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Abstract: Building extraction from high spatial resolution remote sensing images is a hot spot in the
field of remote sensing applications and computer vision. This paper presents a semantic segmentation
model, which is a supervised method, named Pyramid Self-Attention Network (PISANet). Its structure
is simple, because it contains only two parts: one is the backbone of the network, which is used to
learn the local features (short distance context information around the pixel) of buildings from the
image; the other part is the pyramid self-attention module, which is used to obtain the global features
(long distance context information with other pixels in the image) and the comprehensive features
(includes color, texture, geometric and high-level semantic feature) of the building. The network is an
end-to-end approach. In the training stage, the input is the remote sensing image and corresponding
label, and the output is probability map (the probability that each pixel is or is not building). In the
prediction stage, the input is the remote sensing image, and the output is the extraction result of
the building. The complexity of the network structure was reduced so that it is easy to implement.
The proposed PISANet was tested on two datasets. The result shows that the overall accuracy
reached 94.50 and 96.15%, the intersection-over-union reached 77.45 and 87.97%, and F1 index reached
87.27 and 93.55%, respectively. In experiments on different datasets, PISANet obtained high overall
accuracy, low error rate and improved integrity of individual buildings.

Keywords: building extraction; high resolution image; semantic segmentation; deep learning

1. Introduction and Related Work

Building extraction from high spatial resolution remote sensing images provides important
information for urban-related applications such as smart cities, urban planning, population estimation
and disaster management [1–3]. Since Liow et al. [4] began to study automatic building extraction
from aerial remote sensing images in 1989, many well-known algorithms have been proposed.
In high-resolution images, there are often large intra-class differences, while inter-class differences are
relatively small. Additionally, remote sensing images are susceptible to differences in illumination,
terrain, environment and atmosphere. These characteristics make it extremely difficult to exactly
extract feature information from high-resolution remote sensing images. Buildings present large
variability in types and shapes and tend to be smaller than other individual features such as roads
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and water bodies, increasing the difficulty of building extraction. Therefore, current algorithms for
building extraction still need further research.

Traditional methods of building extraction are based on image segmentation or morphological
operators. For example, Jin et al. extracted buildings from IKONOS images by constructing a
differential morphological profile (DMP) with comprehensive structural, contextual and spectral
information [5]. Bee et al. proposed an initialization algorithm of active contour model to improve the
snake model for building extraction [6]. An algorithm based on morphology called bidimensional
granulometry was developed by Sébastien et al., but this method is affected by objects of different
types [7]. Another algorithm that uses morphology is the Morphological Building Index (MBI) [8], but it
does not discriminate well features with similar spectral characteristics (e.g., open areas). Therefore,
based on MBI, the Morphological Shadow Index (MSI) auxiliary building extraction was proposed [9].
There is also a semi-automated model that extracts buildings using interactive segmentation [10]
through the steps of mean shift segmentation, region extraction and edge detection. These models
and methods require artificial feature construction and features are often not universal for many other
applications and datasets.

The accelerated spread of deep learning theory and remote sensing big data since the early
2010s [11] quickly promoted the development of information extraction-related algorithms [12],
including for building extraction from high spatial resolution images. Many deep learning methods
have been continuously presented for building extraction. Bittner et al. [13] and Shrestha et al. [14]
put forward a fully connected network and conditional random field method for building extractions.
Xu et al. [15] introduced the idea of ResNet to improve U-Net and used the guided filter to process
the prediction results of the network. Although these networks may obtain higher accuracy, they all
rely on post-processing for extracting buildings. With the development of deep learning models,
many end-to-end training networks without pre-processing and post-processing have been put forward.
Zhong and Huang et al. constructed end-to-end training networks based on fully convolutional
network (FCN) and a deconvolution network (DeconvNet), respectively, for building extraction [16,17].
These methods have achieved good results on traditional image recognition tasks. However, there are
various problems when they are applied directly to building extraction from high-resolution remote
sensing images, and it becomes necessary to develop suitable models for this purpose. Yuan et al. [18]
designed a convolutional neural network (CNN) capable of integrating multiple layers. Ji et al. [19]
designed a CNN like U-Net and a feature pyramid network (FPN), and both achieved good results on
a public dataset. Yang et al. compared four methods of branch-out CNN, FCN, conditional random
fields as recurrent neural networks (CRFasRNN) and SegNet for large-scale mapping of buildings in
the United States [20]. Although these networks use multiple convolution layers to expand the scale of
the receptive field, these features still obtain local context information.

Non-local networks provide a new solution for global feature extractions related to buildings [21].
The principle of non-local networks is to use the self-attention mechanism for obtaining the dependency
relationship between any two pixels in the feature map and derive long-distance dependency relationships.
Based on this concept, semantic segmentation networks based on self-attention mechanisms have
developed rapidly. Fu et al. designed a position attention module and a channel attention module
using the self-attention mechanism to capture the position and channel dependencies [22]. Experiments
have shown that a state-of-the-art effect is achieved on current mainstream datasets. The self-attention
mechanism in [23] calculates feature maps in a way that maximizes expectations and achieves a current
optimal effect. Simultaneously, the semantic segmentation networks of self-attention mechanism have
been shown to be able to extract global features better [24–26].

In addition, with the development of deep learning technologies [27], the structure of a deep
learning network becomes increasingly complex and needs more samples [28]. The deep learning
networks for building extraction often have complex structure and tedious steps. For example,
Liu et al. [29] used multiple spatial residual inception (SRI) structures and crisscrossed feature map
connections for building extraction. Sun et al. [3] and Huang et al. [17] proposed a method that
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trained multiple existing deep learning models and fused the outputs to obtain the extraction results,
which required several times more work than other end-to-end methods. Li et al. [30] used generative
adversarial networks for building extraction. In summary, the above models have either a complicated
model structure or are difficult to train with parameters.

High-resolution remote sensing images have rich spectral, textural and spatial context features.
To make full use of the overall characteristics of buildings, the long-distance dependencies for global
context information is needs to be combined with local features for building extraction. It is necessary
to design a simple network that can integrate local and global features. Inspired by two models [22,31],
we propose a novel network called Pyramid Self-Attention Network (PISANet). The structure of the
PISANet is mainly composed of the backbone and PISA module. We validated PISANet with public
building datasets and compared its performance with that of other widespread networks, such as
SegNet, PSPNet and DeepLab V3. Experimental results have demonstrated that the PISANet can make
full use of the local and global information together, maintain the integrity of the building shape and
greatly reduce the occurrence of background area error.

2. Methods

2.1. Motivation

In traditional CNN, the network captures a wider range of contextual information by increasing
depth of network. However, too large network depth will have some side effects, such as gradient
disappearance and gradient explosion [32]. The residual network (ResNet) partly overcomes the
problem in the training of deep network, since it uses skip connection in different layers to stabilize the
training. However, for building extraction with semantic segmentation, there is still a contradiction
between global context information and local context information. The local context information is
mainly the feature closely around the pixel, which is helpful to recognize the details. Global context
information is the dependency of any pixel in the whole picture and can distinguish confusing semantic
information. In ResNet, the connections between layers are mainly at the same scale, which is hard to
avoid the contradictions between global and local features.

The self-attention mechanism can establish the connection between different scale layers.
This special inter-scale connection can coordinate the relationship between different scales and
levels, and then the contradictions between the global and the local will be alleviated in semantic
segmentation. Therefore, this paper designs a network PISANet with portable structure, which can
coordinate local and global context information well to improve the results of building extraction.
In the following, the structure of PISANet will be presented in detail.

2.2. PISANet

The structure of PISANet (Figure 1) is mainly composed of the backbone and PISA module.
The backbone can be any feature extraction network, such as VGG or ResNet. Because ResNet [32]
has an excellent feature extraction ability, ResNet-101 was adopted as the backbone in the proposed
PISANet. The feature map (it is a two-dimensional array with a large number of channels. Generally
speaking, there are 64 to 2048 channels. In particular, we can also regard the red, green and blue (RGB)
bands of aerial imagery as a 3-channel feature map) F1 from the backbone network was then sent to
the PISA module. The PISA module was used to generate the global feature map F2, which contains
the long-distance context learned from the training dataset. The local representation feature map F1
and the dense context global feature map F2 were combined and sent into the segmentation layer
to generate the probability map (a 2-channel feature map, the first channel is the probability that
each pixel is classified as a non-building, and the second channel is the probability that each pixel is
classified as a building).
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Figure 1. The flowchart of the proposed method and structure of the Pyramid Self-Attention Network
(PISANet). The flowchart is divided into training stage and extraction stage. In the training stage,
the input is a remote sensing image and corresponding label, and the output is a probability map.
In the extraction stage, the input is a remote sensing image, and the output is the extraction result of
the building.

2.2.1. Backbone Network

With strong learning ability, ResNets can dramatically alleviate the difficulty of training deep
network. There are five kinds of ResNets, which are Resnet-18, Resnet-34, Resnet-50, Resnet-101 and
Resnet-152. Due to the tradeoff between the computation and performance, this paper use ResNet-101
as the backbone of PISANet.

Figure 2a is the network structure diagram of ResNet-101, which can be divided into 8 parts,
including 5 structures. The first part is a convolution layer. The convolution kernel size of the input
image is 7 × 7, and the stride is 2. In the process of learning features, the size of the feature map is
halved from the input size 224 × 224 to the output size 112 × 112. The second part is the maximum
pooling layer. The maximum value within the range of 3 × 3 pixels is taken as the output, and the size
of the feature map is further halved to reduce the output size to 56 × 56. The third to sixth parts are
residual convolution blocks, which are also the core of ResNet. This part mainly increases the depth of
the network for further residual learning. The first residual convolution block does not change the size
of the output feature map, and the size of the output feature map for the other three blocks is halved.
The seventh part is the average pooling layer. The average value within the range of 7 × 7 pixels is taken
as the output. The eighth part is the full connection layer composed of 1000 neurons, corresponding to
1000 categories. The output is the probability of the input image for the 1000 categories. The category
with the highest probability is the final output class.
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Figure 2. (a) The structure of ResNet-101, it can be divided into 8 parts. (b) One of the residuals
learning structures for the first residuals block of ResNet-101.

Figure 2b is a residual learning structure in the first residue convolution block of ResNet-101.
Residuals learning means that if the input feature map is x and the output feature map is H(x), then the
expected residuals are F(x) = H(x) − x. Under extreme condition, if the learned residual F(x) = 0,
then H(x) = x, which ensures that the input feature x will not be lost and the performance of the network
will not decrease. In practice, the residual will not be 0, which means that several convolutional layers
in the residual learning structure will learn new features on the basis of the input feature map to
improve the performance of the network. In each residual structure, it consists of three convolutional
layers, which are 1× 1 convolutional layer, 3× 3 convolutional layer and 1× 1 convolutional layer. As in
Figure 2b, the first 1 × 1 convolutional layer is for dimensionality reduction, compressing 256 channels
to 64 channels; the second 3 × 3 convolutional layer is to further learn features at higher levels, where
the number of channels in the output feature map is 64 channels; the third 1 × 1 convolution is a
dimension increase, which increases the 64 channels to 256 channels. There are 3 residual structures
in the first residual convolution module in ResNet-101, that is, the 3 residual learning structure are
connected end to end. Similarly, the second to fourth residual convolution blocks are with the same
structures, but the number of channels is different. The residual connection is similar to a short circuit,
so it is also called a shortcut connection.

2.2.2. Modifications Based on Backbone

Since ResNet-101 is a network used for image classification, it needs improvements to be applied
to pixel-level classification. First, we remove the 7th and 8th parts in ResNet-101. These two parts
have no effect on our task and will also lose information. In the 5th and 6th part, the size of the output
feature map is halved, because it contains a down-sampling operation, that is, the convolution kernel
performs convolution with stride of 2. We remove the down-sampling operation in these two parts
and replace it with dilated convolution, so that the size of output feature map is changed to 28 × 28.
The outcome of this design is the reduction in the size of the output feature map obtained through
the backbone (1/8 of the size of the input), while retaining more spatial information without adding
additional parameters.

2.2.3. Self-Attention

The convolutional layer in the convolutional neural network limits the range of the local receptive
field (a pixel on the feature map corresponds to the range of pixels on the input) so that only
short-distance context information can be obtained. Global context information has an important
impact on network performances. In 2017, Ashish et al. [33] proposed to use the non-local module to
obtain global features, which were later introduced into computer vision.
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The non-local network significantly increases the visual range and can obtain global context
information from getting pairwise dependencies of all pixels (Figure 3). The input feature map X
enters each of the Q, K and V branches and performs a 1 × 1 convolution in each branch to achieve
a dimensionality reduction. After the feature map X enters the Q branch convolution, its size is
C × H ×W (C represents the number of channels in the feature map, H represents the height of the
feature map and W represents the width), which is then reshaped to C ×N. After transposing, a feature
map Q’ of size N × C is obtained, where N = H ×W. In branch K, the convolution changes the size to
be K prime of C × N, and the convolution changes the size to be V prime of N × C. After X enters the
K and V branches, the feature maps K’ and V’ of C × N and N × C sizes are obtained, respectively.
At this time, the feature maps Q’ and K’ in the Q and K branches are matrix-multiplied to obtain
QK’. The purpose of this step is to obtain the relationship between two pixels in the input feature
map. The N × N weight information is obtained by normalizing QK’ through SoftMax (a function that
normalizes a weight value to a range of 0~1), which calculates the influence of each pixel in all K’ on
each pixel in Q’, the output is called the attention map. Then, QK’ and V’ are matrix multiplied to
obtain a feature map QKV’ with a size of N × C. After resizing, it is added to the input feature map X
to obtain a feature map X’ with a size of C × H ×W. However, the non-local module consumes a lot of
computing resources and graphics processing unit (GPU) memory in the actual processing. Assuming
that the input feature map size is C × H ×W, the computational complexity of similarity relationship
between any two pixels (to represent the time and space required by the algorithm, the higher the
value means the more complex it is) is O (CN2 = CH2W2) in the Q and K branches. When calculating
the influence of all positions on a certain pixel, a matrix multiplication operation with a complexity
of O (CN2 = CH2W2) is still required. The non-local block consumes a lot of computing resources to
generate a huge attention map, while acquiring global context information.

Figure 3. The structure of self-attention [22].

2.2.4. Pyramid Self-Attention

To retain spatial information as much as possible and effectively reduce the amount of calculation
and GPU memory usage, the key is to reduce the size of the attention map generated in non-local,
while obtaining dense context information. This can be achieved by simply changing the number of
pixels in each channel in the K and V branches [31]. As shown in Figure 4, the size of the feature map Q”
obtained in the Q branch is N × C, and the size of the feature map K” obtained in the K branch is C × S.
After matrix multiplication of Q” and K”, the feature map QK” with size N × S is obtained, and the size
of feature map QKV” after matrix multiplication of QK” and V” is N × C, which is the same as QKV’
in Figure 3. At this time, as long as the condition of S << N is satisfied, the computational complexity
can be reduced to O(CNS), which is significantly lower than the complexity O(CN2) of the original
self-attention. The calculation includes the following two processes:

(1) The calculation process of Self-Attention (Figure 3):

(RN × C
× RC × N)→ RN × N

× RN × C
→ RN × C (1)
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(2) The calculation process of Pyramid Self-Attention (Figure 4):

(RN × C
× RC × S)→ RN × S

× RS × C
→ RN × C (2)

Figure 4. The structure of PISA module.

To reduce complexity while preserving spatial information as much as possible, we introduced
the Spatial Pyramid Pooling structure [31,34], which adopts multiple pooling kernels of different sizes
for adaptive pooling (Figure 5). The feature map of C × H × W size is entered into SPP, and the
feature maps of C × 1 × 1, C × 3 × 3, C × 6 × 6 and C × 8 × 8 are obtained after adaptive pooling.
The four feature maps are split together after pixel decomposition, and a feature vector of C × S length
is obtained. S is equal to the number of pixels in each channel in the four feature maps:

S =
∑

n∈{1,3,6,8}

n2 = 110

where n represents the width or height of each feature map after pooling. It can be seen that S << N
(assuming that the feature map size is 32 × 32, then N = 32 × 32 = 1024, S = 110 << N), the complexity
is also reduced to O (CNS).

Sensors 2020, 20, x FOR PEER REVIEW 7 of 19 

 

complexity O(CN2) of the original self-attention. The calculation includes the following two 

processes: 

(1) The calculation process of Self-Attention (Figure 3): 

(RN×C × RC×N) → RN×N × RN×C → RN×C (1) 

(2) The calculation process of Pyramid Self-Attention (Figure 4): 

(RN×C × RC×S) → RN×S × RS×C → RN×C (2) 

 

Figure 4. The structure of PISA module. 

To reduce complexity while preserving spatial information as much as possible, we introduced 

the Spatial Pyramid Pooling structure [31,34], which adopts multiple pooling kernels of different 

sizes for adaptive pooling (Figure 5). The feature map of C × H × W size is entered into SPP, and the 

feature maps of C × 1 × 1, C × 3 × 3, C × 6 × 6 and C × 8 × 8 are obtained after adaptive pooling. The 

four feature maps are split together after pixel decomposition, and a feature vector of C × S length is 

obtained. S is equal to the number of pixels in each channel in the four feature maps： 

𝑆 = ∑ 𝑛2

𝑛∈{1,3,6,8}

= 110  

where n represents the width or height of each feature map after pooling. It can be seen that S << N 

(assuming that the feature map size is 32 × 32, then N = 32 × 32 = 1024, S = 110 << N), the complexity 

is also reduced to O (CNS). 

 

Figure 5. Schematic diagram of pyramid adaptive pooling [34]. Figure 5. Schematic diagram of pyramid adaptive pooling [34].

2.3. Preprocessing

In order to learn more effectively, accelerate model fitting and improve the training accuracy,
the dataset needs to be pre-processed before it is fed to the network. Two preprocessing operations are
required before starting the deep learning experiments. The first step is to normalize the input image
band value and subtract the average value of the RGB three bands. The purpose of image normalization
is to move the image pixel distribution to the center position for obtaining stable weights and variances
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and improve training efficiency. The second step is to augment the dataset. Because samples in the
training dataset are limited, the sample diversity needs to be increased by rotation, mirroring, random
noise and blurring. This improves the robustness of the model and prevents it from overfitting.

2.4. Training Strategy

The process of building extraction in this paper was divided into training and prediction (Figure 1).
In the training part, the image and the corresponding label were used by the network for training after
preprocessing. In each training epoch, according to the network parameters learned, the corresponding
output probability map was obtained for the input image. The output probability map and the ground
truth label used the loss function to calculate the gap between the current model and the expected
model. Then, the parameters were optimized and updated through backward propagation to complete
an epoch of training. When the model training was completed, it entered the extraction stage, in which
the model output the predicted building extraction effect map from the test set image. The extraction
accuracy of the model was assessed by comparing the prediction with the ground truth.

In this paper, the batch input increased the model stability. The batch size parameter (the number
of samples entered at the same time during each training iteration) was set to 5, the initial learning
rate (represents the speed at which information accumulates in the neural network over time) was set
to 0.01 and the aerial image and the corresponding ground truth are cropped to a size of 400 × 400;
the learning rate was dynamically updated with the epoch of training.

2.5. Advantages and Disadvantages

In this paper, the proposed PISANet combine local context information and global context
information to improve the feature expression ability of buildings extraction. With this comprehensive
feature representation, some interference targets similar to buildings (such as containers) can be
correctly distinguished by PISANet without being misclassified. The integrity of the building can
also be well guaranteed, and the phenomenon of missing is reduced (Section 4 experimental part).
In terms of network structure, PISANet only contains two modules, the structure is simple and easy to
implement, and there is no intricate structure. Some disadvantages in similar types of networks still
existed in PISANet. For some too small buildings, all of them cannot extract their very tiny details.

3. Dataset and Evaluate Indicators

3.1. Dataset

To evaluate the proposed method, two public building datasets, the Inria Aerial Image Labeling
Dataset [35] and the Wuhan University (WHU) Building Dataset [36], were used for PISANet validation.
These two datasets cover a wide range of building types, different shapes, and are both at high
spatial resolution.

The Inria Aerial Image Labeling Dataset, released by Maggiori et al., covers an area of
810 square kilometers, with a total of 360 pictures, each with 5000 × 5000 pixels. The dataset includes
ten densely populated cities and remote villages (Austin, Bellingham, Bloomington, Chicago, Innsbruck,
Kitsap, San Francisco, Western and Eastern Tyrol and Vienna). The spatial resolution of the images
reaches 0.3 m and the shape and structure of the buildings are clearly visible. The dataset is divided
into a training set and a test set. Only the training set is completely public. For training and prediction,
the 180 training samples are divided into 160 training subsets, 10 verification subsets, and 10 test
subsets. A special characteristic of this dataset is that different cities are contained in different subsets;
for example, Austin is part of the training set and Bellingham belongs to the test set.

The WHU Building Dataset is a building dataset containing aerial imagery and satellite imagery
released by Wuhan University. In this paper, a subset of aerial imagery from this dataset was selected.
It contains 8188 non-overlapping 512 × 512 pixels pictures with a spatial resolution of 0.075 to 0.3 m,
covering 450 square kilometers of Christchurch in New Zealand. The dataset is divided into a training
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set (4736 sheets, containing 130,500 buildings), a validation set (containing 1036 sheets, 14,500 buildings)
and a test set (2416 sheets, containing 42,000 buildings).

Table 1 shows some characteristics of the Inria Aerial Image Labeling Dataset and WHU Building
Dataset. It is a pity that the official websites of these two datasets did not publish the relevant parameters
of aerial imagery, such as flight altitude, sensors, etc. Therefore, we only list some characteristics of the
dataset itself.

Table 1. Characteristics of Inria Aerial Image Labeling Dataset and WHU Building Dataset.

Dataset Resolution Image Size Spectral Image Counts File Size Cities Area

Inria
Aerial
Image

Labeling
Dataset

0.3 m 5000 × 5000 Red/Green/Blue 360 12.7 G

Austin, Bellingham,
Bloomington,

Chicago, Innsbruck,
Kitsap, San Francisco,
Western and Eastern

Tyrol, Vienna

810 km2

WHU
Building
Dataset

0.075~0.3 m 512 × 512 Red/Green/Blue 8188 6.1 G Christchurch in New
Zealand 450 km2

Because of GPU memory limitations, the raw size of a single training sample was too large (the Inria
Aerial Image Labeling Dataset consists of 5000 × 5000 pixels per image). We randomly cropped the
input training sample to 400 × 400 pixels size and performed training after data augmentation.

3.2. Evaluate Indicators

To facilitate comparison and evaluation, the following five widely used evaluation indicators were
selected for model evaluation: overall accuracy (OA), intersection over union (IoU), precision rate,
recall rate and F1 score. The specific formulas are as follows [14]:

OA =
TP + TN

TP + TN + FP + FN
(3)

IoU =
TP

TP + FP + FN
(4)

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

F1 = 2×
precision× recall
precision + recall

(7)

where TP is true positive, TN is true negative, FP is false positive and FN is false negative.

4. Experiment and Discussion

To verify the effectiveness of PISANet, classic networks such as SegNet [37], PSPNet [38]
and DeepLab V3 [39] were used for comparison. Two experiments were analyzed and discussed in
detail as follows.

4.1. Inria Aerial Image Labeling Dataset Experiment

A qualitative assessment of the various methods on the Inria Aerial Image Labeling Dataset can
be seen in Figure 6. We selected four representative areas in the test set to display. The original image
contains the different shapes of large buildings and small buildings. From the extraction results, we can
observe that PSPNet and DeepLab V3 cannot distinguish the building and the ground where they are
similar. SegNet and PISANet have a slight advantage. Overall, SegNet and PISANet can handle large
buildings, small buildings, and special-shaped buildings with ease. Although SegNet performed well,
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the integrity of the building was not maintained. This is because SegNet is a network based on an
encoding–decoding structure, and the convolution kernel is mainly used to extract features in an image.
The convolution kernel obtains short-distance context information due to the limitation of the receptive
field, where the PISA module uses the non-local module to capture global information. Therefore,
the overall characteristics of the building can be obtained, and the building can be more completely
extracted, which can be seen more clearly in the extraction of large buildings. In the building extracted
by PISANet, there are few voids inside a single building, reflecting the advantages of the PISA module.

Table 2 lists the experimental results of PISANet and the three comparison methods on the Inria
Aerial Image Labeling Dataset. It is shown that PISANet has obvious advantages in OA, IoU and F1
indicators. Although precision and recall are not both the highest, it is not realistic to expect both
precision and recall to have the best values. The F1 indicator integrates both precision and recall and
thus is a more preferred metric. OA is a combination of the proportion of the number of pixels that are
completely predicted correctly in the two areas with building and without building. The IoU indicator
is the total number of pixels that are actually predicted in the building category to the total number
of pixels of all building categories (whether it is a predicted label or a ground truth label). Based on
the above experiments, PISANet surpasses the other model in these three indicators, indicating that
PISANet has certain advantages in building extraction.

Table 2. Experimental results on the Inria Aerial Image Labeling Dataset.

Models OA IoU PrecisionRecall F1

PSPNet 90.11 61.47 76.73 77.72 75.85
DeepLab V3 91.18 60.30 92.37 63.60 74.84

SegNet 94.24 76.71 85.04 88.71 86.80

PISANet 94.50 77.45 85.92 88.68 87.27
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In order to qualitatively show the accuracy of the results, the predicted results are displayed in color
(Figure 7). The green part is true positive, the gray part is true negative, the blue part is false positive
and the red part is false negative. When the extraction performs well, the green (true positive) and gray
(true negative) are the majority, but the blue (false positive) and red (false negative) are minority.
Red (false negative) indicates missing building information, and blue (false positive) indicates incorrect
building information. From Figure 7, it can see that red and blue are less in PISANet than in the results
of the other three methods, indicating a better performance. PISANet is also slightly better than the
other methods at discriminating non-buildings (the blue part is less). Due to certain errors in the
ground truth, some buildings are represented by non-buildings on the ground-truth label, but the
predicted result is considered to be buildings, which leads to more blue areas (the building in the lower
right corner of original image 4 is a non-building in the ground truth label).

4.2. WHU Building Dataset Experiment

Some representative areas were selected to display the experimental results on the WHU Building
Dataset for qualitative analysis (Figure 8). Original image 1 shows objects similar to containers,
which are easily confused with buildings, original image 2 shows small buildings and original images
3 and 4 show large buildings with different shapes. Judging from the experimental results, PSPNet
and DeepLab V3 were prone to leave buildings connected, did not distinguish individual buildings
well and misclassified some of the non-building parts. SegNet and PISANet both performed well
on large and small buildings. However, SegNet was more prone to incorrect extractions (red circle
in Figure 8), and PISANet extracted buildings more accurately because it captures local and global
features simultaneously.
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The experimental results of PISANet and the comparison based on the WHU Building Dataset
show that PISANet has the best performance for three important indicators OA, IoU and F1, which are,
respectively, at least 0.48, 0.77 and 0.40% higher (Table 3).
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Table 3. Experimental results on the WHU Building Dataset.

Models OA IoU Precision Recall F1

PSPNet 92.59 71.75 91.20 76.80 81.16
DeepLab V3 92.21 79.19 84.46 92.48 88.16

SegNet 95.67 87.20 93.29 93.05 93.05

PISANet 96.15 87.97 94.20 92.94 93.55

The extraction results were plotted in color on the WHU Building Dataset in Figure 9. From top
to bottom, there is a significant reduction in the red and blue parts of the prediction results of each
method in different regions. As shown in original image 1, PSPNet and DeepLab V3 show large
red parts, indicating obvious omissions. DeepLab V3 and SegNet have large blue parts, indicating
misclassification by these two methods.
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5. Conclusions

In this paper, a Pyramid Self-Attention Network for building extraction from high spatial resolution
remote sensing images was presented. Two public datasets, Inria Aerial Image Labeling Dataset and
WHU Building Dataset, were used to verify the effectiveness of PISANet. These datasets contain
buildings with highly diverse sizes, types and shapes. Experimental results have demonstrated that
the PISANet made full use of the local and global information together and obtained higher final
accuracy. Compared with other widespread networks, such as SegNet, PSPNet and DeepLab V3,
the proposed PISANet can distinguish easily confused building-like objects, and the buildings that
were partially obscured by shadows were accurately extracted and single buildings maintained better
boundary integrity. PISANet has a simple model structure and only consists of a backbone and a
pyramid self-attention module. Theoretically, the backbone can be replaced with any other network
such as VGG, ResNet and ResNeXt. PISANet is suitable for extracting buildings from high spatial
resolution remote sensing images, with simple structure and easy implementation.
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