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Abstract: In order to provide a simplified and low-cost solution of the terminal for a distributed
actuation system, this paper proposes an electro-hydrostatic actuator (EHA) based on the linear drive
principle. The proposed actuator is directly driven by a linear pump with a collaborative rectification
mechanism, whose performance relies on the collaboration of the internal two units. A pair of linear
oscillating motors are employed to drive the two pump units respectively. The control of the actuator
is based on the modulation of the oscillating amplitude, frequency, and phase difference of the two
motors. The advantage of this actuator is that no more valve control is needed to rectify the linear
pump besides the high efficiency of the direct pump drive. In this paper, both schematic and detailed
structure of the actuator is presented. The kinematic and dynamic characteristics are analyzed and
modeled, based on which the control method is proposed. The experiments verify the validity of the
actuator structure and control.

Keywords: distributed actuation; direct drive; linear pump; collaborative rectification;
modulation control

1. Introduction

As an important part of the advanced flight actuation system, electro-hydrostatic actuators (EHAs)
have been widely researched, developed, and successfully used on several models of commercial and
military aircrafts [1–3]. EHAs implement the idea of distributed actuation. A heavy central power
station and complex transmission pipelines are replaced by a distributed lightweight power module
and networked electrical wiring, which simplifies the system architecture and improves reliability [4–6].
With the development of EHAs, the application scenario has expanded from aerospace into other
industries such as robot, artificial limb, etc. [7–9]. There have been explorations and innovations in
EHA design and composition. Kargov et al. employed a gear pump to compose the actuation system
for artificial hands [10]. For industrial robots, Alfayad et al. proposed a neatly designed hydrostatic
actuator to achieve smooth actuation with high servo stiffness [11]. Furthermore, various materials
and configurations are employed in EHAs for emerging fields. Cacucciolo et al. proposed a stretchable
pump based on the electrohydrodynamic principle. The pump drives a soft actuator to actuate fluidic
muscle [12]. Li et al. developed a biohybrid pump using polydimethylsiloxane (PDMS). The pump
generates unidirectional flow powered by engineered skeletal muscle tissue and can be used in many
biological applications [13].

The pump in an EHA is the key energy transformation component. Due to its much simpler
structure and lower manufacturing costs, linear pumps are always attractive options for an EHA
integrator. Thanks to the development of linear drive technology, researchers can explore many related
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solutions in designing an EHA [14]. Linear pumps using smart materials and electromagnets can
achieve very high reciprocating motion frequency and cooperate with active or passive rectification
valves to provide fluid power to the actuation system [15–17]. The requirements of bidirectional drive
and high rectification efficiency make the active valves preferred alternatives [18,19]. The valves
need to be controlled in coordination with the pumping cylinder based on the sensing of the cylinder
motion. Therefore, the valve control is essential for the actuator and brings in risks of system failure.
Distributed actuation with EHAs proved to simplify the system’s overall complexity and improve
flexibility. However, EHAs potential limitations have also gained more and more attention. The EHA
configuration, which consists of a set of components, needs more local installation space than a
conventional cylinder [3]. Thermal issues emerge as the compact structure integrates heat generating
components (motors and pumps) but lacks heat dissipation elements (pipelines) [20].

Li et al. initially proposed a conceptual design of a linear pump with collaborative rectification and
discussed the pump composition principles. The internal two pump units were controlled to compress
the fluid power and simultaneously rectify for each other. No extra valve control is needed. In addition
to the structure simplicity, the advantage of this pump is the flowrate direction control flexibility [21].
Wang et al. used this pump to compose an EHA referred to as a linear-driven EHA (LEHA) and
modeled the system by using an energetic macroscopic representation method [22]. This LEHA was
kinematically simulated and the capability of its prototype was preliminarily tested [23].

The schematic of the actuator is illustrated in Figure 1 [23]. This actuator consists of two linear
resonant motors, a linear pump, a hydraulic cylinder, an accumulator, several valves, and sensors.
The employed linear resonant motors were designed by Wang et al. with a novel compound Halbach
magnet array, and the flux and mover dynamics were analyzed and optimized [24–26]. The primary
component of the actuator is the linear pump, which incorporates two pump units. Each unit is
composed of a miniature cylinder to discharge fluid and a four-way spool valve to rectify the cylinder
flow of the other unit. Thus, the pump rectification relies on the collaborative reciprocation of the
two movers.
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the bidirectional driving capability and quick response of active rectification without any additional
valve control loop. The objective of this study is to describe the detailed mechanical design, analyze the
actuator kinematic and dynamic characteristics, propose a control method based on modulation, and
verify the method through experiments of the actuator prototype. The results show that the control
method is effective, and the actuator works as expected.

2. Design of the Actuator Prototype

2.1. Design of the Linear Pump

The linear pump is the component that logically and physically connects all other components
of the actuator (Figure 1). Thus, the linear pump design is primary for the actuator. Technically, the
two units can be designed identically and assembled through a manifold. In each unit, the rod of the
cylinder and the spool of the valve should be connected. A lever can be used for motion transmission
between the rod and the spool. Thus, it is not mandatory that the rod and the spool are coaxial,
which facilitates the machining and assembly, and guarantees the sealing effect as well. The section
views of the cylinder and valve are shown in Figure 2. According to Figure 2, the effective discharge
area of the cylinder is

Ap =
1
4

(
dp − dr

)2
π. (1)

Sensors 2020, 20, 634 3 of 16 

 

without any additional valve control loop. The objective of this study is to describe the detailed 
mechanical design, analyze the actuator kinematic and dynamic characteristics, propose a control 
method based on modulation, and verify the method through experiments of the actuator prototype. 
The results show that the control method is effective, and the actuator works as expected. 

2. Design of the Actuator Prototype 

2.1. Design of the Linear Pump 

The linear pump is the component that logically and physically connects all other components 
of the actuator (Figure 1). Thus, the linear pump design is primary for the actuator. Technically, the 
two units can be designed identically and assembled through a manifold. In each unit, the rod of the 
cylinder and the spool of the valve should be connected. A lever can be used for motion transmission 
between the rod and the spool. Thus, it is not mandatory that the rod and the spool are coaxial, which 
facilitates the machining and assembly, and guarantees the sealing effect as well. The section views 
of the cylinder and valve are shown in Figure 2. According to Figure 2, the effective discharge area 
of the cylinder is  

( )21
4p p rA d d π= − . (1) 

 

 
(a) 

 
(b) 

Figure 2. Section views of the linear pump components: (a) section view of the cylinder; (b) section 
view of the valve. 

The schematic of the lever mechanism and key parameters are shown in Figure 3.  

 
(a) 

 
(b) 

Figure 3. Schematic design of the lever: (a) lever between the rod and spool; (b) piston moves from 
neutral to the limit. 

To avoid mechanical collision between the rod and the lever, and ensure the bulb moves in the 
groove, the following condition should be satisfied: 

Figure 2. Section views of the linear pump components: (a) section view of the cylinder; (b) section
view of the valve.

The schematic of the lever mechanism and key parameters are shown in Figure 3.

Sensors 2020, 20, 634 3 of 16 

 

without any additional valve control loop. The objective of this study is to describe the detailed 
mechanical design, analyze the actuator kinematic and dynamic characteristics, propose a control 
method based on modulation, and verify the method through experiments of the actuator prototype. 
The results show that the control method is effective, and the actuator works as expected. 

2. Design of the Actuator Prototype 

2.1. Design of the Linear Pump 

The linear pump is the component that logically and physically connects all other components 
of the actuator (Figure 1). Thus, the linear pump design is primary for the actuator. Technically, the 
two units can be designed identically and assembled through a manifold. In each unit, the rod of the 
cylinder and the spool of the valve should be connected. A lever can be used for motion transmission 
between the rod and the spool. Thus, it is not mandatory that the rod and the spool are coaxial, which 
facilitates the machining and assembly, and guarantees the sealing effect as well. The section views 
of the cylinder and valve are shown in Figure 2. According to Figure 2, the effective discharge area 
of the cylinder is  

( )21
4p p rA d d π= − . (1) 

 

 
(a) 

 
(b) 

Figure 2. Section views of the linear pump components: (a) section view of the cylinder; (b) section 
view of the valve. 

The schematic of the lever mechanism and key parameters are shown in Figure 3.  

 
(a) 

 
(b) 

Figure 3. Schematic design of the lever: (a) lever between the rod and spool; (b) piston moves from 
neutral to the limit. 

To avoid mechanical collision between the rod and the lever, and ensure the bulb moves in the 
groove, the following condition should be satisfied: 

Figure 3. Schematic design of the lever: (a) lever between the rod and spool; (b) piston moves from
neutral to the limit.



Sensors 2020, 20, 634 4 of 16

To avoid mechanical collision between the rod and the lever, and ensure the bulb moves in the
groove, the following condition should be satisfied:

dn <
1
2

dl and h2 > 0. (2)

Based on the geometry relationship, the design constraint is

( 1
2 da − Sp)

√
L1

2 − Sp2 + Sp(L1 − h1)

L1
>

dl
2

, (3)

And the constraint for the spool is deduced similarly.
The mechanical design of the overall linear pump is shown in Figure 4. Two units of the cylinder

and the valve are integrated in one housing, which connects the chambers with internal conduits.
The detailed parameters are shown in Table 1.
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Figure 4. The design of the linear pump: (a) exploded view of the pump design; (b) prototype of
the pump.

Table 1. Mechanical parameters of the pump.

Items Symbol Value

Diameter of rod dr 7 (mm)
Diameter of piston dp 10.5 (mm)
Diameter of spool ds 7 (mm)

Length of lever L1+L2 51.7 (mm)
Ratio of lever L1/L2 1.7

Maximum stroke of piston lp 10 (mm)
Maximum stroke of spool ls 8.7 (mm)

2.2. Integration of the Actuator

The overall actuator design is shown in Figure 5. The linear motor proposed by Jiao and
colleagues [24] is hereby employed to drive the linear pump, and two motors are needed according
to the pump design. The accumulator is used to prevent the cavitation during the actuator working
process. Check valves and relief valves are used to protect the actuator from flow reverse or overload.
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The key parameters of this actuator prototype are essential for the following system analysis.
They are listed in Table 2.

Table 2. Key design parameters of the actuator.

Items Symbol Value

Force constant of the motor KT 27.5 (N/A)
Back electromotive force (EMF) constant of the motor Ke 27.5 (V·s/m)

Resistance of the motor winding Rm 2.2 (Ω)
Inductance of the motor winding Lm 12 (mH)

Equivalent mass of the mover (motor and the pump) ms 1.15 (kg)
Stroke of the motor Sm ±5 (mm)

Effective area of the pump piston Ap 48.1 (mm2)
Effective area of the actuator cylinder AL 954 (mm2)
Mass of the actuator cylinder piston mL 1.1 (kg)

Stroke of the actuator cylinder SL ±37 (mm)

3. Characteristics Analysis of the Actuator

3.1. Principle of the Pump Flowrate Variation

Since the driving linear motor mover is a mass-spring system and works at resonant frequency to
maximum efficiency, assume that the displacements of the two movers are sinusoid{

x1(t) = Sm sin(2π f t)
x2(t) = Sm sin(2π f t + ϕ)

, ϕ ∈ (−π,π], (4)

where Sm is the stroke of the piston, f is the driving reciprocating frequency, and ϕ is the phase
difference between the two movers. Thus, the velocities of the movers are{

v1(t) =
.
x1(t) = 2π f Sm cos(2π f t)

v2(t) =
.
x2(t) = 2π f Sm cos(2π f t + ϕ)

, ϕ ∈ (−π,π]. (5)

We define the displacement of the pump as the flow volume in one motion cycle of the two movers.
According to Li and co-workers [21], the defined displacement of the pump is

Pr = 8ApSm sin(ϕ). (6)
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Thus, the flow volume per unit time (i.e., flowrate of the pump) is

Qr = 8 f ApSm sin(ϕ). (7)

This is the primary principle of the pump output flowrate variation. According to Equation (7),
once the pump geometry parameters are fixed, the flowrate is a linear function of the amplitude
and frequency of the mover oscillating, and a sine function of the phase difference between the two
oscillating movers. Note that in Equation (7), when f, Ap, and Sm are defined as positive, the sign
of Qr (i.e., the direction of the flowrate) is only determined by ϕ. This means that when, and only
when, ϕ varies across quadrants (between the 1st and 4th quadrant according to the definition in
Equation (4)), the pump reverses the flow direction. To maximum the volume efficiency of the pump,
the phase difference ϕ should be either π/2 or −π/2.

3.2. Resonance Characteristics of the Linear Oscillating Motor

The linear motor internal structure is shown in Figure 6. It is a moving magnet type motor with a
Halbach magnet array [24]. The voltage balance equation of the linear motor is

U = Kev + Rmi + Lm
di
dt

, (8)

where U is the winding voltage, v is the mover velocity, i is the winding current, and Lm is the winding
inductance. The thrust of the linear motor is

Fm = KTi. (9)
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The dynamics of the mover consisting of a motor mover, pump piston, and spool are

ms
..
x = Fm − FLm − ce

.
x, (10)

where x is the displacement of the mover, FLm is the load force, and ce is the damping ratio. To accelerate
the mover, the motor thrust should be

Fm = ms
..
x = 4π2msSm f 2 sin(2π f t). (11)

Thus, during one period of the mover oscillation, the motor output power for the acceleration is

Wb =

∫ T/2

T/4
Fmvdt +

∫ T

3T/4
Fmvdt = 4π2msSm

2 f 2. (12)
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For a mass-spring system, the resonance frequency is

fr =
1

2π

√
ks

ms
, (13)

where ks is the spring constant. Substituting Equation (13) into Equation (12) yields

Wb = ksSm
2, (14)

which represents that by neglecting the damping, the acceleration energy can be transformed into
spring mechanical energy, and no extra electromagnetic energy is needed. Since there are two springs
mounted symmetrically, each spring constant is ks/2.

3.3. Overall Dynamics of the Actuator

A simplified schematic of the actuator is shown in Figure 7. The symbols representing the
pressures and flowrates are all labeled.
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The dynamics of the pump cylinders and the actuator cylinder are
ms

..
x1 + ce

.
x1 + ksx1 = Fm + (P1a − P1b)Ap

ms
..
x2 + ce

.
x2 + ksx2 = Fm + (P2a − P2b)Ap

mL
..
xL + cL

.
xL = (PLb − PLa)AL − FL

, (15)

where cL is the damping ratio of the actuator cylinder.
The pressures in the pump cylinder chambers are

.
Pna =

β
Vna

(Ap
.
xn −Qna)

.
Pnb = −

β
Vnb

(Ap
.
xn −Qnb)

, n = 1, 2 , (16)

where β is the fluid elastic modulus, and Vna and Vnb are the volume of the pump cylinder chambers.
Similarly, the pressures in the actuator cylinder chambers are

.
PLa =

β
VLa

(AL
.
xL −QLa)

.
PLb = −

β
VLb

(AL
.
xL −QLb)

, (17)

where VLa and VLb are the volumes of the actuator cylinder chambers.
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4. Control of the Actuator

According to the above analysis, the control of the actuator can be divided into two loops as shown
in Figure 8. The inner loop controls the linear motors to oscillate at the resonant frequency. The outer
loop controls the actuator cylinder to follow the actuator position reference from the system input.Sensors 2020, 20, 634 8 of 16 
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In order to ensure the mover oscillates at the resonant frequency, a feedforward controller is
employed here to compensate the disturbance of the mechanical load and viscosity. Since the mover is
a mass-spring system and fluid compression is equivalent to a spring, the feedforward controller is
designed as

ua(t) = P1
.
xr(t) + P2xr(t), (18)

where P1 is the damping coefficient and P2 is the elastic coefficient. The position controller and current
controller are both proportional–integral–derivative (PID) controllers due to engineering practicability.

4.2. The Actuator Position Control of the Outer Loop

According to Section 3.1, the pump flowrate is determined by the collaborative oscillation of the
two movers. However, the resonance requires a particular working frequency (i.e., the variable f should
not vary once the mover mass and spring stiffness are fixed). Hence, the pump flow control mainly
relies on the amplitude regulation of the mover oscillation. This means that the actuator controller
needs to transform the input into two channels of oscillating signal and output them to the two linear
motors respectively. Therefore, the actuator controller contains the function of amplitude modulation
and phase modulation as shown in Figure 10.
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Figure 10. The actuator controller modulates the input reference onto the sine signal of the linear motor
resonant frequency.

With reference to a study by Ziemer and Tranter [27], a double-sideband suppressed-carrier
(DSB-SC) is the most appropriate amplitude modulation (AM) for the actuator control. No offset
component is included in the modulated signal and the sine waveform is complete, for no spectrum
is filtered.

The flow direction is controlled by the phase difference ϕ. It is not necessary to vary both phases
of the two channels of the oscillating signal. Hereby only the phase of unit II oscillating signal is
modulated, which is a special case of phase modulation (PM) as the phase is modulated to be either
π/2 or −π/2.

Therefore, the actuator controller is designed as a series of PID controllers followed by a modulation
block as shown in Figure 11.
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According to the algorithm of PID and DSB-SC, the controller is described as u1(t) = (Kpe(t) + Ki
∫ t

0 e(t′)dt′ + Kd
de(t)

dt ) · sin(2π f t)

u2(t) = (Kpe(t) + Ki
∫ t
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de(t)

dt ) · sin(2π f t + sgn(e(t)) · π2 )
, (19)

where

sgn(e(t)) =


1 e(t) > 0
0 e(t) = 0
−1 e(t) < 0

. (20)

5. Experiments and Verification

The test rig is established as shown in Figure 12. The data acquisition and control system are
developed upon a LabVIEW RT platform running on PXI-1036 computer produced by the National
Instruments Corporation. The linear motor position is measured by a linear variable differential
transformer with a range of 68 mm, while the actuator cylinder position is measured by a similar
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model with a 650 mm range. The linear motor drive is a pulse width modulation (PWM) brush-type
motor servo drive, and the model is AMC 50A20I.
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In order to verify the actuator principle and control method, three experiments were carried out:

1. Linear motor control experiment. The aim was to verify the linear motor resonant oscillating
feasibility, and the effectiveness of the proposed PID + feedforward control method.

2. The actuator tracking performance experiment. The aim was to verify the pump and actuator
control feasibility and the tracking performance of the actuator control.

3. The actuator spring load experiment. The aim was to verify the actuator performance with a
spring load disturbance and test the actuator force capability with dynamic loads.

5.1. Linear Motor Control Experiment

The control of the linear motor mover position is a fundamental of the actuator control.
A controllable and stable resonance guarantees the displacement control of the pump. This part of the
linear motor control experiment separates into two stages: Firstly, the motor oscillation is tested by
using the cascaded closed-loop control architecture without the feedforward; secondly, the feedforward
control is added to verify its performance.

The linear motor of the actuator prototype is designed to oscillate at a frequency of 30 Hz.
According to Section 3.2, the stiffness of each internal spring is

ks1 = ks2 =
ks

2
=

4π2 fr2ms

2
= 20430 (N/m). (21)

The experiment result of closed-loop control without feedforward is shown in Figure 13.
The reference command is a sine waveform of 3 mm stroke and 30 Hz frequency. It is demonstrated that
the linear motor oscillates smoothly under the closed-loop control without any load. The current peak
value is less than 1 A. The energy consumed by the motor is mainly used to overcome the mechanical
viscosity. When an external load acts on the motor mover, the oscillation is disturbed seriously even
when the equivalent force is only approximately 34 N. This means the linear motor oscillation is weak
in resisting external disturbance.

After applying the feedforward control proposed in Section 4.1, the experiment results are shown
in Figure 14. It demonstrates that even as the load increases, the motor mover oscillates ideally under
the improved control method. The feedforward is effective for the linear motor oscillation control and
can be used as the inner loop of the overall actuator control.
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The actuator piston moves at a constant speed for the constant motor oscillating amplitude. The phase 
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As shown in the results, the actuator cylinder moves at 38.7 mm/s, which means the pump 
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L/min, demonstrating that the implemented prototype output flow is close to the theoretical design. 
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effective area of the mover piston it is 48.1 mm2 according to Table 2, the equivalent force is 34 N.
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Figure 14. After applying the feedforward control on the linear motor, the mover oscillation experiment:
(a) displacement reference and output with load; (b) the pressure acts on the motor mover, which is
equivalent 48 N.

5.2. The Actuator Tracking Performance Experiment

Based on the linear oscillating motor control, the actuator working principle is verified through
the collaboration of the two-unit movers. When the actuator is under open-loop control and the
reference signal is a square wave, the amplitude of the modulated control signals of the two motors is
constant, and the phase varies between π/2 and −π/2. This experiment result is shown in Figure 15.
The actuator piston moves at a constant speed for the constant motor oscillating amplitude. The phase
difference between the two movers varying from π/2 to −π/2 drives the actuator reversely, which verify
the collaborative rectification principles.

As shown in the results, the actuator cylinder moves at 38.7 mm/s, which means the pump output
flowrate is 2.32 L/min. According to the design parameters, the theoretical flowrate is 2.4 L/min,
demonstrating that the implemented prototype output flow is close to the theoretical design.
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By employing the controller designed in Section 4.2, the actuator closed-loop control experiment
results are shown in Figure 16. At the initial stage of the step response, the movers oscillate at the
maximum range of ±5 mm and provide the maximum flowrate to drive the cylinder to track the
reference as fast as possible. With the output approaching the reference, the amplitude decreases to 0,
and the actuator cylinder is locked at the desired position.
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Figure 16. The actuator closed-loop control experiment: (a) the actuator cylinder position reference
and output; (b) displacement of the two movers, the amplitude modulation and phase modulation
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In order to obtain the frequency response of the actuator, a sweep frequency analysis is conducted.
The bode plot is shown in Figure 17.
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5.3. The Actuator Spring Load Experiment

In many application scenarios of actuation, the load can be emulated by a spring. Hereby, the load
experiment uses a spring as the external load of the actuator. The mechanical connection is shown in
Figure 12b. The control command is a sine waveform with ±20 mm amplitude and 0.2 Hz frequency,
and the results are shown in Figure 18.

Sensors 2020, 20, 634 13 of 16 

 

5.3. The Actuator Spring Load Experiment 

In many application scenarios of actuation, the load can be emulated by a spring. Hereby, the 
load experiment uses a spring as the external load of the actuator. The mechanical connection is 
shown in Figure 12b. The control command is a sine waveform with ±20 mm amplitude and 0.2 Hz 
frequency, and the results are shown in Figure 18. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18. The actuator spring load experiment: (a) displacement reference and output of the actuator; 
(b) output force of the actuator; (c) displacement reference and output of the two movers; (d) the 
current of the two linear motors. 

From Figure 18d, when the dynamic load reaches approximately 4000 N, the current of the linear 
motor approaches 8 A, which is the designed maximum current capacity of the motor. According to 
the actuator design parameters, the theoretical maximum output force is nearly 

4400 ( )m L T L

p p

F A K iA
N

A A
= ≈ , (22)

which means the prototype output force capability is close to the design. 

6. Discussion 

In order to provide a simplified and low-cost terminal solution for a distributed actuation 
system, this paper proposes an electro-hydrostatic actuator based on the linear drive principle. A 
novel collaborative rectification mechanism is designed to actively rectify the involved linear pump 
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Figure 18. The actuator spring load experiment: (a) displacement reference and output of the actuator;
(b) output force of the actuator; (c) displacement reference and output of the two movers; (d) the current
of the two linear motors.

From Figure 18d, when the dynamic load reaches approximately 4000 N, the current of the linear
motor approaches 8 A, which is the designed maximum current capacity of the motor. According to
the actuator design parameters, the theoretical maximum output force is nearly

FmAL
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=

KTiAL

Ap
≈ 4400 (N), (22)

which means the prototype output force capability is close to the design.

6. Discussion

In order to provide a simplified and low-cost terminal solution for a distributed actuation system,
this paper proposes an electro-hydrostatic actuator based on the linear drive principle. A novel
collaborative rectification mechanism is designed to actively rectify the involved linear pump efficiently.
A compact prototype is designed and the detailed structure is revealed. The actuator working principle
based on the structure is analyzed and a dedicated control architecture is proposed. The control method
guarantees the actuator is working as designed, which is verified by experiments on different levels of
the prototype system. Based on the verified structure and control method, a more comprehensive and
sophisticated design will be carried out in the future.
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Nomenclature

Symbol Items
Ap Effective area of the pump piston
dr Diameter of the pump rod
dp Diameter of the pump piston
ds Diameter of the pump spool
L1 Lever length of the pump cylinder piston
L2 Lever length of the pump valve spool
lp Maximum stroke of piston
ls Maximum stroke of spool
dn Minimum distance between the pump piston rod and the lever
dl Diameter of the pump lever
h1 Distance between the pump piston rod excircle and lever bulb center at the neutral position
h2 Distance between the pump piston rod excircle and lever bulb center at the limit position
Sp Horizontal distance between two bulbs of the lever
KT Force constant of the motor
Ke Back EMF constant of the motor
Rm Resistance of the motor winding
Lm Inductance of the motor winding
ms Equivalent mass of the mover (motor and the pump)
Sm Stroke of the motor
Ap Effective area of the pump piston
AL Effective aera of the actuator cylinder
mL Mass of the actuator cylinder piston
SL Stroke of the actuator cylinder
Sm Stroke of the pump piston
f Frequency of the pump piston reciprocation
ϕ Phase difference between the two pump movers
Pr Flowrate of the pump per period
Qr Flowrate of the pump per unit time
U Voltage of the motor winding
v Velocity of the motor mover
i Current of the motor winding
Fm Thrust of the motor
x Displacement of the motor mover
FLm Load force of the motor mover
ce Damping ratio of the motor mover
Wb Motor output power per period
ks Spring constant
cL Damping ratio of the actuator cylinder
FL Load force of the actuator cylinder
AL Effective area of the actuator cylinder
β Elastic modulus of fluid, are the
Vna, Vnb Volumes of the pump cylinder chambers
Qna, Qnb Flowrate of the pump cylinder chambers
Pna, Pnb Pressure of the pump cylinder chambers
VLa, VLb Volumes of the actuator cylinder chambers
QLa, QLb Flowrate of the actuator cylinder chambers
PLa, PLb Flowrate of the actuator cylinder chambers
P1 Damping coefficient of the feedforward
P2 Elastic coefficient of the feedforward
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