Supplementary Material # Photoelectric characteristics of a large-area $n-MoS_2/p-Si$ heterojunction structure formed through sulfurization process Yoonsok Kim, Taeyoung Kim, and Eun Kyu Kim* Department of Physics and Research Institute of Natural Science, Hanyang University, Seoul 04763, South Korea * E-mail : ek-kim@hanyang.ac.kr #### Raman spectroscopy Figure. S1 Raman spectroscopy of the MoO_x and MoS₂ films. Figure S1. displays Raman spectroscopy results of MoO_x and MoS₂ films in the ranges from 100 to 1100 cm⁻¹. No peaks are observed for thermally evaporated MoO_x film but only substrate peaks. This indicates that the MoO_x film is amorphous structure, same as XRD analysis. This result is consistent with the previous report [1]. While typical two phonon vibration modes were observed on the sulfurized MoS₂ film, E¹_{2g} and A_{1g} phonon vibration mode. [1] C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, Angelica Azcatl, Carlo Carraro, Biwu Ma, Roya Maboudian, Robert. M. Wallace, and Ali Javey, Hole selective MoO_x contact for silicon solar cells, Nano Lett. 14 (2014) 967-971. Three points of Raman spectra on sulfurized MoS₂ film. Figure. S2 Raman spectra of the sulfurized MoS2 films on three points. Figure S2 shows Raman spectra of randomly measured three random points on the sulfurized MoS_2 film. The data display two phonon vibration modes, E^1_{2g} and A_{1g} , at the same position which indicate that the sulfurized film has homogeneity in the direction of parallel to the surface. #### Grain size calculation from XRD profile Figure. S3 XRD data of the sulfurized MoS₂ film. We tried to extract the grain size from the XRD data of the sulfurized MoS_2 film, which have (002)-oriented peak as the main dominant peak, as shown in the Figure S3. The average grain size was extracted to be about 10 nm by Scherrer equation at the (002)-oriented peak. $$d = \frac{c\lambda}{\beta cos\theta}$$ Here, c is a shape factor taken as 0.9, λ is the X-ray wavelength of Cu K-Alpha (1.5406 Å), β is peak width at FWHM (0.79°), and θ is the peak angle (14.20°). #### O 1s core level of XPS peak Figure. S4 XPS data of O 1s core level from MoO_x, sulfurized MoS₂, and MoS₂ bulk crystal. We compared also the XPS data of O 1s core level. Mo:O ratio from MoO_x film, sulfurized MoS₂ film, and MoS₂ bulk crystal appeared 1:2.9, 1:0.3 and 1:0.19, respectively. Also, Mo:S ratio was calculated to be 1:2.4 and 1:2.2 for sulfurized MoS₂ film and MoS₂ bulk crystal, respectively. The Mo:S ratio of the sulfurized film was calculated from the Figure 2c, d. This result indicate that the MoO_x film transformed to MoS₂ film. ### Response time measurement **Figure. S5** (a) Photocurrent transient characteristics under square pulsed light illumination of 780nm wavelength at reverse bias of -1 V. (b) The rising and (c) the decaying transients. Figure S5 represent the response time of the n-MoS₂/p-Si heterojunction. The device shows excellent repeatability and stability. Also, the rise and decay times were calculated to be 19.78 ms and 0.99 ms, respectively.