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Abstract: As the number of patients with Alzheimer’s disease (AD) increases, the effort needed to care
for these patients increases as well. At the same time, advances in information and sensor technologies
have reduced caring costs, providing a potential pathway for developing healthcare services for
AD patients. For instance, if a virtual reality (VR) system can provide emotion-adaptive content,
the time that AD patients spend interacting with VR content is expected to be extended, allowing
caregivers to focus on other tasks. As the first step towards this goal, in this study, we develop a
classification model that detects AD patients’ emotions (e.g., happy, peaceful, or bored). We first
collected electroencephalography (EEG) data from 30 Korean female AD patients who watched
emotion-evoking videos at a medical rehabilitation center. We applied conventional machine learning
algorithms, such as a multilayer perceptron (MLP) and support vector machine, along with deep
learning models of recurrent neural network (RNN) architectures. The best performance was obtained
from MLP, which achieved an average accuracy of 70.97%; the RNN model’s accuracy reached only
48.18%. Our study results open a new stream of research in the field of EEG-based emotion detection
for patients with neurological disorders.

Keywords: dementia; Alzheimer’s disease; EEG; sensor; machine learning; deep learning;
emotion; classification

1. Introduction

Based on the reports from Alzheimer’s Disease International (ADI), the number of Alzheimer’s
disease (AD) patients has been increasing [1,2]; 46.8 million patients suffered from AD in 2015 [1],
and this number increased to 50 million in 2018 [2]. Furthermore, in the 2015 ADI report [1], the number
of patients with AD was predicted to reach 131.5 million in 2050; however, the predicted value was
revised upward to 152 million in the 2018 ADI report [2], indicating that the number of AD patients has
increased faster than experts’ expectations. Many medical researchers are investigating ways to cure
Alzheimer’s disease, and many of their findings can help slow or even stop dementia’s progression;
however, none cure it [2]. Given the above facts, discovering new solutions to care for AD patients
is becoming critical. From the cost aspect, one trillion US dollars were spent caring for patients with
the disease in 2018; however, by 2030 that figure is expected to be two trillion US dollars [2]. Caring
for patients with AD often involves personal services, such as those of a nurse, family member or
neighbor. Thus, the increased number of AD patients translates to increased costs, which families and
governments must absorb. Furthermore, while the number of caregivers is limited, the number of AD
patients is increasing, which means that the caregiver burden is increasing. Therefore, countermeasures
are necessary to solve this issue.
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To address these issues, we launched a project to develop a virtual reality (VR) system that can
classify AD patients’ emotions and change its content based on the patients’ classification results.
The purpose of the system is to increase caregiving resources’ efficiency by extending the time that
patients engage with our VR system compared to other conventional VR systems. When patients are
engaged with VR content, caregivers can concentrate on other tasks, which improves their efficiency.
In detail, if the system recognizes an AD patient’s emotional status as bored within a certain period,
it changes the VR content to something that is expected to evoke positive emotions. In the long-term,
the detection of and responses to other, especially negative, emotions will also be implemented.
The exact type of content to be shown can be personalized according to the preferences of the patient.
By changing the VR content, we hypothesize that a bored AD patient would increase their engagement
with the VR content; consequently, we expect to achieve the goal of the VR system. It is noteworthy
that the adaptive VR system as described above has not yet been implemented, which is our future
research objective.

To provide emotion-adaptive content, the first task in our research involves developing an emotion
classification model. To classify the patients’ emotions using computing devices, among multiple
possible data sources, we adopted electroencephalography (EEG) because EEG electrodes are relatively
easy to install on a VR headset, and we hypothesized that this physiological signal can accurately
reflect the emotional states of AD patients. At the same time, we planned to merge an EEG sensor
and VR headset together physically; therefore, we selected an EEG sensor that had a suitable form for
merging. In this study, we present the method we developed to train an emotion classification model;
we will address the goal of extending the VR interaction through emotion-adaptive content for AD
patients in a future study.

In recent years, substantial technological advances have been achieved in information technology,
sensors, and the Internet of Things. Consequently, many developers and researchers have attempted
to utilize these in the context of caring for AD patients. For example, Blackman et al. developed a VR
system with the goal of increasing the quality of life for AD patients while decreasing the speed of
their dementia progression [3]. Their system design included the ability to provide adaptive content
for people with dementia; however, the adaptations were performed manually using the system
controller [3]. Donovan et al. created a health care system that classified emotions from webcam videos
for home-bound people with dementia and delivered the emotion classification results to caregivers
and medical professionals to help provide effective tools for providing more holistic care [4]. Lin et al.
designed a home-care system for people with dementia that uses radio frequency identification,
a global positioning system, and a global system for mobile communication to prevent accidents and
search for missing people [5]. In summary, the purposes of these previous studies were to help people
with dementia in terms of medical or safety aspects [3–5]. However, no prior studies exist that classify
the emotions of AD patients using EEG signals to improve their care.

To pursue this aim, we first conducted a literature review. To the best of our knowledge, many of
the studies that classify emotions from physiological data have used young and healthy people as test
subjects [6–34]. We also discovered several studies that utilized physiological data from patients with
neurological diseases for emotion classification [35–44]; however, none of these studies focused on
analyzing EEG data collected from patients with AD. To fill this research gap, we collected EEG data
from 30 AD patients with dementia. During the data collection process, the patients watched videos
that were intended to evoke the emotional states of happiness, peacefulness, and boredom. Based on
the collected data, as an initial test, we used Weka to train several models with conventional machine
learning (CML) algorithms. The results showed that the model based on a multilayer perceptron
(MLP) achieved higher accuracy than did the other tested CML-based models. We also trained models
with deep learning algorithms to evaluate their performance compared to the CML-based models.
To utilize the sequential characteristics of time-series data, we designed recurrent neural network
(RNN) models using PyTorch. To measure the models’ performances, we evaluated them via multiple
iterations of five-fold cross-validation. The MLP-i model that assumes the same number of hidden
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states as the number of input features reached the highest average accuracy of 70.97% (maximum:
76.67%; minimum: 61.67%), whereas the best average accuracy of the RNN model reached only 48.18%
(maximum: 61.67%; minimum: 35%).

The following sections describe the work conducted in this study. First, we review previous
works related to this study. Second, we present our data collection methodology and equipment. Third,
we explain the details related to model training. Finally, we show the trained models’ performances
and conclude this study.

2. Background

In this section, the existing literature related to this study is reviewed. In the first subsection,
we introduce medical studies that explain dementia characteristics, which are needed to design the
data collection protocol for this study. In the second subsection, we summarize the previous studies
that classified emotions using data collected from patients with neurological disorders.

2.1. Dementia

The World Health Organization (WHO) defines dementia as a syndrome that causes mental
deterioration; dementia can affect memory, thinking ability, and the ability to perform everyday
activities [45]. In Kim and Na’s study [46], dementia is a factor in subtypes of approximately 50 diseases,
which they categorized into the following 11 groups: degenerative disorders, vascular dementia,
vitamin deficiencies, endocrine and other organ failures, neoplastic diseases, chronic infections, diffuse
brain damage, toxic disorders, psychiatric disorders, additional conditions in children or adolescents,
and others. According to WHO [45], dementia occurs primarily in older people, and most cases of
dementia are caused by Alzheimer’s (60%–70%). Other types of dementia include vascular dementia,
frontotemporal dementia (FTD), and dementia with Lewy bodies. AD, FTD, and Lewy body dementia
are all classified as degenerative disorders. Furthermore, the Alzheimer’s Association [47] describes
the difference between AD dementia and FTD as age-related; FTD is generally diagnosed between the
ages of 40 and 60, whereas the number of AD patients increases with age.

In the medical science and clinical fields, the interview-based mini-mental state examination
(MMSE) has been used to screen dementia patients, as suggested by Folstein et al. [48]. It has a
small practice effect; thus, it can be used multiple times on the same patient to measure differences
over time [48,49]. Furthermore, modified or translated versions of the MMSE were proposed in
several follow-up studies to optimize the instrument to different environments. In the Republic of
Korea, several Korean versions of the MMSE (e.g., K-MMSE [50], MMSE-K [51], and SMMSE-DS [52])
have been developed. A study comparing the K-MMSE and MMSE-K [53] revealed that these two
measures did not show a significant difference in reliability; however, the K-MMSE is affected by the
participant’s education level, gender, and age. Thus, the study recommended using the MMSE-K [53],
which consists of 30 questions. Furthermore, in a follow-up study on MMSE-K [53], Park and Kwon
defined the point ranges for dementia classification as follows:

• Definite dementialess than 19.
• Questionable dementia—between 20 and 23.
• Definite non-dementia—over 24.

Regarding the behavioral characteristics of AD patients, Yoon and Park used the behaviors
of dementia patients suggested by the International Psychogeriatric Association (IPA) in 1997 [54].
The major symptoms shown by monitored patients are aggression, screaming, restlessness, agitation,
confusion, inappropriate behavior, sexual disinhibition, cursing, and shadowing. Regarding the
correlations between dementia and emotion, Yang and Han described the following non-cognitive
symptoms of dementia patients: personality changes, delusions, hallucinations, mood disorders,
sleep disorders, changes in appetite, altered sexual behavior, and disturbed psychomotor activity [55].
Thus, dementia has a negative influence on the emotional states of its sufferers relative to healthy
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individuals. Furthermore, Na et al. explained that in a typical case, an AD patient’s brain shows
damage compared to the brains of healthy individuals [56]. Therefore, the emotional processing in AD
patients’ brains cannot be directly compared to that of healthy people.

2.2. Emotion Classification

In this section, we explain previous studies related to emotion classification. In our literature
review, we searched for previous studies that classified emotions from physiological data with a specific
focus on AD. The keywords were: dementia, emotion, classification, recognition, machine learning,
neurological disease, and Alzheimer’s. We divided the discovered studies into two groups based on
participants’ health status: healthy (see Section 2.2.1) and neurological disorders (see Section 2.2.2).

2.2.1. Emotion Classification on Healthy People

To the best of our knowledge, most emotion classification studies have used data collected
from healthy people [6–31,33,34,57–75]. Among these, 27 studies used EEG data to classify
emotions [6–8,10–25,27–31,33,34,75]. As our approach uses a four-electrode EEG sensor, we focus
here on studies that also used a low number of electrodes in their experiments.

Table 1 presents information on previous studies that used EEG data from up to four electrodes
attached to healthy people. Singh et al. [7] and Lee et al. [11] used EEG data captured from four
electrodes in their studies, whereas Takahashi [23], Shen et al. [25], Seo et al. [33,34], and Kim et al [30].
used EEG data collected from two electrodes. Regarding the positions of electrodes, other studies
except Lee et al. [11] attached electrodes on participants’ foreheads [7,23,25,30,33,34]. Lee et al. [11]
collected EEG data from participants’ forehead and crown of the head.

Table 1. Emotion classification of healthy people based on EEG data (up to four electrodes).

Study Target Emotions Approach Accuracy (%) Validation

[23] Joy, anger, sadness, fear,
relaxation

Support vector machine
(SVM) 41.68 LOOCV

[25] Engagement, confusion,
boredom, hopefulness

SVM, k-nearest neighbors
(KNN)

67.1 (SVM)
62.5 (KNN)

-

[7] Sadness, disgust Linear SVM 78.04 (Sad)
76.31 (Disgust)

-

[11] Arousal, valence SVM, K-means - -
[33] Boredom, non-boredom KNN 86.73 5-fold cross-validation
[34] Boredom, non-boredom Multilayer Perceptron (MLP) 79.98 5-fold cross-validation
[30] Boredom, frustration Analysis - -

Among the studies, Lee et al. [11] trained an SVM model; however, they did not report the model
accuracy. Furthermore, Kim et al. analyzed the correlation between EEG and eye tracking data by
general analysis instead of training a model [30]. Regarding model performance validation approaches,
Shen et al. [25], Singh et al. [7], and Lee et al. [11] did not mention the details of the approaches that
they used (if any). Finally, Seo et al. [33,34] and Takahashi [23] validated their models with 5-fold cross
validation and leave-one-out cross-validation (LOOCV), respectively.

The studies in Table 1 targeted at classifying healthy people’s emotions; therefore, their results are
not necessarily applicable for patients with neurological disorder. However, we can conclude based on
these results that EEG data captured from electrodes on the forehead have a potential for classifying
human emotions. Thus, classifying emotions using EEG data captured from the forehead of an AD
patient is a potential approach to investigate.
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2.2.2. Emotional Classification of Patients with Neurological Disorders

In our literature review, we discovered five studies that investigated classification of emotions on
neurological disorder patients using physiological sensors [36–38,40,41]. Table 2 presents participants’
neurological disorder types by study. Only a few studies adopted patients with neurological disorders
as participants; thus, we also include studies that used more than four electrodes. As the goal of this
study was to classify the emotions of AD patients, we conducted a detailed analysis of these studies.

Table 2. Studies by participant types.

Study Health Status
[36–38] Parkinson’s disease

[41] Vegetative state(VS) and minimally
conscious state(MCS)

[40] Behavioural-variant FTD (bvFTD)
and semantic dementia (SD)

Yuvaraj et al. collected EEG data using 16 electrodes from 20 Parkinson’s patients (ten males
and ten females; average age: 59.05; standard deviation: 5.64) and 20 healthy people (nine males
and 11 females; average age: 58.10; standard deviation: 2.95) for their studies [36–38]. Kim and Na’s
study [46] stated that while Parkinson’s disease is different from AD, it can also cause dementia.
Yuvaraj et al. collected data from Parkinson’s patients who did not suffer from dementia [36–38].
Pan et al. used 30-electrode EEG data from eight patients (four males and four females; three in a
vegetative state (VS) and five in a minimally conscious state (MCS); average age: 33.25; standard
deviation: 13.9) and eight healthy people in their study (seven males and one female; average age: 29.2;
standard deviation: 3.3) [41]. The VS and MCS patients did not have dementia. Finally, Kumfor et al.
utilized data from 25 behavioral-variant FTD (bvFTD) patients (13 males and 12 females; average age:
60.7 ± 6.6), 14 semantic dementia (SD) patients (eight males and six females; average age: 64.7 ± 7.1)
and 24 healthy people (12 males and 12 females; average age: 65.2 ± 6.8) [40]. According to Kim and
Na’s study [46], bvFTD and SD are subtypes of dementia; however, these are not the same as dementia
in AD.

Many of the previous studies that targeted data from healthy individuals referred to Russell’s
circumplex model [76] to select emotions [6,19,25,30,33,34,77–80]; however, the studies that addressed
patients with neurological disorders did not refer to the circumplex model [36–38,40,41]. For example,
Kumfor et al. did not explain the reasons for selecting their target emotions [40]. Yuvaraj et al.
selected six target emotions [36–38] that match Ekman’s six basic emotions [81]; however, they did
not specifically mention Ekman’s study. Pen et al. [41] reported that they selected two emotions from
Ekman’s set of basic emotions [81]. None of the studies in Table 3 involved classifying boredom
or peacefulness.

Table 3. Studies on participants with neurological disorders.

Study Physiological
Data Source Target Emotions Approach Validation

[36] EEG (16 electrodes)
Happiness, Sadness, Fear, Anger,
Surprise, and Disgust

SVM and
Fuzzy KNN 10-fold cross-validation

[37] EEG (16 electrodes)
Happiness, Sadness, Fear, Anger,
Surprise, and Disgust SVM and KNN 10-fold cross-validation

[38] EEG (16 electrodes)
Happiness, Sadness, Fear, Anger,
Surprise, and Disgust SVM 10-fold cross-validation

[40] GSR and facial Positive, Neutral, and Negative ANOVA -
[41] EEG (30 electrodes) Happiness, and Sadness SVM Train test split

Regarding the classification approaches in Table 3, none of the studies utilized deep learning
algorithms for training models. Kumfor et al. identified differences in physiological data for each
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emotional state using statistical calculations such as ANOVA [40]. Other studies analyzed the data
using machine learning methods [36–38,41], of which SVM was the most popular.

Yuvaraj et al. investigated ways to classify emotions from training classification models using
data from both Parkinson’s patients and healthy individuals [36–38]. They originally used an SVM
with a radial basis function (RBF) kernel and k-nearest neighbor (KNN) algorithm (K: 1–10) [37] and
achieved accuracies of 86.89% (happiness), 82.56% (sadness), 79.99% (fear), 80.98% (anger), 91.27%
(surprise), and 80.57% (disgust) with the SVM model [37]. In a subsequent study [36], they trained
models using SVM (linear, polynomial, and RBF kernels) and fuzzy KNN (K: 3, 5, and 7) and achieved
a classification accuracy of 76.90% on all the studied emotions by applying different features. Finally,
their most recent study used an SVM (RBF kernel) that achieved an accuracy of 52.99% [38]. All these
reported accuracy values from Yuvaraj et al.’s studies are the test results using data from patients
with Parkinson’s [36–38]. Pan et al. also trained an SVM algorithm for their emotion classification
model; however, they did not report which kernel they used [41]. They presented their results for
the participants and features individually; the best average accuracy was 60.25% (maximum: 78%,
minimum: 50%) [41].

Regarding the suggested models’ performance evaluation approaches, Yuvaraj et al. used
10-fold cross validation [36–38]. Pan et al. collected data from 16 participants by repeating the
same experiments; therefore, they secured a sufficient number of samples for splitting the data into
training and testing sets, the latter of which was used to evaluate the performance of the model that
was trained with the former [41].

2.2.3. Summary

Considering the above analysis of studies using data from patients with neurological
disorders [36–38,40,41], none used data from AD patients with dementia. Furthermore, none of
these prior studies trained deep learning algorithms as classification models. Therefore, guided by
the results of our literature review, we collected physiological data from AD patients while they were
exposed to certain emotion-evoking stimuli and trained classification models with both conventional
machine learning algorithms and deep learning algorithms to determine the most suitable technique
for emotion classification.

3. Data Collection

3.1. Participants

This study involved 30 Korean (all female) participants with dementia caused by AD who
were patients at a medical rehabilitation center in the Republic of Korea. The average age of the
participants was 83.9, and the standard deviation was 5.02. Table 4 presents the participants’ MMSE-K
point distribution. The medical center measures the MMSE-K scores of their patients regularly;
however, two patients had either refused to take the MMSE-K test or had not received it yet; however,
according to clinical assessments, they were considered to be AD patients with dementia. Furthermore,
one participant had normal MMSE-K scores in her medical record; however, her physician diagnosed
her as having dementia as well.

Table 4. MMSE-K results of the participants.

MMSE Range Number of Participants
≥24 1
20–23 6
≤ 19 21
Unknown 2
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To ensure safe and ethical research procedures and data handling, we received ethical approval for
our experiment from the medical rehabilitation center’s institutional review board (approval number
EH2018-1), and all patients and their guardians signed a consent form before participating in the
experiment. To ensure medical safety, specialist doctors and regular nurses were present during
the experiments. Furthermore, all the staff members involved in this experiment were trained to
administer aid in case an accident occurred, and an emergency cardiac defibrillator was prepared and
available for use. Finally, we provided each of the participants with a gift after the experiment.

3.2. Target Emotions

We selected the target emotions for this study by referring to Russell’s circumplex model (Figure 1).
We also solicited the opinion of a physician at the center regarding emotion selection to ensure the
safety of patients with AD. Based on the feedback, we selected happiness, boredom, and peacefulness
as the target emotions. We did not choose an emotion from the second quadrant of the circumplex
model because the doctor advised against it, as those emotions could cause shock, cardiac arrest,
or other medical problems in the participants.

Figure 1. Russell’s circumplex model.

3.3. Stimuli

Considering the characteristics of people with dementia (See Section 2.1) and the comments of
the physician in the medical rehabilitation center, we hypothesized that the participants may respond
differently to emotion-evoking stimuli compared to healthy individuals. Thus, we prepared a stimuli
selection experiment before data collection. First, we preselected 30 images (10 images per target
emotion). These images were collected from the web and the International Affective Picture System
(IAPS) [82]. We printed the images, attached the appropriate images to separate panels for each
emotion (see Figure 2), showed the panels to the patients with AD at the medical rehabilitation center,
and then interviewed the participants. The interviews were conducted in Korean. Each participant
was asked to select two images that made them experience the target emotions. To avoid instances in
which the subjects remembered the pictures, we allowed approximately one month to elapse between
the date of image selection and the date of EEG data collection. This gap allowed the patients with AD
sufficient time to forget the images.
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Figure 2. Image panel (happiness).

Based on the interview results, we created a video for each target emotion consisting of five
selected images. Based on the image selections made by patients with AD during the interviews,
we selected the top five images. Furthermore, we added suitable sound effects to increase the
emotion-evoking efficiency. For instance, we played a cat sound when a cat image was presented on
the video. We showed each image for 18 s; therefore, the duration of each video was 90 s.

3.4. Sensor

For the data collection, we used the Muse Brainband (2016 version, see Figure 3) [83]. The sensor
has four electrodes, AF7, AF8, TP9, and TP10. The electrode locations were defined by [84], and these
locations are commonly used in studies that collect EEG signals [25,30,33,34,36–38,41,58]. We selected
Muse for three reasons. First, as explained in Section 1, we considered combining an EEG sensor and a
VR headset to achieve the project’s goal; therefore, multi-electrode EEG sensors were deemed to be
unsuitable for integration with a VR headset from the perspective of physical design and usability.
Second, our project’s target users are aged AD patients. At the moment of writing this paper, a typical
VR headset has a relatively heavy weight; thus, we selected a lightweight EEG sensor to ensure that
the total weight was low. The final reason was an economic issue; professional-level EEG sensors are
too expensive for most end-users. For this reason, we selected the Muse headband because it was
commercially available at an affordable price.
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Figure 3. EEG sensor (Muse Brainband 2016 version).

In this study, we used the data from AF7 and AF8 only because the TP9 and TP10 electrodes did
not attach well to the patients’ heads during the data collection process. Each electrode had a data
sampling frequency of 256 Hz. The Muse sensor collects, calculates, and outputs several types of data
related to EEG. Specifically, it collects EEG data from each electrode, applies a notch filter to reduce the
noise stemming from muscle movement, and automatically calculates the absolute band power (ABP)
using fast Fourier transform. Furthermore, it provides several pieces of intermediate data (e.g., notch
filter applied EEG data) from the raw EEG data to ABP for research purposes. The raw EEG and
notch filtered EEG data are produced from each electrode at a rate of 256 Hz, and the ABP and other
calculated data are produced from each electrode and frequency band at a rate of 10 Hz. The frequency
bands of the Muse sensor are defined by its manufacturer as follows:

• Delta (1–4 Hz).
• Theta (4–8 Hz).
• Alpha (7.5–13 Hz).
• Beta (13–30 Hz).
• Gamma (30–44 Hz).

Additionally, we placed cameras (GoPro Hero4 action cameras) with microphones in front of the
participants to record their faces and voices for the purpose of identifying any unexpected variables
during the experiment. The cameras were small and did not interfere with the participants while they
watched the stimuli. Figure 4 shows a sketch of the data collection environment. The EEG sensors
were connected to our collection system through Bluetooth 4.0. To play the stimuli for viewing by
multiple participants, we utilized a projector with a speaker. The data collection system controlled the
experiment automatically, displayed the statuses of all the sensors, and provided real-time information
on the experiment through a display for monitoring purposes.
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Figure 4. Data collection system structure.

3.5. Protocol

The data collection protocol for patients with AD (Figure 5) considered the characteristics of
people with dementia (see Section 2.1). In this protocol, we included three “emotion neutralization”
stages before showing each emotion-evoking video clip. In the second and third neutralization
stages, we asked the participants to close their eyes and breathe deeply for 30 s; however, in the first
neutralization stage, we introduced ourselves to the participants to create a good mood. The emotion
neutralization stages differed from the first stage based on a strong request from the physician at the
medical rehabilitation center, who mentioned that many elderly people with dementia are afraid of
strangers. Thus, they recommended that we introduce our research team members first to ensure
that the participants felt at ease. We determined that most patients felt comfortable from their facial
expressions. Finally, after showing each emotion-evoking video, we asked the participants to estimate
the strength of the target emotion using the following four-point scale: (1) unknown; (2) no; (3) yes;
and (4) very much. The unknown option was added to the scale because patients with AD may answer
abnormally or refuse to answer.

Figure 5. Data collection protocol.
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4. Modeling

In this section, we explain the methodology to train classification models. As explained in the
introduction, we trained models with conventional machine learning algorithms (CML) and deep
learning (DL) algorithms. Figure 6 illustrates the data-handling flow of each training process with
the CML algorithms and the RNNs. Specifically, we chose the RNN design because such models can
utilize the sequential characteristics of time-series data. We discuss the feature extraction process
for each CML and RNN model, the initial test processes for the CML algorithms to select candidate
algorithms for parameter tuning, the RNN architecture, and the final test process for measuring the
classification models trained with optimized parameters. In this study, we used a system equipped
with an NVIDIA GTX 1080 Ti GPU to train the RNN models.

Figure 6. Data handling flows.

4.1. Feature Extraction

To extract features from EEG data, we adopted several window sizes to investigate the optimal
size that contains the best information for classification. As explained in Section 3.3, we recorded
90 s of data for each target emotion; however, none of the records contained precisely 90 s of data.
Therefore, to extract features uniformly, we set window sizes of 10, 20, 30, 40, 50, 60, 70, and 80 s. In the
initial test stage, we determined the optimal window size by analyzing the results.

Regarding the extraction methods, we referred to Seo et al. [33,34] and Zheng et al. [29].
The method details are as follows:

• ABP—mean, standard deviation (std) by the frequency bands and electrodes.
• Differential entropy (DE)—by the frequency bands and electrodes.
• Rational asymmetry (RASM)—by the frequency bands.
• Differential asymmetry (DASM)—by the frequency bands.

As explained in Section 3.4, our EEG sensor produced an ABP value of 10 Hz by frequency bands
and electrodes. For instance, in the 10 s raw dataset, 100 ABP values existed for each frequency band.
We calculated the mean and standard deviation (std) values of these ABP values for use as features.
As a result, we secured 20 features (two electrodes × five frequency bands ×mean and std).
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DE =
1
2

log 2πeσ2 (1)

DASM = DE(le f t) − DE(right) (2)

RASM = DE(le f t)/DE(right) (3)

Equations (1)–(3) were used by Seo et al. [33,34] and Zheng et al. [29] to calculate DE, DASM,
and RASM, respectively; they used these equations to extract features from EEG data. In Equation (1),
π and e are constant values, and σ2 is the variance of the bandpass-filtered EEG data. We altered the
bandpass filtering range based on the band definition of our EEG sensor and calculated the DE from
each frequency band. Thus, we acquired ten features by calculating the DE (two electrodes × five
frequency bands). As Equations (2) and (3) show, these utilize electrode position differences and DE.
Many previous studies have mentioned correlations between frontal asymmetries in EEG signals and
emotional status or mental tasks [8,28,85–88]. RASM and DASM utilize the frontal asymmetry of each
frequency band. By calculating these features, we acquired ten features (five frequency bands × RASM
and DASM). Finally, we created a dataset with 40 features and used it to train the models with CML
algorithms. As 30 patients with AD watched three emotion-evoking videos, a total of 90 samples were
represented in the dataset.

Regarding the feature extraction approach for RNN, we modified the CML feature extraction
approach to include time characteristics in the dataset. To conduct feature extraction for the RNN
dataset, we did not calculate the mean and standard deviation of ABP in a window; instead, we used
the ABP value directly as a feature. Regarding the calculations of DE, RASM, and DESM, using the
timestamp of each datum, we obtained the raw EEG data that were used to calculate the ABP and used
that to calculate the DE, RASM, and DESM. The ABP sampling frequency was 10 Hz; therefore, in the
80 s window, 800 sequence data points were obtained for each sample. Following this modification,
we prepared a dataset consisting of 30 features with 800 sequences per sample to train the RNN.

4.2. Initial Test

In this study, we used Weka to train the models with CML algorithms and PyTorch (version: 1.3.1;
CUDA version 10.2) to train the models with the RNN. Weka is a Java-based open-source machine
learning API that provides many algorithms for training models. PyTorch is a Python-based deep
learning API that provides RNNs, convolution neural networks (CNNs), and other deep learning
models. Specifically, the PyTorch RNN provides three types of RNN models. We investigated all the
possibilities to identify the CML and RNN models with the highest performance; however, the number
of algorithms in CML was too large to allow the tuning of each algorithm’s parameters to obtain
the highest accuracy. Therefore, we executed an initial test to select candidate algorithms among
the available CML algorithms for parameter tuning. For the RNN models, we tuned the parameters
without performing an initial test.

Table 5 presents the classifier algorithm list that we used to find suitable candidate classifier
algorithms. Many algorithms have parameters related to classification performance; however,
investigating the performances of all the possible models trained using all possible parameter
combinations for each algorithm would require an enormous amount of time. Therefore, we set
many of the listed algorithm parameters to their defaults, as shown in Table 5. In the initial test,
we measured the performances of the trained models using 10 iterations of five-fold cross-validation,
where the random seed value for each training was different. We performed the initial test with ten
iterations and summarized the test results.
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Table 5. Tested classifiers.

Classifier Option Classifier Option Classifier Option

IBk
No

LibSVM

Linear J48

Default

1/distance Polynomial JRip
1-distance Radial Naive Bayes

Multilayer Perceptron
(MLP)

t Sigmoid KStar
i Decision Stump

Default

LMT
a Decision Table PART
o Hoeffding Tree Logistic
t,a Random Tree Simple Logistic
t,a,o Random Forest (RF) Zero R
t,i,a,o REP Tree One R

Parameter options of MLP for designing network (number of node per each layer)
“i”= number of features, “o” = number of labels, “t” = “i” + “o”; “a” = “t”/2

According to the Weka documentation, IBk is a k-nearest neighbor (k-NN) classifier. To determine
the parameters for IBk, we tested a parameter that assigns a weight for measuring the distance from
other samples because we considered it to be an important parameter influencing the classification
performance considering the k-NN classification methodology. The LibSVM shown in Table 5 is
a support vector machine API that provides several parameters. We selected the kernel-related
parameters for this investigation because the kernel is an important factor in allowing additional data
dimensions in an SVM. Finally, we considered the network design for MLP because the design affects
the model performance. Other parameters, such as the epoch and learning rate, are also important in
achieving the best performance; however, we focused on the network design in this investigation.

In this initial test, we applied the feature selection algorithms and the wrapper subset evaluator
(WSE) before training the models with each CML algorithm. The WSE automatically outputs an
optimal feature subset that increases the model performance. Consequently, by applying the WSE,
we could remove unnecessary features from the original dataset.

4.3. Design for Deep Learning

Figure 7 shows the RNN model design in this study. As explained in Section 4.2, PyTorch
supports the following three RNN models: Elman RNN, long short-term memory (LSTM), and gated
recurrent unit (GRU) models. We investigated all the possibilities of each model type having positive
or negative effects on our deep learning model. Thus, we tested all the possible cases during the
parameter-tuning stage.

After the RNN layer, we attached the attention layer contained in PyTorch-NLP with the
expectation that the attention layer could increase the classification performance and provide clues
regarding how to interpret this model; however, we were also open to the possibility that it might have
a positive effect or negative effect on our model. Therefore, we tested it for both possibilities.

The decision and softmax layers attached after the attention layer (see Figure 7) were required to
obtain the classification results from the networks. The decision layer was a single fully connected layer.
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Figure 7. RNN model design.

4.4. Parameter Tuning

As described in Section 4.2, we tuned the parameters of the candidate CML algorithms. In our
initial test results (see Section 5.2), we selected MLP as a candidate algorithm for tuning. The tuned
parameters and their ranges were as follows:

• Learning rate: 0.001–1.000 (0.001 unit).
• Epochs: 1–500 (1 unit).
• Hidden layer design: a, t, and i (see Table 5).
• Momentum: 0.2 fix.
• Other parameters: default fix.

From this investigation, the MLP parameters most related to model performance in Weka were the
learning rate, epoch, and network design. Regarding the network design, we referred to the initial test
results (see Section 5.2). Following the ranges, we trained and tested 1,498,500 models with five-fold
cross-validation to find the optimal parameter combinations that perform well.

As explained in Section 4.3, we designed the RNN model and then tuned the model’s elements
and its parameters. Figure 7 in Section 4.3 shows the tuned parts of the model. The detailed tuning
ranges were as follows:

• r: LSTM, GRU, and Elman RNN.
• m: 1,2, and 3.
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• b: Single direction and bi-directional.
• d: 2, 4, 8, 16, 32, 64, 128, 256, and 512.
• a: true and false.
• bi (only using Elman RNN): True and False.
• n (only using Elman RNN): “relu” and “tanh.”
• Epochs: 1–1000 (1 unit)
• Learning rate: 0.0001 fix.

In the above list, “r” is the RNN model type, “m” is the number of stacked layers, “b” denotes
whether each layer is unidirectional or bidirectional, “d” is the number of dimensions in each cell
of each layer, and “a” denotes whether the attention layer is included after the RNN model group.
The parameters “bi” and “n” were used only when the “r” value was Elman RNN; they indicate
whether a bias weight was used and the activation function for nonlinearity in the Elman RNN cells,
respectively. Specifically, if “a” is False, no attention layer is included after the RNN model in our
design, and the data output by the RNN model is input directly into the decision layer. Regarding “d”,
we set an exponent with two values as a value; however, we could not exceed 1024 because of the GPU
memory limitations.

To avoid overfitting or underfitting issues when using artificial neural network algorithms,
a suitable epoch must be selected. In MLP, we adopted the epoch that showed the highest validation
accuracy and used a small learning rate. In the RNN model, we calculated the average value for
each fold epoch that showed the lowest validation loss. Additionally, to ensure a fair comparison
among all possible parameter combinations, we applied the same random seed value in all the training
and testing.

4.5. Final Test

After the parameter tuning stage, we trained and tested models with each parameter-optimized
algorithm as a final test. In this test, we used five-fold cross-validation and executed 1000 and 100
iterations for MLP and RNN, respectively, using different random seed values. The reason for the
different number of iterations was that RNN training required lengthy times to complete 1000 iterations
because of its deep learning model.

In this stage, we evaluated the models using three metrics: accuracy, AUC, and F1-score.
Furthermore, using a confusion matrix, we evaluated the models’ classification performances for
each target emotion. Finally, we analyzed the attention score data gathered from the attention layer in
the RNN model to interpret the model’s internal workings.

5. Results

5.1. Interviews

Table 6 shows the distribution of the interview results from each stimulus. As the table shows,
the stimulus videos meant to evoke happiness and peacefulness evoked the corresponding target
emotions in the participants well; however, the stimulus video meant to evoke boredom was not
very effective.

To interpret the results easily, we regrouped the interview results by each stimulus video.
Specifically, when the interview result was “yes” or “very much”, we considered the participant
to have the target emotion. Therefore, we annotated that dataset with the target emotion. For the
answers of “no” or “others”, we considered the target emotion or mentally abnormal state to not have
been invoked; thus, we marked those as others. We utilized the regrouped results as sample labels to
train the models.
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Table 6. Interview results and label distribution.

Interview Result Label

Boredom

Others 5 Others 21No 16
Yes 6 Boredom 9Very Much 3

Happy

Others 3 Others 5No 2
Yes 16 Happy 25Very Much 9

Peaceful

Others 2 Others 4No 2
Yes 16 Peaceful 26Very Much 10

To match the purpose of this study, we removed the samples marked as others from the datasets
for the following reasons: (1) For the others samples, the target emotion could not be judged as the same
emotion, and (2) due to the limitations of AD patients, we did not attempt to identify which emotion
was elicited by the stimuli for the samples marked as others. Table 6 shows the label distributions for
the remaining samples. Specifically, 30 samples labeled others were excluded from each dataset. As a
result, 60 samples marked as boredom, happiness, and peacefulness remained.

5.2. Initial Test

Table 7 shows the top 10 experimental setups achieving the best average accuracy in 10 iterations
of five-fold cross-validation. This experiment revealed several findings. First, the MLP models with a
single hidden layer (with options i, a, or t that determine the number of hidden nodes as described in
Table 5) generally outperformed other algorithms. Second, 80 s was found to be an optimal window
size compared to other window sizes. Finally, WSE worked well to remove unnecessary features and
improve model performances. Based on these results, we tuned the MLP parameters and limited the
MLP layer design parameters to a, t, and i in the parameter tuning stage.

Table 7. Initial test results of CML algorithms (top ten models).

Trained
Algorithm

Window
Size (s) Option Average Accuracy (%)

Before WSE After WSE
MLP 80 i 37.33 68.83
MLP 80 a 38.50 68.00
MLP 80 t 36.67 66.50
MLP 80 t,a 40.83 64.83
MLP 50 t,a 40.67 64.17
Kstar 80 Default 40.67 64.17
PART 50 Default 41.67 64.00
MLP 80 o 43.83 63.83
Kstar 20 Default 31.67 63.67

RF 80 Default 45.67 63.33

Table 8 shows the WSE results from the initial test. These results indicate that the gamma and
alpha bands are strongly correlated with the emotions of AD patients and that AF8 is more related to
emotion than is AF7.
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Table 8. WSE results by algorithm and its option.

Trained
Algorithm Selected Features Related

Electrode
Related

Frequency Band

MLP-a
AF8 Alpha DE - AF8 Alpha
Gamma DASM AF7 AF8 Gamma
Gamma RASM AF7 AF8 Gamma

MLP-i
AF8 Alpha DE - AF8 Alpha
Gamma DASM AF7 AF8 Gamma
Gamma RASM AF7 AF8 Gamma

MLP-t
AF7 Beta ABP mean AF7 - Beta

AF8 Alpha DE - AF8 Alpha
Gamma RASM AF7 AF8 Gamma

Based on the analysis, during the RNN model parameter tuning, we tested cases using both
the original and the feature-reduced dataset. The feature-reduced dataset included the features AF8
Alpha DE, Gamma DASM, and Gamma RASM, but AF7 Beta and ABP mean were excluded because
they were selected only once. Additionally, we limited the window size to 80 s for the RNN model
parameter tuning to reduce the investigation time.

5.3. Parameter Tuning

Tables 9 and 10 show the parameter tuning results for the MLP and RNN models, respectively.
Each result is an optimal parameter combination that showed high classification performance and
minimized overfitting issues.

Table 9. MLP parameter tuning results.

Trained Algorithm Learning Rate Epochs
MLP-a 0.811 105
MLP-i 0.991 256
MLP-t 0.470 229

Table 10. RNN model’s parameter tuning results.

r m b d a bi n Epochs
GRU 2 Bi 256 True - - 487
LSTM 1 Single 512 False - - 656

Elman RNN 3 Single 512 True False tanh 424

The MLP accuracies in Table 9 reached 75.00%, 76.67%, and 71.67%, while the RNN accuracies
of Table 10 reached only 55.00%, 60.00%, and 66.67%. Regarding the RNN model type, the Elman
RNN [89], the oldest proposed RNN version, was more suitable for our dataset than more recent
models such as LSTM or GRU [90], probably because it has fewer parameters to train. All the results
in Table 10 are from the 80 s feature-reduced dataset, which were the best. The results of using the
original dataset showed lower accuracy than those using the feature-reduced dataset for each RNN,
LSTM, and GRU.

5.4. Final Test

Tables 11 and 12 show the final test results and confusion matrices for each model. As Table 11
indicates, the MLP-i model performed better than the other models in terms of average accuracy
and F1-score; however, its performance was slightly worse than the MLP-a model in terms of AUC.
In addition, the RNN models performed worse than the MLP models. Furthermore, similar to
Section 5.3, the relatively recently proposed RNN model did not classify emotion well.
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Table 11. Final test results—1000 iterations of five-fold cross-validation.

Accuracy (%) AUC F1-Score
Average Min Max Average Min Max Macro Weight Micro

MLP-a 67.18 53.33 76.67 0.699 0.605 0.765 0.486 0.619 0.672
MLP-i 70.97 61.67 76.67 0.697 0.630 0.750 0.516 0.657 0.710
MLP-t 63.74 55.00 71.67 0.642 0.577 0.701 0.464 0.592 0.637
RNN - GRU 42.83 33.33 53.33 0.523 0.427 0.630 0.377 0.418 0.428
RNN - LSTM 44.58 35.00 53.33 0.513 0.429 0.606 0.311 0.395 0.446
RNN - Elman RNN 48.18 35.00 61.67 0.592 0.439 0.721 0.483 0.482 0.482

Table 12. Confusion matrix of the final test (MLP models—1000 iterations|RNN models—
100 iterations).

MLP-a GRU
B H P ← Classified as B H P ← Classified as
0 1272 7728 B 139 276 485 B
0 17573 7427 H 29 1169 1302 H

29 3238 22733 P 141 1197 1262 P
MLP-i LSTM

B H P ← Classified as B H P ← Classified as
15 1326 7659 B 4 210 686 B
39 19325 5636 H 21 785 1694 H
252 2506 23242 P 12 702 1886 P

MLP-t Elman RNN
B H P ← Classified as B H P ← Classified as
0 2299 6701 B 396 279 225 B

187 17183 7630 H 157 1203 1140 H
834 4103 21063 P 166 1142 1292 P

B: Boredom, H: happiness, P: Peacefulness

As shown in Table 12, the MLP models did not classify boredom and the other target emotions.
In contrast, the RNN models classified boredom better than the MLP models. Regarding the
classification performance for boredom, the classification accuracies of the MLP models for boredom
were 0% and 0.17%; however, the Elman RNN model achieved 44%.

Figure 8 illustrates the attention score results of the RNN models. Regarding the attention score
of the LSTM model, as shown in Table 10, the attention layer was not suitable for use with an LSTM in
our RNN model based on our parameter tuning results. Therefore, in the final test, we did not obtain
attention scores for the RNN models.

In the detailed analysis in Figure 8, the GRU model’s comparatively high attention scores were
widely distributed. However, the Elman RNN model’s high attention scores are located toward
the front. These models’ high attention scores indicate the importance of the data sequence for
classification. Therefore, in the Elman RNN model, the initial portion of the data was most important
for classification.

Subject-independent evaluation is especially important in the domain of affective computing.
Due to the small sample size, we could not split the data into three folds of training, validation,
and testing, and instead we reported average scores of the repeated five-fold cross validation
experiments. To compensate for this limitation, we further evaluated the performance of MLP
models through the Leave-one-out cross-validation (LOOCV). The results are summarized in Table 13.
Compared to the results in Tables 11 and 13, the performances of MLP models measured using LOOCV
and five-fold cross validation were not significantly different, and the results using LOOCV were
slightly higher than the average scores in 1000 iterations of five-fold cross validation results. This could
be because the training sample size increases in LOOCV compared to 5-fold cross validation.
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Figure 8. Attention scores.

Table 13. LOOCV results for MLP models.

Accuracy (%) Weighted F1-Score
MLP-a 68.33 0.631
MLP-i 71.67 0.662
MLP-t 65 0.603

Additionally, we investigated MLP models’ performance in binary classification scenarios such
as happiness versus non-happiness. Table 14 shows the results using LOOCV in the MLP models.
The binary classification performances were mostly higher than multi-class classification performance;
however, the performances of testing peacefulness versus non-peacefulness were low because the
boredom state was confused with the peacefulness state as in Table 12. Therefore, we tested a case
using only peacefulness and happiness samples, which resulted in higher performance.

Table 14. LOOCV results for MLP models in binary classification.

MLP-i MLP-a MLP-t
Accuracy (%) Weighted F1 Accuracy (%) Weighted F1 Accuracy (%) Weighted F1

B - NB 85 0.781 85 0.781 83.33 0.833
H-NH 83.33 0.831 73.33 0.726 78.33 0.784
P-NP 58.33 0.585 51.67 0.518 60 0.601
P-H 84.31 0.843 80.39 0.801 76.47 0.761
B: Boredom, NB: Non-boredom, P: Peacefulness
NP: Non-peacefulness, H: happiness, NH: Non-happiness

6. Discussion

In this study, we proposed two machine learning models to classify the emotions of AD patients:
MLP-i and Elman RNN. From the accuracy aspect, the MLP-i model performed better than all the other
CML or DL candidate models; however, it achieved high accuracy only when classifying happy and
peaceful emotions; the boredom classification performance of this model was only 0.17%. Therefore,
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we suggest using the Elman RNN model to classify boredom. This model classified boredom with an
accuracy of 44%; no better performance was achieved by any other model. Therefore, depending on
the goals, future researchers should use caution when choosing among the suggested models.

As analyzed in Section 2.2.2, no previous studies have attempted to classify the emotions of AD
patients using EEG signals (see Table 2). Kumfor et al. targeted bvFTD and SD patients and used
patients’ GSR and facial data; however, from a medical aspect, those target patients differed from
ours in terms of dementia type, age group, and nationality [40]. Furthermore, among the studies that
targeted the emotional classification of patients with neurological disorders, no study trained RNN
classification models or selected peacefulness and boredom as target emotions (see Table 3). Thus,
this study complements the work performed by previous studies.

The previous EEG-based emotion classification studies targeted neurological disorder patients
using 15 or 30 electrodes on non-commercial EEG sensors (see Table 3) [36–38,41]. Furthermore,
the studies that analyzed healthy people’s EEG data for classifying emotions used EEG sensors with
four or more electrodes [6–22,24–29,31,75]. However, in this study, as described in Section 3.4, we used
EEG data from only two electrodes due to the practical restrictions set by the requirements of our project.
We acknowledge that this may raise concerns regarding whether two electrodes are enough to provide
sufficient quality of EEG data for emotion classification. In our previous studies, however, we analyzed
EEG data from two electrodes and secured classification models with reliable performance [33,34].
Furthermore, Takahashi [23] and Shen et al. [25] also successfully used EEG data from two electrodes
attached to the frontal area of the participant’s head for emotional classification. Additionally, in our
investigation of the literature, studies that used the Muse Brainband for psychological and mental
research exist [91]. Thus, as the results of previous studies and the performance of the proposed model
indicate, the use of EEG data from only two electrodes can be used to classify emotions.

In this study, we adopted the EEG-based emotion classification framework of Seo et al.’s study [34],
which was the latest state-of-the-art method in our literature review. As summarized in Table 1,
most previous emotion classification studies employed traditional machine learning methods such
as SVM, KNN, or MLP. By considering all these methods and more recent RNN models, we did
a comprehensive optimization to find the best methodological setup for our problem. To further
investigate how the results of the latest emotion classification for healthy people could be compared
to our results on AD patients, we applied the MLP model to our dataset in a binary classification
setting as in [34]. The results are summarized in Table 14. Although the used dataset and emotion
settings were different, it can be seen that the current MLP model in the AD patients group achieved
overall higher accuracies than the highest accuracy of 77.04% in [34] among those studies for healthy
individuals in Table 1. Therefore, it implies that emotion classification model for healthy people can be
applied for AD patients as well. To compare the two groups more systematically, however, additional
studies should be conducted with data collected under the same setting.

A general approach of training models in machine learning divides the data into three datasets
(training, testing, and validation). An essential condition for dividing the data is securing a
large enough volume of data. However, in some studies that used human physiological data,
practical limitations made it hard to collect enough data. Therefore, many studies adopted k-fold
cross-validation or LOOCV approaches for validating their models’ performance [6,13,15,17,18,22–24,
29,33,34,36–38,59,74,92,93]. Although this validation approach is not as robust as dividing the data
into multiple sets, it has been recognized by the scientific community as a suitable validation approach.
In our future study, we plan to collect more data from AD patients and evaluate our model on them.

In our data collection protocol, we requested that the participants estimate the strength of the
target emotion using a four-point scale after showing each emotion-evoking video. The reason for
interrupting the sequence of emotion-evoking videos with a question was the concern that AD patients
with dementia might not remember their emotional status for each stimulus were the questions asked
at the end of the experiment. However, for cross-checking the correlation between the target emotion
and the subjective measurement, an ideal method would be to ask the participant at the end of the
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experiment which of the three emotions they felt for each stimulus. In our future work, we will reflect
on this limitation.

Regarding the reason why the MLP models performed better than the RNN models,
we hypothesize that the limited number of samples affected the RNN models’ performance. Deep
learning models typically require a large number of samples to train models well. In this study,
we used 60 samples for training and testing. Compared to the public EEG dataset, MindBigData
contains 1,207,293 samples [94]. Using that dataset, Kim et al. and Gao et al. achieved accuracies of
95.95% and just under 95% for models that classified users viewing digits or other objects, respectively
[95,96]. In this study, we investigated the possibility of using deep learning for classifying emotion
using small numbers of EEG samples. Our current Elman RNN model did not reach the performance
levels achieved by the MLP-i model; however, we expect that if the models were trained on a larger
dataset or by using other DL approaches, this trend would change.

We also analyzed the attention scores of the GRU and Elmen RNN models in Section 5.4; however,
we did not assign a high value to the GRU model’s attention score result because the performance
of the GRU model was worse than that of the other CML and RNN models; therefore, analyzing
this model’s attention score would not have a relevant impact. However, the Elman RNN model’s
performance was the best among the RNN models. Additionally, for boredom classification, the model
performed the best among all the tested models. Thus, analyzing the attention score of this model may
be valuable.

Regarding the attention score analysis result for the Elman RNN model, the attention scores of the
first 100 sequences were higher than those of later sequences. Considering the sampling rate (10 Hz),
the first 10 s of EEG data after the stimulation began had a larger impact on the classification result.
Therefore, we suspect that the emotional states of AD patients could be determined within 10 s after a
stimulus. However, the underlying reasons regarding why 10 s of data had an influence on the Elman
RNN model classification should be investigated in a future study.

In this study, we did not investigate the correlations between the emotion detection results and
the AD patients’ MMSE points because the participants were unevenly distributed across the MMSE
categories; thus, the number of participants in some of the MMSE categories was not large enough.
In future work, we plan to invite more AD patients and investigate whether the MMSE score has any
influence on the emotion detection results.

Furthermore, some studies have analyzed face processing in the brains of participants with
Asperger syndrome [97,98], but to the best of our knowledge, EEG-based emotion detection for this
group has not been explored. Our future study will investigate EEG-based emotion detection with
participants having other types of disorders, such as autism and AD.

The limitations of this study are as follows. First, we used only a relatively small number of
samples for training. Therefore, the generalizability of our results would need further validation.
Second, we collected data from Alzheimer’s disease patients with dementia, all of whom were Korean
women. Thus, applying our models or protocol to AD patients representing other cultural groups,
genders, age groups, or types of dementia disease may lead to different results. Third, due to a
relatively small dataset, we used a k-means cross validation instead of a train-test split. Although the
former approach has been widely used, it is regarded as less robust than the latter. In future studies,
we will address these limitations by collecting more data from more diverse groups of patients across
different cultures, by using different emotion-evoking stimuli, and by investigating additional training
techniques, such as using a CNN to develop a unified emotion classification model.

7. Conclusions

In this study, we developed classification models that can detect the emotions of AD patients
using EEG signals as a data source. We achieved this result by collecting EEG data from 30 Korean
patients with Alzheimer’s disease who were patients at a medical rehabilitation center. Moreover,
we trained models using CML algorithms and RNNs. The accuracy measurements indicate that the
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MLP-i model achieved an average accuracy of 70.97% for the three target emotions, whereas the Elman
RNN model reached an average accuracy of only 48.18% for the three target emotions. These models
showed different strengths for classifying specific emotions: happiness and peacefulness for MLP-i
and boredom for Elman RNN). Although we did not produce a unified emotion detection model for
general emotion detection usage, considering that previous studies have mainly focused on patients
with neurological disorders, our results open a new stream of research in the field of detecting the
emotions of patients with AD. Based on our results, future caregivers and system developers can
expect to obtain the emotional states of AD patients and utilize that information to provide better care.
Additionally, in our future study, we will investigate how to perform near-real-time adaptation of VR
content in our VR system with regard to emotions experienced by AD patients. We will design and
implement the hardware and software infrastructure for responding as such.
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