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Abstract: In the near future, value streams associated with Industry 4.0 will be formed by
interconnected cyber–physical elements forming complex networks that generate huge amounts of
data in real time. The success or failure of industry leaders interested in the continuous improvement of
lean management systems in this context is determined by their ability to recognize behavioral patterns
in these big data structured within non-Euclidean domains, such as these dynamic sociotechnical
complex networks. We assume that artificial intelligence in general and deep learning in particular may
be able to help find useful patterns of behavior in 4.0 industrial environments in the lean management
of cyber–physical systems. However, although these technologies have meant a paradigm shift in the
resolution of complex problems in the past, the traditional methods of deep learning, focused on
image or video analysis, both with regular structures, are not able to help in this specific field. This is
why this work focuses on proposing geometric deep lean learning, a mathematical methodology that
describes deep-lean-learning operations such as convolution and pooling on cyber–physical Industry
4.0 graphs. Geometric deep lean learning is expected to positively support sustainable organizational
growth because customers and suppliers ought to be able to reach new levels of transparency and
traceability on the quality and efficiency of processes that generate new business for both, hence
generating new products, services, and cooperation opportunities in a cyber–physical environment.

Keywords: Industry 4.0; IIoT; geometric deep learning; lean management

1. Introduction

Today it seems almost a truism to talk about the fact that data surround us. According to
recent studies, by 2025 humanity will have created about 163 zettabytes of information [1]. However,
the alarming thing is not that we are going to be flooded with data, but that these data will be very
different from the data with which we are used to dealing in classical disciplines such as signal or
image processing, statistics, or machine learning. Beyond this, the data we will face are data that
will emerge from the trillions of objects connected to the Internet of Things (IoT). In many cases,
including the industrial IoT (IIoT), these data are produced by distributed sources, such as thousands
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of sensors in factories, i.e., data are distributed over networks. Managing large amounts of data
in these ever-expanding networks raises nontrivial concerns about the efficiency of data collection,
processing, analysis, and security [2,3]. Currently, data from processes and systems are collected and
stored without a clear strategy, and this can be a barrier to implementing paradigms such as “social
manufacturing” [4]. In addition to being distributed, these data may be unstructured, and therefore
cannot generally be encapsulated in one table. A defined strategy is therefore needed on what kind of
data to collect at the technical and the organizational level. Finally, in addition to numerical, data can
be ordinal, categorical, or other. The aim of this work is to introduce the reader to a series of concepts
that pave the way for processing these data by means of adapted deep-learning techniques [5].

The purpose of this work is to study the possibility of providing Industry 4.0 leaders with
a theoretical model that allows for the extraction of relevant patterns embedded within their
organizations by means of artificial intelligence. Specifically, the goal of this work is to provide
the reader with mathematical models that adapt convolutional and pooling deep-learning operations,
hence describing the possible use of geometric deep-learning architectures on non-Euclidean Industry
4.0 complex cyber–physical networks. The structure of this work is as follows: First, Section 2 provides
relevant background information, clarification, and definitions. Second, Section 3 provides a framework
of previous relevant concepts regarding deep learning, specifically geometric deep learning. Third,
Section 4 provides mathematical models to compute geometric-deep-learning algorithms over Industry
4.0 lean-management complex-networked cyber–physical systems. Finally, Section 5 outlines the
conclusions and managerial implications of this model, and its applications in the field.

2. Background

This brief section presents and defines fundamental preliminary concepts to the comprehensive
understanding of the presented content in the following sections of this work:

• Industry 4.0. The term Industry 4.0 has gained large traction since it was first publicized [6], stating
the need for a paradigm shift towards a less centrally controlled manufacturing structure. It is
seen as the Fourth Industrial Revolution, with the first three being mechanization through steam
power, mass production through electrically operated engineering, and the digital revolution
through the integration of electronics and IT. Industry 4.0 enables more production autonomy
as technology becomes more interconnected, and machines are able to influence each other by
creating a cyber–physical system.

• Cyber–Physical Systems. The term “cyber–physical system” in the context of Industry 4.0 refers
to the tight conjoining of and co-ordination between computational and physical resources.
The impact on the development of such systems is a new paradigm of technical systems based on
collaborative embedded software systems [7].

• Lean Management. Lean-management systems in an Industry 4.0 cyber–physical context have
been described as sociotechnical entities that aim to systematically reduce the variability of
value-creation processes [8–13]. These two fundamental dimensions, the social and the technical,
are subsequently meant to symbiotically support each other to maximize value creation through
the systematic elimination of activities that do not add value for the client. A series of models
were presented by scholars that allow the analysis and quantification of these systems as complex
networks [14,15].

• Complex-Networked Organizational Design. Under the organizational-network paradigm,
modern Industry 4.0 cyber–physical lean-management-oriented organizations can be understood
as a symbiotic sociotechnical ecosystem of social networks [16] that interacts with increasingly
complex-networked physically distributed interconnected sensors [17], whose readings are
modeled as time-dependent signals on the vertices, human or cyber–physical, respectively.
This means that, on the nodes of the network, attributes can be found that describe them as having
the form of a given time series.
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Within this framework, a complex network is defined as a graph with nontrivial topological
features that do not occur in simple graphs such as lattices and random networks [18]. For any
given time t, lean complex cyber–physical networks can be formally described by time-dependent
graphs Ω(t) = [N(t); E(t)] that can be understood as lists of N(t) nodes and E(t) ⊂ (N(t)xN(t))
edges that represent its human and cyber–physical nodes, and its standard communication
edges [19]. Given the static graph in t, Ω(t), each node and edge can be characterized by a series
of typically two-dimensional signals x = [x1, . . . , xn] ∈ (RnxRm), where n relevant parameters
of the node or axis are described as the time series of m elements. In the case of nodes, signals
typically represent demographic, sociological, or competence information. In case that the nodes
are human, and in the case of a cyber–physical node, relevant information on the state of the
cyber–physical node expressed in time series of several key performance indicators. In the case of
edges, signals typically represent information referring to the quality of measurable relationships
of the individual with other stakeholders of the organization; in the case of human–human or
cyber–physical-to-human edges, of the time series associated with relevant key performance
indicators being reported to other stakeholders. Specifically, snapshots for the time-dependent
graph can be built, that is, the time-dependent graph is considered as an ordered pair of potentially
different sets. A time-dependent graph considered as a sequence of static graphs is given by
Expression 1.

Ω = [Ω(t1), Ω(t2), . . . , Ω(tk)] (1)

This method is most commonly used for modeling discrete time-dependent graphs, and is
suitable for the time-dependent graph with a specific time structure, especially in real-time
networks such as complex-networked cyber–physical systems [20]. This modelling method is
assumed here, and the time sequence of static graphs is not explicitly mentioned when referring
to time-dependent graphs.

As a consequence of these references, it can be stated that cyber–physical complex-networked
lean-management systems in an Industry 4.0 context can be understood as management systems
that systematically try to reduce the intrinsic variability of industrial value-creation processes by
understanding them as complex networks of computational and physical elements.

3. Related Work

Within this framework, the work approaches the interpretation of strategic information contained
in Industry 4.0 cyber–physical complex-networked lean-management systems from two main vectors:
social and technical strategic organizational design complexity. As shown in the research overview
in Table 1, these two research directions have been intensively examined at three (micro-, meso-,
and macroscopic) levels of complexity. A better visualization of these organizational levels is in the
graphical abstract of Figure 1 for clarity purposes, but it should be noted that this classification is
purely synthetic; in reality, cyber–physical systems in an Industry 4.0 context present the continuous
complexification of networks arranged in nested hierarchies. This by no means suggests that one
level of aggregated complexity is more difficult to deal with than a less aggregated one. In fact,
the opposite is often true. For example, in the study of value-creating cyber–physical systems, the study
of shop-floor management has been done for decades with almost solely qualitative methods and
common sense [21–23]. Deep learning has been recently used to extract statistical patterns from
cyber–physical systems at certain microscopic local levels [24,25]; however, there is an urgent need
for algorithms to be developed that ensure a holistic understanding of cyber–physical systems at the
meso- and macroscopic level of complex-networked aggregation.
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Figure 1. Macroscopic, mesoscopic, and microscopic levels of organizational sociotechnical complexity.Figure 1. Macroscopic, mesoscopic, and microscopic levels of organizational sociotechnical complexity.
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Table 1. Research overview.

Social Technical Socio Technical

Micro Imai, 2012 [26];
Stock and Seliger, 2016 [27]

Takeda, 2009 [28];
Francis and Bian, 2019 [29];
Jabeur et al., 2015 [17];
Li et al., 2017 [30];
Aazam et al., 2018 [31];
Tao et al., 2018 [32];
Mushtaq and Haq, 2019 [33];
Shevchik et al., 2019 [34];
Al-Jaroodi and Mohamed, 2019 [35];
Sun et al., 2019 [36]

Villalba-Diez et al., 2015 [23];
Villalba-Diez et al., 2019 [24].

Meso
Rother, 2010 [37];
Villalba et al., 2018 [13];
Birkel et al., 2019 [38]

Takeda, 2011 [39];
Davis et al., 2012 [40];
Gomez et al., 2015 [41];
Culot, 2019 [42];
Jimenez et al., 2016 [43];
Wang et al., 2018 [44];
Villalba-Diez et al., 2019 [25];
Jang et al., 2019 [45];
Ordieres-Mere et al., 2019 [46]

Villalba-Diez and
Ordieres-Mere, 2015 [10];
Villalba-Diez et al., 2015 [9];
Villalba-Diez and
Ordieres-Mere, 2016 [11];
Villalba-Diez et al., 2017 [47];
Davies et al., 2017 [48];
Kumar et al., 2019 [49].

Macro

Womack and Jones, 2003 [50];
Toyota, 2014 [51];
Burton et al., 2015 [52];
Covey, 2004 [53];
Rabelo et al., 2019 [54];
Romero et al., 2017 [55];
Wang et al., 2019 [56];
Guo and Jyang, 2019 [57]

Lee et al., 2015 [58];
Wang et al., 2015 [59];
Goodfellow et al., 2016 [5];
Sisini et al., 2018 [60];
Zheng et al., 2018a [61];
Lu and Xu, 2019 [62]

Stock and Seliger, 2016 [27];
Villalba-Diez, 2017 [15];
Villalba-Diez, 2017 [14];
Kiel et al., 2017 [63];
Stock et al., 2016 [64];
Shang et al., 2019 [65].

Subsequently, a research hypothesis can be formulated. Due to the high potential shown by deep
learning in a wide range of applications, we could hypothesise that deep learning can be used to find
patterns within Industry 4.0 lean-management complex-networked cyber–physical systems, which
takes us to the concept of geometric deep lean learning. The analogy of networks proposed in this
work, as well as the global analysis of the evolving networks and, through the geometric deep lean
learning of the local relations between agents, provide an adequate context to establish which data to
collect, and how to structure their analysis in a general and systematic way.

Within this context, there are two main resource-organizing classes for integrating deep learning
in Industry 4.0 cyber–physical contexts with regard to different assumptions on data acquisition:

• Offline training, and decision-support learning and predicting from a global and integrated way,
for example, by extracting relevant information from an organization by means of deep-learning
algorithms that analyze previously labeled text in organizational categories [66]. Alternatively, by
combining deep learning with other computing methods that allow for more balanced datasets
and, hence, better deep-learning performance [67].

• Digital twin and augmented reality. Creating virtual environments that, by recording, visualization,
and interaction with cyber–physical assets, are capable of generating necessary tagged information
in real time that is fed to deep-learning algorithms [68]. The creation of digital twins in combination
with deep-learning algorithms was also proposed to enable the parallel control of cyber–physical
value-creating processes [69].

Deep-learning algorithms are built by stacking data-processing filters—layers—in deep
architectures [5]. These layers extract increasingly accurate representations of the data fed into
them through a series of algebraic operations, such as convolution (learning local patterns of feature
maps) and pooling (downsampling of feature maps). A key reason for the success of these classical
deep-learning applications on time-series, images, or video processing, is on its underlying Euclidean
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or gridlike data-structure space. The ability to leverage statistical properties of such data through
local statistics is possible because of the shift invariance, local connectivity and the multi-resolution of
the dataset. For instance, in a color image, pixels are placed together (shift invariance), present local
properties (local connectivity), and present a red–green–blue-layered color structure (multiresolution).
The use of convolution and pooling imposes conditions on the dataset while extracting local features
shared throughout images that make it suitable for the problem without sacrificing the expressive
capacity of the network. In fact, the graph’s Laplacian L = D − A that supports the information
contained in the images is constant [70], where D and A represent the degree and adjacency matrix
of the graph, respectively [19]. This allows a series of mass algebraic operations that make the
magic of deep learning possible. However, at an organizational level, networks associated with
Industry 4.0 lean-management cyber–physical systems are, by definition, dynamic and do not present
these characteristics.

The fundamental idea of deep learning is that it is assumed that data to be studied came from the
combination of different attributes at multiple hierarchical levels. An important underlining concept in
this context is that of the manifold. A manifold can be intuitively understood as locally Euclidean space.
Earth, for example, can be understood as a gigantic ellipsoid, but to a human at a point on its surface,
it appears to be a plane. In other words, the manifold is an interconnected region: a series of points
associated with its surrounding environment. From any of these points, the manifold appears to be
locally Euclidean. Formally speaking, differentiable X manifold of dimension d is a topological space in
which each point x has an environment that is homeomorphic to a Euclidean space of dimension d called
tangent space TxX [71]. If the manifold is equipped with a Riemannian metric, such as an inner product
〈 · , · 〉TxX : (TxX)x(TxX)→ R , then the manifold is called a Riemannian manifold. The set of tangent
spaces at all points is known as tangent bundle TX and is assumed to be smoothly dependent on the x
position. It is precisely this feature that is exploited by machine-learning algorithms. The condition
for this is the implicit assumption that interesting points occur only in a collection of manifolds in
directions tangent to the TX planes, and with statistically interesting variations happening only when
switching manifolds.

In other words, manifolds are topological spaces locally homeomorphic to Euclidean spaces.
Complex networks, the object of this study, can be described by complexes of nodes and edges (i.e.,
triangles) that can be treated as discrete types of manifolds [72]. As has been described before [73–75],
these can be understood as manifolds in order to explain the problems related to evolutionary
manifolds using the theory of complex evolutionary networks. Specifically, deep learning applied to
graphs usually considers these as manifolds; for this reason, we can consider deep lean learning as
a manifold learning challenge. In the following sections, the consideration of graphs as manifolds is
not geometrically rigorous, and might not be as smooth as previously defined. Classical applications
of deep learning to graphs [76] focuses on static networks, but cyber–physical systems represented by
complex networks are dynamic in nature, as nodes (both human and cyber–physical) and sociotechnical
relations between them are constantly evolving.

For this reason, in order to discover statistical patterns within lean-management cyber–physical
systems by means of deep learning, it is necessary to either transform existing data into figures that
can be interpreted by classical approaches, or to generalize the concept of deep learning to dynamic
networks. The first strategy was successfully implemented by one of the authors [13]. The second
strategy follows in the footsteps of geometric deep learning.

Geometric deep learning is an emerging technique to generalize deep-learning models to
non-Euclidean domains, such as certain graphs and manifolds [70]. The wide variety of domains in
which geometric deep learning has so far been useful can be summarized in four categories:

• Graphwise classification. For instance, in the classification of molecules [77]. In this model, atoms
represent the nodes, and chemical bonds are the edges of a graph. Research aims to extract
certain features that predict certain properties of the molecule. This is relevant, for instance, to the
pharmaceutical companies that are in the business of drug design. Some of these properties are
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toxicity and water solubility. Given a graph, researchers aim to classify a molecule graph. This is
analogous to classical deep-learning-based visual image classification [78].

• Vertexwise classification. For example, in a social-network domain in which nodes are people of
which we have certain demographic information, a researcher aims to predict how these people
will vote in the next election. The analogy in computer vision is semantic image segmentation [79]
in which the pixels of an image are labeled as belonging to a certain category.

• Graph dynamics. There are also domains that are described by fixed graphs, and others in which
the graph changes with time [70]. Complex-networked cyber–physical systems belong to the
second class.

• Known vs. unknown domain. In some cases, the graph can be known; in others, it is only partially
known, noisy, or not known at all and needs to be learned. In these cases, the researcher aims to
not only learn the graph features, but also the graph itself [80].

Existing approaches to implement geometric deep learning can be classified into two broad
categories: spectral and local filtering methods.

• Spectral filtering methods.

Spectral filtering methods make use of the spectral eigendecomposition of the Laplacian graph
to elegantly mathematically define convolution-like operators. The fundamental limitation of
the spectral construction is that it can only be used to single and static domains. This is because
filter coefficients are dependent on the eigenvector- and eigenvalue-decomposition basis of the
Laplacian graph, which is highly dependent on network architecture [70]. This approach is not
suitable for our needs because of the dynamic characteristics of Industry 4.0 lean-management
cyber–physical complex systems and their associated complex networks.

• Local filtering methods.

Local filtering methods, on the other hand, are not topology-dependent, fall within the frame of
signalling processing on graphs [81], and are more suitable in this setting, in particular, in order to
define an operation similar to convolution in this domain [82].

4. Geometric Deep Lean Learning Over Industry 4.0 Lean-Management Complex-Networked
Cyber–Physical Systems

According to Immanuel Kant, a science is not a science until there is a relation to mathematics.
Although this characterization is provocative, and few would discuss such absolute numbers today,
the implicit main question remains valid: can we find mathematical expressions that explain, process,
and learn from network data, especially from complex-networked cyber–physical systems? This
question is the motivator of this work, both for its practical and theoretical interest. On the one hand,
empirically speaking, the processing of signals on graphs from complex cyber–physical networks
has exponential importance due to the unstoppable emergence of technologies such as the IIoT and
blockchain. On the other hand, the theoretical field of artificial intelligence constantly needs to develop
new algorithms and computational architectures to later allow its practical application.

Applied to the analysis of complex-networked cyber–physical systems in the context of Industry 4.0,
this leads to two classes of problem formulations that geometric deep lean learning theoretically solves:

• Strategic organizational design. Performing classical inference problems [76].

Recently, it has been shown that this classification can be considerably improved by using
information about the proximity environment [83,84]. Analyzing signals on graph vertices and
edges could potentially help to learn inherent structures of the graphs, such as organizational
clusters, with better accuracy than that provided by topological information alone—this is
a strategic challenge to which organizational design tries to respond.
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• Trust and power structures. Learning hidden organizational properties.

Although deep learning has been employed in a wide variety of fields of knowledge, such
as modeling social influence [85] and computer vision [86–88], it is important to incorporate
knowledge about the domain to be treated in the model. For example, in order to build
a deep-learning model for the study of a network of sensors in a cyber–physical system of
industry 4.0, it might be useful, in a first approximation, to choose the edge weights of the graph
as a decreasing function of the distance between nodes, as this would lead to a smooth graph
signal model [89]; however, this would not be suitable for a lean structural network, because
adjacency does not necessarily mean similarity [14]. For this reason, the model of the graph to be
used can be superimposed on other structures, instead of being a pure unconnected abstraction.
In other words, the graph that represents the complex-networked cyber–physical system in
an Industry 4.0 context, can be studied from different perspectives, superimposing it to a specific
sociotechnical environment that helps to better understand the statistical information that it
contains. As a consequence, the integration of these priors is a fundamental challenge for the
success of geometric deep lean learning. Some examples are the structures of power or trust
between the different actors of an organization that are fundamental variables that influence the
success of an organization, but remain elusive, since they often cannot be directly measured.
Geometric deep lean learning could be applied to learn these parameters as weights between the
nodes of the complex organizational network.

These problems reduce to fitting a time-dependent tensor A(t), so that Ω(t + 1) ≈ A(t) ·Ω(t) [90].
The hypothesis underlying this objective is that x(t + 1) ≈ A(t) · x(t) where A(t) is constant in a window
of time. The reason why we can take this assumption as true is that complex networks associated with
cyber–physical systems in Industry 4.0 environments do not have very high variability [14]. As a result,
a sufficiently small time window can always be found in which the hypothesis is sufficiently true.

Generalizing deep-lean-learning models to dynamic structured data in complex graphs requires
a detailed description of the non-Euclidean equivalents to the basic elements of deep learning
(convolutional layers and downsampling “pooling”), locally applied to each of the graph elements [70]:

• Convolution on non-Euclidean complex-networked cyber–physical graph time-dependent signals.

As expressed in Expression 1, for weighted time-dependent directed graph Ω(t), a series of
signals x = [x(1), . . . , x(n)] ∈ (RnxRm) expressed on its human and cyber–physical nodes, and on
its standard communication edges, are considered, in which components of xa reside in or are
protruding from node a.

For each node, we define a proximity environment given by group Na =
{
b : (b, a) ⊂ E

}
that

represents set of nodes b connected with a. This Na set is characterized by an RNxN matrix S called
the network-translation matrix operator that defines the manifold metric. We defined S as the
graph adjacency matrix, the Laplacian of the graph, or any other normalization of it, as a linear
transformation to encode the structure of a graph. Without loss of generality, the singularity
problem of the adjacency matrix, which is nontrivial, was not considered in this work [91].
As shown in Figure 2, group Na represents the manifold upon which the convolution acts.
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Figure 2. Local manifold upon which graph convolution acts.

The Fourier decomposition of graph Ω(t) is expressed by x̂ = U−1 · x, where S = U ·Λ · U−1 and
autovalues Λ describe the frequencies of the graph [92]. Now, we can directly filter x from the
spectral domain by means of function f : C→ R that allows to compute convolution ẑ = f (Λ) · x̂
by means of point-by-point multiplication in the spectral domain between filter f (Λ) and the
Fourier transform of the graph in x. Therefore, by inverting the Fourier transform of the graph, we
obtain the extension of the convolutional operation to the non-Euclidean time-dependent graph
in Equation (2).

z = P(S)x and P(S) = U f (Λ)U−1 (2)

The filter operation can be directly described on the node, resulting in an alternative formulation
given by Equation (3), where scalar parameter φa,b is a representation of the information weights
coming from neighbour node b into or from node a.

za = ∑
b∈Na∪a

φa,b · xb (3)

Due to the local properties of S, za can be obtained in the domain of the node through
local-information exchange. This means that the initial signal on the node is recursively
transformed by S a K number of times until decomposition is obtained that determines za as the
convolution between the network filter with a polynomial transfer function and xb.

By means of the Fourier transform of the network, the screening operation of Equation (3) has the
transfer function given by Equation (4):

h(Λ) =
κ

∑
k=0

φk ·Λk (4)

This filter, based on local-information exchanges, captures information in K-radius proximity
from the node representing the depth of the geometric-deep-lean-learning algorithm.

Taking into account this convolutional operation given by Equation (3), we are able to compute
the f th level feature produced as output of the lth layer:

yl
f = σl ·

(
l−1

∑
g=1
P l

f ,g · yl−1
g

)
(5)

where:

Figure 2. Local manifold upon which graph convolution acts.

The Fourier decomposition of graph Ω(t) is expressed by x̂ = U−1
· x, where S = U ·Λ ·U−1 and

autovalues Λ describe the frequencies of the graph [92]. Now, we can directly filter x from the
spectral domain by means of function f : C→ R that allows to compute convolution ẑ = f (Λ) · x̂
by means of point-by-point multiplication in the spectral domain between filter f (Λ) and the
Fourier transform of the graph in x. Therefore, by inverting the Fourier transform of the graph, we
obtain the extension of the convolutional operation to the non-Euclidean time-dependent graph
in Equation (2).

z = P(S)x and P(S) = U f (Λ)U−1 (2)

The filter operation can be directly described on the node, resulting in an alternative formulation
given by Equation (3), where scalar parameter φa,b is a representation of the information weights
coming from neighbour node b into or from node a.

za =
∑

b∈Na∪a
φa,b · xb (3)

Due to the local properties of S, za can be obtained in the domain of the node through
local-information exchange. This means that the initial signal on the node is recursively
transformed by S a K number of times until decomposition is obtained that determines za

as the convolution between the network filter with a polynomial transfer function and xb.

By means of the Fourier transform of the network, the screening operation of Equation (3) has the
transfer function given by Equation (4):

h(Λ) =
κ∑

k=0
φk ·Λk (4)

This filter, based on local-information exchanges, captures information in K-radius proximity from
the node representing the depth of the geometric-deep-lean-learning algorithm.

Taking into account this convolutional operation given by Equation (3), we are able to compute
the f th level feature produced as output of the lth layer:

yl
f = σl

·

 l−1∑
g=1
P

l
f ,g · y

l−1
g

 (5)

where:
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- σl represents the nonlinear activation function (i.e., ReLU); and
- P

l
f ,g · y

l−1
g indicates the graph structure relating the gth input yl−1

g to the f th output yl
f .

Now, we simply combine two cases to model the mechanism of a convolutional network applied
to a non-Euclidean graph in each time slot: the case in which edges vary, and that in which nodes
vary. This can be combined into a single expression to describe Pl

f ,g given by Equation (6):

P
l
f ,g(S) =

K∑
k=1

Υl,(k:1)
f ,g +

K∑
k=0

(
k∏

m=0
Υ(m)

d + φk · τ
k
)

(6)

where:

-
∑K

k=1 Υl,(k:1)
f ,g represents the edge-varying case, in which

* Υl,(k:1)
f ,g acts as a shift operator, and therefore represents a learning paradigm for data

embedded within complex graphs, whose weights are known to some degree of
ambiguity, are only partially known, or are unknown.

-
∑K

k=0

(∏k
m=0 Υ(m)

d + φk · τ
k
)

represents the node-varying case, in which

* d ⊂ E is a special set of nodes (i.e., nodes with a degree above a certain threshold, nodes
with a certain level of hierarchy in the organization, or any other relevant feature),

* φk ∈ [0, 1]Nxd is a binary matrix, and
* τk is a vector describing the node parameters in d.

• Pooling in non-Euclidean complex-networked cyber–physical graph time-dependent signals.

As introduced earlier, downsampling pooling layers in classical deep-learning architectures that
extract information from Euclidean domains such as speech, images, or videos typically report
the maximal output within rectangular proximity [93]. In this way, it is possible to extract local
characteristics that are shared by other areas of the images, thus considerably reducing the number
of parameters that the deep network has to learn without sacrificing its learning capacity. Pooling
can be described as a progressive coarsening of the graph. A simple way to do this is to collapse
edges and reduce the size of the graph through a standard max-pooling operation on the nodes by
just taking the maximum of each one of the feature tensors on each of the nodes being coarsened.
This can be represented as a binary-tree structure of node indices. These pooling modules on
graphs can be inserted between the convolutional modules in order to extract high-level graph
representations, and thus be able to perform effective graph classification.

Some alternatives in this field have not been to try to pool the whole network, but different
hierarchies of the complex network in order to be able to learn which node groups have similar
characteristics [94]. Once these groups are learned, clusters are made, and network pooling
is carried out as described above or with an alternative method. This process is repeated for
each of the network layers; thus, its classification is obtained. This presupposes, however, prior
knowledge of the network structure.

The extraction of shared local characteristics is not possible through this method in time-varying
non-Euclidean domains, i.e., complex-networked cyber–physical graphs, because no stationarity
or shift invariance can be found within these domains. Wu et al. [95], and Lee et al. [96] provided
state-of-the-art surveying overview of this interesting open research question.
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5. Conclusions and Management Implications

Geometric deep lean learning at a strategic level is expected to ensure sustainable organizational
growth because customers and suppliers are able to reach new levels of transparency and traceability
on the quality and efficiency of the processes, which generates new business opportunities for both,
and new products, services, and co-operation opportunities in a cyber–physical environment. In a world
of limited resources, increasing business volume can only be achieved by increasing the depth of
integrated intelligence capable of successfully handling the emerging complexity in value streams.
The future implications of geometric deep lean learning at an organizational level are yet to be fully
deployed, but it is expected that the field of analysis of complex-networked cyber–physical systems in
Industry 4.0 environments will attract intense attention from both industry and scholars who could
develop tools to interpret, classify, and better understand the behavioral patterns of such networks
through the application of this very exciting field of artificial intelligence.

Managerial implications of geometric deep lean learning on a mesoscopic level should try to
integrate geometric deep lean learning in whole-value-stream processes to substantially improve
resource optimization. Geometric deep lean learning at a value-stream level is expected to impact lead
time and on-time delivery. At a mesoscopic level, producing only what the customer needs, when they
needs it, in the required quality, the integration of deep-learning technologies is expected to not only
allow the systematic improvement of complex value chains, but also the better use and exploitation of
resources, thus reducing the environmental impact of Industry 4.0 processes. This technology could
also be implemented at the customer side to increase defect-detection accuracy on products themselves.
Such analyses provide sensitivity about operations and operational conditions, which also impacts
value-stream-related efficiency and effectiveness.

The theoretical implications of the application of these geometric-deep-lean-learning models to
data embedded within complex-networked datasets support researchers in departing from “crafted”
features in modeling machine-learning models when dealing with geometric data. In the context of
Industry 4.0 cyber–physical systems, these could be drone-positioning and decision-making algorithms,
and the proper interpretation of wearable devices (i.e., physical sensors) on human or cybernetic process
owners. Until now, models dealing with such problems required a certain amount of prior knowledge
(e.g., the isometric-shape-deformation model), and often did not capture the full complexity and wealth
of data. Geometric-deep-lean-learning methodologies could bring a breakthrough to the field and be the
first indications of a coming paradigm shift by, for instance, expanding existing social-manufacturing
knowledge into unknown territory through the contextual self-organizing of mass-individualization
processes under a social-manufacturing paradigm through a cyber–physical–social system approach.

Some of the main potential applications can be clustered four categories:

• Graphwise classification. The classification of complex cyber–physical graphs by deep lean
learning, thus creating product families and allowing automated decision making in real time in
which products are developed, produced, and channeled to the final customer.

• Vertexwise classification. The classification of certain crucial nodes in the value-creation process
by means of deep-lean-learning models that allows an improvement of organizational design to
assure an increase of overall process performance.

• Graph dynamics. Learning complex-networked cyber–physical graph dynamics is of great interest
when dealing with change management within non-Euclidean sociotechnical systems.

• Known vs. unknown domains. The learning, generation, and semisupervised design of value
streams by learning the most suitable complex cyber–physical graphs for certain types of
products, thus potentially generating high customization with high efficiency and effectiveness in
resource use.

The data needed to implement these mathematical concepts are enormous and fall within the
field of big data. The acquisition of data associated with the cyber–physical systems of Industry
4.0 is costly and of great strategic value to the involved organizations, which is why systems that
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increase the confidence of the involved actors and guarantee the security of these IIoT data, as the
distributed ledger technology, are essential for the practical application of the exposed concepts.
The quality of the obtained data essentially depends on the trust that the various value-creating actors
have in each other. Achieving the necessary high degrees of confidence and successfully managing
these parameters in an environment of interdependent supplier and customer networks is one of
the challenges in the immediate future, and ought to be met by several blockchain and distributed
ledger protocols. The Constrained Application Protocol is excellent for use with limited devices and
low-power networks, such as those preferred in IIoT. To ensure greater security, applications known
by the more important User Datagram Protocol, such as Voice over IP/Session Initiation Protocol,
Datagram Transport Layer Security, can be run on User Datagram Protocol instead of Transmission
Control Protocol. The Rivest–Shamir–Adleman hybrid algorithm can also be good, with high efficiency,
better security and privacy protection, and is suitable for the end-to-end encryption requirements of
the future IIoT. Future IIoT research within an Industry 4.0 complex-networked cyber–physical context
should focus on, among others, the following characteristics: the open security system, the way in
which individual privacy is protected, terminal-security function, and laws related to IIoT security.
It is undeniable that IIoT security requires a set of policies, laws, and regulations, and a perfect
security-management system for mutual collocation to ensure the success of this exciting and fruitful
research endeavor.
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