell state. As for the last subsequence sT, its hidden state hT captures all of
the effective features in the fusion spatial-spectral feature F. In this way, hT thinks about correlations
between the components of the fusion feature F and refines valid features, so it is regarded as the deep
hierarchical spatial-spectral feature. In order to fulfil mineral identification, a fully connected layer is
added at the end of the proposed LSTM-based model to generate an output with length n, followed by
a softmax layer to form an intuitive probability distribution of the n classes of identified minerals.

Unlike other models that extract spectral features and spatial features separately resulting in
their losses composed of multiple parts, HSS-LSTM refines the stacked spatial-spectral feature to
achieve the hierarchical spatial-spectral feature, so that the loss of the model is exclusive. Considering
that the LSTM-based model is able to backpropagate the loss primely, the front CNN-based model
of HSS-LSTM can also be well trained to extract effective spatial features. To train the parameters
in HSS-LSTM, the cross entropy loss is selected as the loss function, and it is minimized by using
the adaptive moment estimation (Adam) with back-propagation [45]. After training and fine-tuning
HSS-LSTM, the deep hierarchical feature incorporates enough spatial-spectral features which can be
used for accurate mineral identification, and the class label for each pixel can be eventually acquired.

3. Experimental Results and Analysis

In this section, a well-known hyperspectral dataset which is gathered by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor is employed to evaluate HSS-LSTM, namely
the Cuprite mine in Nevada, USA. The study area is located on the eastern edge of Esmeralda and
Nye County, Nevada (37◦29′ to 37◦35′ North, 117◦9′ to 117◦17′ West) [46]. The Nevada mining dataset
is covered by various minerals including silicate minerals such as kaolinite and muscovite, sulfate
minerals such as alunite, and carbonate minerals such as calcite [47]. The ground truth map of the
dataset was produced by the Tricorder 3.3 software [9]. Several experiments are conducted to verify the
parameter settings of the HSS-LSTM method and compare with other mineral identification methods.

3.1. Experimental Data

The Nevada mining dataset consists of 400 × 350 pixels and 50 bands with the wavelength range
from 1990 nm to 2480 nm, considering that the spectral features of minerals are mainly concentrated
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in the short-wave infrared [48]. The false color image and the ground truth map for the dataset are
presented in Figure 6.
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As shown in Figure 6b, similar minerals that belong to diverse classes thanks to the differences
in metal ingredients tend to be merged into the same class. To obtain sufficient training samples
and testing samples, and to avoid mixed pixels due to the restriction of the spatial resolution and
mineralization, seven classes of widely distributed minerals are selected to be identified, including
muscovite, halloysite, calcite, kaolinite, montmorillonite, alunite and chalcedony. Training samples
and testing samples are randomly chosen according to the ground truth map, as shown in Table 1.

Table 1. Number of training samples and testing samples in the Nevada dataset.

Class Name Training Samples Testing Samples

Muscovite 100 400
Halloysite 100 240

Calcite 100 240
Kaolinite 100 400

Montmorillonite 100 400
Alunite 100 400

Chalcedony 100 240
Total 700 2320

3.2. Analysis of Parameter Settings

HSS-LSTM is mainly constructed with an LSTM-based model, and there are considerable
parameters to be configured that are closely related to the efficiency of the method. The PCA
data and the original hyperspectral data are preprocessed to restrict their values between 0 and 1,
so that HSS-LSTM is able to converge rapidly. As for the CNN-based model, the first three principle
components which contain more than 99% information of the hyperspectral imagery are fed in as
input. Considering that the sizes of feature maps decrease with the progress of convolution and max
pooling, so more feature maps are demanded to maintain information of the data, the sizes of feature
maps in different layers are set as f = c2 = 2c1. With a view to the number of spectral bands, c1 is set
to 10, 15 and 20 separately, and f and c2 are set to 20, 30 and 40 correspondingly. In the LSTM-based
model, it takes a sequence of length f + b as input, where b is 50, and each subsequence possesses
l elements. l is set to 5 and 10 respectively. The number of the hidden units denoted as h is also a
significant parameter in the proposed LSTM-based model, which is set to 40, 50 and 60 respectively.
To achieve HSS-LSTM for mineral identification, diverse parameter combinations are trained with the
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learning rate set to 0.0005 and the training epochs set to 1000, and the corresponding overall accuracy
(OA) are shown in Table 2.

Table 2. Identification results with different parameter combinations.

Parameter Combinations ID f l h OA (%)

1 20 5 40 91.12
2 20 5 50 91.25
3 20 5 60 91.59
4 20 10 40 91.59
5 20 10 50 91.90
6 20 10 60 92.16
7 30 5 40 91.55
8 30 5 50 92.36
9 30 5 60 92.76
10 30 10 40 92.58
11 30 10 50 92.97
12 30 10 60 93.36
13 40 5 40 93.62
14 40 5 50 94.05
15 40 5 60 94.09
16 40 10 40 93.36
17 40 10 50 94.70
18 40 10 60 94.52

In Table 2, the overall accuracy is the maximum identification accuracy that can be achieved when
HSS-LSTM with the specific parameter combination tends to be stable. It is obvious that the overall
accuracy of HSS-LSTM varies with different parameter combinations, and it presents a growth as
values of the parameters augment. The reason for this phenomenon is that more features are extracted
and maintained when f, l and h are larger. The overall accuracy reaches the peak value when f, l and h
are 40, 10 and 50, respectively, and the specific parameter combination is empirically chosen in the
following discussion.

3.3. Identification Results of the Nevada Dataset

For evaluating the performance of HSS-LSTM, the identification results of the proposed method
are compared with traditional identification methods and other deep learning methods. Specifically,
the SAM method is a typical traditional method that utilizes the angle between the spectrum of the
identified pixel and the reference spectrum of minerals in the multidimensional space [10]. The average
spectrums of training samples of various minerals are taken as reference, as shown in Figure 7. Then the
angles between the identified pixel and the reference spectrums are calculated, and the pixel will
be classified into the class with the minimum value. In addition, an LSTM-based model with the
mere spectrum divided into subsequences with a length of 10 as input is constructed for comparison
to explore how spatial features affect the identification accuracy [43]. Besides, a 3D-CNN model is
proposed to verify the necessity of deep hierarchical spatial-spectral feature extraction for mineral
identification. The 3D-CNN utilizes 3-D filters to convolve the raw hyperspectral dataset [49], and
both spectral features and spatial features are extracted in the meantime. The 3D-CNN model has a
similar CNN-based network with HSS-LSTM, except that the kernel sizes of the convolution layers
and the max pooling layers are 3 × 3 × 11 and 2 × 2 × 2 respectively. The identification accuracies of
the test samples over different identification methods are reported in Table 3.
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Table 3. Identification accuracies of different identification methods on the Nevada dataset.

HSS-LSTM SAM LSTM 3D-CNN

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

Muscovite 98.47 96.50 93.90 100.00 93.90 100.00 100.00 100.00
Halloysite 83.40 87.92 57.78 91.25 68.20 92.92 60.17 88.75

Calcite 100.00 100.00 100.00 92.50 100.00 78.33 100.00 100.00
Kaolinite 82.87 89.50 91.57 57.00 89.67 73.75 90.72 66.00

Montmorillonite 100.00 100.00 96.62 100.00 91.53 100.00 99.26 100.00
Alunite 99.73 91.75 100.00 99.50 99.49 97.25 100.00 100.00

Chalcedony 100.00 97.92 96.98 93.75 100.00 92.50 100.00 96.67
AA (%) 94.80 90.57 90.68 93.06
OA (%) 94.70 90.17 91.25 92.63

The UA, PA and AA denote the user’s accuracy, the producer’s accuracy and the average accuracy
respectively in Table 3. The HSS-LSTM method achieves rather satisfied identification accuracies of
various minerals, and it is obviously superior to other identification methods in terms of the average
accuracy and the overall accuracy. To facilitate further discussion, the identification maps of the
four different identification methods are shown in Figure 8. The black part of the results indicates
the background.
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3.4. Discussion

According to the experimental results presented above, it is proved that HSS-LSTM achieves
better overall and average identification results compared with SAM, LSTM and 3D-CNN. Therefore,
the proposed HSS-LSTM method is conducive to promoting mineral identification using hyperspectral
imagery. In addition, some further discussions are presented below.

First, due to the similarity between the reference spectrums of halloysite and kaolinite as shown
in Figure 7, it is hard to discriminate them in spectral domain. There exist similar problems in [48],
where the producer’s accuracy of kaolinite is only 68.4% based on the Kruse and Perry’s (K&P) method.
The specific identification results of halloysite and kaolinite on testing samples are presented in Table 4.
A large number of testing samples of halloysite are misidentified into kaolinite with SAM and 3D-CNN.
The LSTM-based methods including HSS-LSTM and LSTM capture correlations between spectral
features and obtain intrinsic features, which promote the overall accuracy of halloysite and kaolinite
by more than 10%. More importantly, HSS-LSTM takes correlations between spectral features and
spatial features into consideration, which further improves nearly 3.6% overall accuracy compared
with LSTM. Besides, it is worth noting that the HSS-LSTM method can significantly improve the
producer’s accuracy of kaolinite, reaching 89.50%, which is 15−30% higher than other methods.

Table 4. Identification results of halloysite and kaolinite on testing samples. A/B denotes that the
identification result is A, while the ground truth is B.

Method Kaolinite/
Kaolinite

Halloysite/
Kaolinite

Kaolinite/
Halloysite

Halloysite/
Halloysite OA (%)

HSS-LSTM 211 29 41 359 89.06
SAM 219 20 151 228 69.84
LSTM 216 23 56 331 85.47

3D-CNN 213 27 136 264 74.53

Second, the reference spectrum of chalcedony possesses no distinct spectral features, such as
significant absorption bands, which results in relatively low identification accuracy with SAM and
LSTM. HSS-LSTM improves more than 4% identification accuracy of chalcedony by exploiting spatial
features with a CNN-based model. Although 3D-CNN also extracts spectral features and spatial
features, HSS-LSTM refines the spatial-spectral feature for the hierarchical feature, which prompts the
proposed model to perform the best when identifying chalcedony.

Third, it is noted that the identification map of HSS-LSTM achieves more accurate identification
results and reveals more precise textural information according to the ground truth map, as shown in
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Figure 8. SAM and LSTM only consider the spectrums of each pixel, so it is difficult to form regional
structural characteristics. Besides, 3D-CNN lacks further refinement of the spectral-spatial feature,
which induces the rough texture of the identification map.

Finally, with the high spectral resolution of hyperspectral remote sensing, a large number of
researchers focused on the intrinsic spectral features of minerals to fulfil mineral identification,
who conducted experiments on the Nevada mining dataset. The band selection (BS) method
achieved an overall accuracy of 87.86% [50], compared with the spectral feature fitting (SFF) method
81.43% [6]. It is obvious that the overall accuracy of 94.70% with the HSS-LSTM method is much better
than the identification methods merely based on the spectral features. Although some researchers
applied CNN-based models to the mineral identification using hyperspectral images obtained by a
hyperspectral camera [23,51], there exist few applications of deep learning in mineral mapping of
airborne hyperspectral images. Moreover, the researchers discovered that the spatial features extracted
by most of deep learning methods only focus on the geological features without considering correlations
with the minerals [52], which highlights the innovation of the proposed HSS-LSTM method.

As above, the HSS-LSTM method achieves better mineral identification results on the experimental
dataset by exploring the correlations between spectral features and the spatial features to obtain the
hierarchical feature, especially when minerals have similar spectrums or do not have distinct spectral
features. In addition, the identification map which is obtain by the proposed method is more consistent
with the ground truth.

4. Conclusions

In this paper, in order to better exploit the spectral features and the spatial features of hyperspectral
imagery for efficient mineral identification, the HSS-LSTM method is proposed to explore the
correlations and obtain the hierarchical spatial-spectral feature. The proposed method exploits
a CNN-based model to extract local spatial features followed by an LSTM-based model to capture the
correlations between the spatial features and the spectral features in the spectrum, which promotes
the identification accuracy of minerals. Besides, the proposed method can backpropagate the loss
properly, so all the parameters are able to be optimized in the meantime. Comparative experiments
are conducted on the Nevada mining dataset. Experimental results show that the HSS-LSTM method
outperforms traditional mineral identification methods and other deep learning methods.

However, the parameters in the HSS-LSTM method affect the identification results greatly,
which result in an overall accuracy alteration of more than 3% as shown in Table 2. It is necessary to
further optimize them for a better parameter combination. In the other hand, some other state of the art
deep learning models are able to extract more efficient spatial features than the proposed CNN-based
model. Therefore, our future work will mainly focus on optimizing the parameters of the HSS-LSTM
method and extracting spatial features with high-efficiency deep learning models.
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