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Abstract: This paper considers the design of a desired transmit beampattern under the good
ambiguity function constraint using a correlated linear frequency modulation-phase coded (LFM-PC)
waveform set in multiple-input-multiple-output (MIMO) radar. Different from most existing
beampattern design approaches, we propose using the LFM-PC waveform set to conquer the
challenging problem of synthesizing waveforms with constant-envelope and easy-generation
properties, and, meanwhile, solve the hard constraint of a good ambiguity behaviour. First,
the ambiguity function of the LFM-PC waveform set is derived, and the superiority of LFM-PC
waveforms over LFM and PC waveforms is verified. The temporal and spatial characteristic analysis
of the LFM-PC waveform set demonstrates that both the transmit beampattern and sidelobe level are
mainly affected by the frequency intervals, bandwidths, and phase-coded sequences of the LFM-PC
waveform set. Finally, the constrained beampattern design problem is formulated by optimizing these
parameters for desired beampatterns and low sidelobes at different doppler frequencies, which is a
bi-objective optimization problem. To solve this, we propose a joint optimization strategy followed by
a mandatory optimization, where the sequence quadratic programming (SQP) algorithm and adaptive
clonal selection (ACS) algorithm are exploited iteratively. The simulation results demonstrate the
efficiency of our proposed method.

Keywords: MIMO radar; beampattern; ambiguity function; sidelobes; bi-objective optimization

1. Introduction

A multiple-input-multiple-output (MIMO) radar has multiple transmit antennas to transmit
multiple probing waveforms. The multiple waveforms can be orthogonal or correlated [1].
The waveform diversity offered by MIMO radar generates improved capabilities over the traditional
phased-array radar in terms of target detection, identification, classification, and localization [2].
MIMO radars can be grouped into widely-distributed [3] and colocated [4] MIMO radars. We focus on
the colocated MIMO radars in this paper.

Based on the ability to probe with distinct waveforms, transmit beampattern design in colocated
MIMO radar has become a popular research topic [5]. By shaping the transmit beampattern, the radar
radiation power can be properly managed to improve the energy efficiency, reduce the interference
and increase the detection probability [6,7]. Thus, the waveforms should be optimally designed for the
desired transmit beampattern, to control the radiation power distribution.

The related waveform design approaches can be divided into two categories. One category is a
two-step strategy [5,8,9], where the waveform covariance matrix is first optimized, then the transmitted
waveforms, under practical constraints, are synthesized using the covariance matrix. For instance,
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the waveform covariance matrix was devised to match the desired pattern through the semi-definite
quadratic programming (SDQP) technique [5] and semi-definite programming (SDP) technique [8],
and then a cyclic algorithm (CA) was proposed in [10], to synthesize the constant modulus waveform
matrix to approximate the covariance matrix. Another category is to design the transmitted waveforms
directly to fulfill a desired beampattern without the synthesis stage of the waveform covariance
matrix [11–16]. In addition, independent waveforms [17,18] have been pre-processed with complex
weights to form multi-rank beamformers to achieve the desired beampattern. However, this kind
of method cannot guarantee equal power transmission from each antenna and a variety of desired
beampatterns cannot be obtained.

Furthermore, the transmit beampattern design problem in more strict and practical situations is
researched. Firstly, some works have paid attention to better approximating the desired beampattern
by considering different aspects of the performance, such as the ripples within the energy focusing
section, the attenuation of the sidelobes, the width of the transition band, the angle step-size, and the
required number of transmit antennas [19]. The peak sidelobe level or the integrated sidelobe level
of transmit beampattern were taken as figures of merit in the beampattern design problem [20].
Secondly, the robust design of waveform covariance matrices over steering vector mismatches and
manifold vector perturbations [9,21] was studied. Thirdly, transmit beampatterns under spectral [22]
and spatial interference [23] constraint have been considered. The work in [24] focused on the
signal-to-interference-plus-noise ratio (SINR) enhancement using transmitted waveform covariance
matrix optimization in colocated MIMO radars. The sparse frequency waveform design problem for
the desired transmit beampattern in spectrum-crowded environment was considered in [25,26].

The above existing beampattern matching design methods rarely consider the following two
problems. Firstly, the waveforms cannot be generated easily, as the waveforms synthesized from the
designed covariance matrix must be constrained to a constant envelope. Secondly, the beampattern
designs, above mentioned, might result in waveforms with high peak sidelobe levels, and, generally,
with an undesired ambiguity function behaviour. Aiming at the first problem, a correlated multicarrier
linear-frequency-modulation (LFM) waveform set was designed in [27], as the transmitted signals for
the beampattern directly.

The obtained LFM waveforms have some advantages over the present waveforms, such as a
constant-envelope and easy generation. Aiming at the second problem, the MIMO radar waveforms
were synthesized for a desired beampattern in [28], under the constant modulus and similarity
constraints, where the similarity constraint exploited an LFM waveform as a benchmark, thus allowing
the designed signal to share good ambiguity characteristics with the known LFM waveform. However,
the method in [27] did not consider the range sidelobe level or the ambiguity function of the
designed waveforms, while the method in [28] still suffered from the constraint of constant-envelope
and easy-generation. Therefore, we develop a new solution for the two problems in the transmit
beampattern design.

It is well known that the LFM signal, which is used in [27,28], has some outstanding characteristics,
such as constant-envelope, easy generation, and good doppler tolerance [29–31]. However,
the correlated multicarrier LFM waveform set, proposed in [27], has high grating sidelobes, which was
demonstrated in [32,33]. The transmit beampattern design problem, formulated in [27], did not
consider the problem of sidelobes. Moreover, we found that the correlated multicarrier linear frequency
modulation-phase coded (LFM-PC) waveforms are more general than the correlated multicarrier
LFM waveforms, and can suppress the grating sidelobes directly [34]. Therefore, we developed the
transmit beampattern design problem with the constraint of the range sidelobe levels at different
doppler frequencies by using the correlated LFM-PC waveforms. Compared with the method in [28],
our proposed method has the advantages of constant-envelope and easy-generation, and the proposed
LFM-PC waveforms also provide a good waveform benchmark for the method in [28].

In this paper, the constrained beampattern design problem is considered by using the correlated
LFM-PC waveform set. The ambiguity function of the LFM-PC waveform set is devised, and it shows
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that the LFM-PC waveform set can inherit the advantages of both the LFM and PC waveforms, and
weaken their disadvantages. Then, being founded from the temporal and spatial characteristics of
LFM-PC waveforms, the range sidelobes and transmit beampattern are both affected by the frequency
intervals, bandwidths, and the phase-coded sequences. Thus, by optimally designing these three
waveform parameters of the LFM-PC waveform set, the correlation properties of waveforms are
controlled and adjusted, to match the desired beampattern with the constraints of range sidelobe levels
at different doppler frequencies.

The optimization process includes several steps. First, according to the desired transmit
beampattern, the desired waveform covariance matrix is optimized via the convex (CVX) toolbox.
Then, based on the desired covariance matrix, a bi-objective optimization problem is formulated,
where the first objective function is the covariance matrix matching error, and the second objective
function is the maximum range peak-to-sidelobe level (PSL) in the doppler and angle space. To solve
this, we propose a strategy of two optimization stages. In the first stage, the beampattern and the PSL
are jointly optimized. This stage ends when the beampattern performance and PSL performance both
cannot become better. In the second stage, the beampattern is mandatorily optimized with a relaxed
PSL performance.

Based on the sequence quadratic programming (SQP) [35] and adaptive clonal selection (ACS) [36]
algorithms, we introduce the sequential iterative algorithm to synthesize the desired beampattern by
enforcing the constraint of a good ambiguity function. The iterations split the bi-objective optimization
problem into two single-objective optimization problems. Finally, we evaluate the performance of
the proposed algorithm via numerical simulations in terms of the iteration process of optimization,
synthesized transmit beampattern, range sidelobes, and the ambiguity function of designed waveforms.
Our results highlight the superiority of the proposed algorithm.

To deal with the above issues, our contributions are given below:

• The ambiguity function and characteristics of the LFM-PC waveform set are derived and analyzed,
and its superiorities over both the LFM and PC waveform sets are demonstrated.

• For other beampattern design methods, the waveforms are constrained to be constant-envelope
and have to be synthesized by complex algorithms with a heavy computation load. However,
in our proposed method, the designed LFM-PC waveforms corresponding to the desired
beampattern is naturally advantageous with a constant-envelope and easy generation.

• For other beampattern design methods, the temporal properties of the designed waveforms are
rarely considered. In our proposed method, by using the LFM-PC waveform set to design the
beampattern, the designed waveforms share good temporal characteristics of LFM-PC waveforms,
such as a thumbtack ambiguity and low range sidelobes.

• The constrained beampattern design problem is formulated as a bi-objective optimization problem.
To solve it, a novel strategy of first joint optimization then mandatory optimization is proposed.
The beampattern performance is mandatorily guaranteed while the ambiguity function behaviour
is also good.

The rest of this paper is organized as follows. The signal model and signal processing structure
for the LFM-PC waveform set are given in Section 2. The ambiguity function of the multicarrier
LFM-PC waveform set is derived and discussed in Section 3. Section 4 presents the temporal-spatial
characteristics analysis. The optimization process for the constrained beampattern design problem
is demonstrated in Section 5. Simulation results are given in Section 6. Finally, Section 7 concludes
the paper.

2. The MIMO Radar Signal Model With the LFM-PC Waveform Set

2.1. A Set of Correlated LFM-PC Waveforms

A set of correlated LFM-PC waveforms are considered in MIMO radar, where each transmitted
waveform is constructed by modulating a phase-coded (PC) sequence on the LFM waveform. Different
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transmitted waveforms occupy different spectrums, thus the received signal can obtain a wideband
effect and high resolution through matched filter and receive beamforming.

We assume that the transmitter and receiver are colocated in space, and the transmit array is a
uniform linear array (ULA) consisting of M transmit antennas. A set of M transmitted waveforms are
denoted by s(t) = [s1(t), s2(t), · · · , sM(t)]T , and the waveform transmitted by the mth antenna can be
written as

sm(t) = uPC
m (t)ejπµmt2

ej2π( f0+cm∆ f )t, (1a)

uPC
m (t) =

1√
Q

Q−1

∑
q=0

dm,q+1rect(t− qTc), (1b)

rect(t) =

{
1/
√

Tc, if 0 ≤ t ≤ Tc

0, otherwise
, (1c)

where 0 ≤ t ≤ T and m = 1, 2, · · · , M. Q is the code length and Tc is the code width, then the
pulse duration is T = QTc. dm,q = exp(jφm,q) denotes the qth code element modulated on the
mth transmitted waveform, and φm,q is the code phase. rect(t) represents the amplitude function
of the sub-pulse. cm is the frequency code. ∆ f = n0/T is the assumed frequency step, where n0

is an arbitrary positive integer. f0 is the carrier frequency, which is usually mixed by the center
frequency, thus is usually set to be f0 = 0 Hz for the sake of simplicity. µm = BLFM,m/T indicates
the chirp rate of the mth LFM, and BLFM,m is the bandwidth of the mth LFM. As the PC is modulated
on the LFM, the bandwidth of the mth transmitted waveform on the carrier can be calculated by

Bm =
√

B2
LFM,m + (1/Tc)

2 [37]. By denoting the frequency interval between the (m + 1)th carrier
frequency and the mth carrier frequency by ∆ fm = cm+1∆ f − cm∆ f , the total bandwidth of the

transmitted signal is B =
M−1
∑

m=1
∆ fm + BM. The structure of the LFM-PC waveform set is shown in

Figure 1.
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Figure 1. The structure of the linear frequency modulation-phase coded (LFM-PC) waveform set.

The signal model in (1) for the LFM-PC waveform set provides a general framework for both
the LFM waveform set and the PC waveform set. When dm,q = 1 for ∀m, q is satisfied, Equation (1)
becomes the LFM waveform set proposed in [27]. When µm = µ = 0 for ∀m is satisfied, Equation (1)
becomes the PC waveform set.

The correlation properties of the LFM-PC waveform set can be controlled by two kinds of
waveform parameters. The first kind of waveform parameters comprises the frequency intervals
(or carrier frequencies) and bandwidths. For example, if cm = m− (M + 1)/2 and the bandwidths
are uniformly equal (i.e., Bm = Bs or µm = µ, ∀m), Equation (1) becomes the strictly orthogonal
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frequency division LFM-PC (OFD LFM-PC) waveform set, and the LFM-PC waveforms in the
set are mutually orthogonal. Then, it is not difficult to deduce the signal models for the
OFD LFM or the OFD PC waveform set. The second kind of waveform parameters contains
the phase-coded sequences, which can be presented as a column vector of phase codes φ =

[φ1,1, φ1,2, · · · , φ1,Q, · · · , φM,1, · · · , φM,Q]
T .

Thus, the frequency intervals ∆ fm (which are determined by the carrier frequencies),
the bandwidths Bm, and the phase codes φ of the multicarrier LFM-PC waveform set can be jointly
optimized to adjust the correlation properties of the waveform set. Clearly, the frequency interval ∆ fm

is closely related with the frequency code cm and the frequency step ∆ f . The bandwidth Bm depends
on the chirp rate µm by fixing the code width Tc here in this paper.

2.2. The Signal Processing Structure for LFM-PC Waveforms

By ignoring the signal attenuation during propagation, the waveform illuminated into spatial
direction θ can be written as

s(θ, t) = aT
t (θ)s(t) =

M

∑
m=1

ej2πcmd sin θ/λsm(t), (2)

where at(θ) = [ejπc1 sin θ ,ejπc2 sin θ , · · · , ejπcM sin θ ]T denotes the transmit steering vector with the center
of the array taken as the reference point, and cm = m− (M + 1)/2. Equation (2) means that coherent
MIMO radar would illuminate different waveforms into different spatial directions, thus s(θ, t) is
termed as an angular waveform, subsequently.

The hierarchical signal processing structure of a colocated MIMO radar is shown in Figure 2.
According to this structure, signals from receiving antennas would be first transformed into multiple
spatial receiving channels, each channel characterized by an angle θ

′
, where θ

′
denotes the spatial

direction the spatial beam points to. Then, each spatial receiving channel is followed by a range
compressor. Finally, the doppler processing is implemented by coherent accumulation.

Receiving beamforming

Range compression

Coherent accumulation

Spatial receiving 

channels

Doppler channels

Figure 2. The hierarchical signal processing structure for the colocated MIMO radar.

Usually, target returns that can pass the spatial receiving channel characterized by θ
′

without
amplitude attenuation would all bear the same waveform signature aT

t (θ
′
)s(t). Thus, based on the

above signal processing scheme, the ambiguity function of the angular waveform in the spatial
receiving channel characterized by θ=θ

′
can be represented as
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χ(τ, fd, θ) =
∫ ∞

−∞
s(θ, t)sH(θ, t− τ)ej2π fdtdt

=
∫ ∞

−∞
aT

t (θ)s(t)s
H(t− τ)a∗t (θ)e

j2π fdtdt.
(3)

The three-dimensional ambiguity function χ(τ, fd, θ) can demonstrate the overall performance of
the LFM-PC waveform set under the signal processing structure in Figure 2. χ(τ, fd, θ) can present the
sidelobe properties in the time delay τ-dimension and the doppler frequency fd-dimension, which can
be regarded as the temporal ambiguity function of the transmitted angular waveforms at the specific
angle θ. On the other hand, since we focus on the energy distribution on the θ-dimension in this paper,
χ(τ, fd, θ) can be turned into the transmit beampattern by setting τ = 0 and fd = 0, which describes
the transmit power distribution in space.

3. Ambiguity Function Analysis of the LFM-PC Waveform Set

3.1. The Ambiguity Function Derivation

By substituting (1) and (2) into (3), the ambiguity function χ(τ, fd, θ) can be expanded into

χ(τ, fd, θ) =
∫ ∞

−∞
aT

t (θ)s(t)s
H(t− τ)a∗t (θ)e

j2π fdtdt

=
∫ ∞

−∞

M

∑
m=1

uPC
m (t)ejπµt2

ej2πcm∆ f tej2πcmd sin θ/λ
M

∑
n=1

uPC
n
∗
(t−τ)e−jπµ(t−τ)2

e−j2πcn∆ f (t−τ)e−j2πcnd sin θ/λej2π fdtdt

=
M

∑
m=1

M

∑
n=1

ej2πcn∆ f τej2π(cm−cn)d sin θ/λ
∫ ∞

−∞
uPC

m (t)uPC
n
∗
(t− τ)ejπµ[t2−(t−τ)2]ej2π(cm−cn)∆ f tej2π fdtdt

= e−jπµτ2
M

∑
m=1

M

∑
n=1

ej2πcn∆ f τej2π(cm−cn)d sin θ/λ
∫ ∞

−∞
uPC

m (t)uPC
n
∗
(t− τ)ej2π[µτ+(cm−cn)∆ f+ fd ]tdt,

(4)

where µ = µm is assumed for simplicity. By letting cm − cn = m − n, Equation (4) can be further
represented as

χ(τ, fd, θ)= e−jπµτ2



M
∑

m=1
ej2πcm∆ f τ

∫ ∞
−∞ uPC

m (t)uPC
m
∗
(t−τ)ej2π(µτ+ fd)tdt

+
M−1
∑

p=1

M
∑

m=p+1
ej2π(cm−p)∆ f τej2πpd sin θ/λ

∫ ∞
−∞uPC

m (t)uPC
m−p

∗
(t−τ)ej2π(µτ+p∆ f+ fd)tdt

+
−(M−1)

∑
q=−1

M+q
∑

m=1
ej2π(cm−q)∆ f τej2πqd sin θ/λ

∫ ∞
−∞uPC

m (t)uPC
m−q

∗
(t−τ)ej2π(µτ+q∆ f+ fd)tdt


4
=

M
∑

m=1
wm,0 (τ, θ) χm,0 (τ, fd)+

M−1
∑

p=1

M
∑

m=p+1
wm,p (τ, θ) χm,p (τ, fd)+

−(M−1)
∑

q=−1

M+q
∑

m=1
wm,q (τ, θ) χm,q (τ, fd),

(5)

where

wm,v (τ, θ) = ej2π(cm−v)∆ f τej2πvd sin θ/λ, (6)

χm,v (τ, fd) = e−jπµτ2
∫ ∞

−∞
uPC

m (t)uPC
m−v

∗
(t− τ)ej2π(µτ+v∆ f+ fd)tdt, (7)

and v = m− n ∈ { − (M− 1), · · · ,−1, 0, 1, · · · , (M− 1)}. The |χm,v (τ, fd)| is the ambiguity function
between the mth LFM-PC waveform and the (m− v)th LFM-PC waveform, which can be computed by
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|χm,v (τ, fd)| =
∣∣∣∣∫ ∞

−∞
sm(t)s∗m−v(t− τ)ej2π fdtdt

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞
uPC

m (t)uPC∗
m−v(t−τ)ej2π(µτ+v∆ f+ fd)tdt

∣∣∣∣
=

∣∣∣∣rPC
m,m−v(τ)

sin[π(µτ+v∆ f+ fd)(Tc−|τ|)]
π(µτ+v∆ f+ fd)(Tc−|τ|)

(Tc−|τ|)
∣∣∣∣ .

(8)

The rPC
m,m−v(τ) is the correlation function of the mth phase-coded sequence and the (m− v)th

phase-coded sequence. If the phase-coded sequences modulated on different antennas are the same,
the rPC

m,m−v(τ) is irrelevant with m, and χm,v (τ, fd) becomes χv (τ, fd). Then, the ambiguity function
χ(τ, fd, θ) and |χ(τ, fd, θ)| of LFM-PC angular waveforms in (5) become

χ(τ, fd, θ) =
M
∑

m=1
W0 (τ, θ) χ0 (τ, fd)+

M−1
∑

p=1
Wp (τ, θ) χp (τ, fd)+

−(M−1)
∑

q=−1
Wq (τ, θ) χq (τ, fd), (9a)

|χ(τ, fd, θ)| ≈
M
∑

m=1
|W0 (τ, θ)| |χ0 (τ, fd)|+

M−1
∑

p=1

∣∣Wp (τ, θ)
∣∣ ∣∣χp (τ, fd)

∣∣+−(M−1)
∑

q=−1

∣∣Wq (τ, θ)
∣∣ ∣∣χq (τ, fd)

∣∣, (9b)

where the approximate equaling in (9b) only demonstrates that all the possible peaks of |χ(τ, fd, θ)|
are determined by the sum of products |Wv (τ, θ)| |χv (τ, fd)|, and

|Wv (τ, θ)| =


∣∣∣∣ M

∑
m=v+1

ej2π(cm−v)∆ f τej2πvd sin θ/λ

∣∣∣∣ , v ≥ 0∣∣∣∣M+v
∑

m=1
ej2π(cm−v)∆ f τej2πvd sin θ/λ

∣∣∣∣ , v < 0

=

∣∣∣∣ sin[π(M− |v|)∆ f τ]

sin(π∆ f τ)

∣∣∣∣ .

(10)

Equation (9) shows that χ(τ, fd, θ) can be taken as the sum of the products of Wv (τ, θ) and
χv (τ, fd). The peaks of product |Wv (τ, θ)| |χv (τ, fd)| in (9b) provide all the possible peaks of
χ(τ, fd, θ) on (τ, fd) space. If the peaks of Wv (τ, θ)χv (τ, fd) are added in phase for different v in
(9a), the possible peaks determined by the peaks of |Wv (τ, θ)| |χv (τ, fd)| will appear for χ(τ, fd, θ).
If the peaks of Wv (τ, θ)χv (τ, fd) are added in reversed-phase for different v in (9a), the possible peaks,
determined by the peaks of |Wv (τ, θ)| |χv (τ, fd)|, will disappear for χ(τ, fd, θ). Thus, the ambiguity
function behaviour of the LFM-PC angular waveforms is determined by the properties of |Wv (τ, θ)|
and |χv (τ, fd)|.

3.2. The Preferred PC Sequences

We discuss two cases of the same and different PC sequences modulating on different antennas to
provide useful guides on the preferred PC sequences. Combined with the above theoretical derivations,
some simulations are conducted with the parameters set in Table 1. The hyper-logistic [18] chaotic
phase-coded sequences are utilized in the LFM-PC waveforms. The bandwidths are uniformly equal
as Bm = Bs, ∀m. The frequency intervals are uniformly equal as ∆ f m = ∆ f s = ∆ f , ∀m.

Table 1. Parameter setup for the simulation.

Symbol Quantity Value

M transmit antenna number 7
T pulse width 400 µs
B total bandwidth 500 kHz
θ spatial angle of target 60◦

∆ f frequency step 40 kHz
Bs baseband bandwidth 260 kHz
Q code length 63
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First, the case of modulating the same PC sequence is simulated. In this case, the ambiguity
function |χ(τ, fd, θ)| of LFM-PC angular waveforms can be expressed in (9). It is found from (10)
that the peaks of |Wv (τ, θ)| are located at

(
±n
/

∆ f , θ
)

for ∀ fd and n = 1, 2, · · · , T∆ f − 1. The peak
values of |Wv (τ, θ)| are the same and equivalent to M− v. The |Wv (τ, θ)| is a periodic function of τ,
and the period is 1/∆ f , which does not change with v. The |Wv (τ, θ)| for v = 3 is taken as an example
and plotted on the (τ, fd) space in Figure 3. The simulation result confirms the theoretical analysis,
which shows that the |Wv (τ, θ)| is the periodic function on the τ-axis, and remains unchanged with fd.

Figure 3. The |Wv (τ, θ)| for v = 3.

It is found from (8) that when v = 0, |χv (τ, fd)| denotes the self-ambiguity function of a single
LFM-PC waveform, while when v 6= 0, it denotes the cross-ambiguity function between different
LFM-PC waveforms. The cross-ambiguity function can be obtained by translating the self-ambiguity
function |χ0 (τ, fd)| by v∆ f along the doppler axis. The peaks of |χv (τ, fd)| are located at (0,−v∆ f ),
and the peak value is Tc

∣∣rPC
m,m−v (0)

∣∣. The |χv (τ, fd)| with the same modulated PC sequence for
ν = −3, · · · , 0, · · · , 3 is plotted in Figure 4a, which is also consistent with the above theoretical analysis.
From Figure 4a, we can see that |χv (τ, fd)| has equally-spaced peaks on a zero delay axis, and the
distance between adjacent peaks is ∆ f . When the same phase-coded sequence is modulated on
different antennas, the

∣∣rPC
m,m−v (0)

∣∣ does not change with v, then the peak value Tc
∣∣rPC

m,m−v (0)
∣∣ of

|χv (τ, fd)| does not change with v. Thus, the 2M− 1 peaks located at (0,−v∆ f ) have the same peak
value. It is also seen that every single |χv (τ, fd)| has a LFM ridge with a LFM slope, which also shows
the delay-doppler coupling.

Next, the case of modulating different PC sequences is simulated. Equation (9) is utilized to
analyze the simulation results. Although Equation (9) is deduced by assuming that the same PC
sequence is modulated on the LFM-PC waveform set, it is also approximately equivalent to (5) without
this assumption. The simulation results do conform with the analysis based on (9). The |χv (τ, fd)|
with the different modulated phase-coded sequences for ν = −3, · · · , 0, · · · , 3 is plotted in Figure 4b.
From Figure 4b, we can see that |χv (τ, fd)| has only one peak at the origin of the delay-doppler
space, and that LFM ridges are eliminated due to the different sequences. According to Equation (8),
when different phase-coded sequences are modulated on different antennas, the cross-correlation
function

∣∣rPC
m,m−v (τ)

∣∣ is small for probably ∀v 6= 0 and ∀τ. The peak value Tc
∣∣rPC

m,m−v (0)
∣∣ of |χv (τ, fd)|

can be suppressed when v 6= 0. Then the peak of |χv (τ, fd)| only appears at (0, 0), and other peaks
located at (0,−v∆ f ) for v 6= 0 are eliminated by the small

∣∣rPC
m,m−v (τ)

∣∣.
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(a) (b)

(c) (d)

Figure 4. The |χv (τ, fd)| for v = −3, · · · , 0, · · · , 3 with (a) the same modulated sequence; (b) different
modulated sequences. The ambiguity functions of the LFM-PC waveform set with (c) the same
modulated sequence; (d) different modulated sequences.

Finally, the ambiguity functions of the LFM-PC angular waveforms with the same PC sequence
and different PC sequences are compared in Figure 4c,d. Based on (9), Figure 4c,d are closely related
with the products of Figures 3 and 4a,b. It can be seen from Figure 4c that the ambiguity function
of LFM-PC angular waveforms with the same modulated sequence has peaks in delay axis and
also doppler axis. This phenomenon is actually caused by the product of |Wv (τ, θ)| in Figure 3
and |χv (τ, fd)| in Figure 4a. The possible peaks produced by multiplying |Wv (τ, θ)| in Figure 3
with |χv (τ, fd)| in Figure 4a are widely distributed on (τ, fd) space. The produced peaks will be
retained if the peaks of Wv (τ, θ)χv (τ, fd) are added in phase for different v at a certain (τ, fd) in (9a).
The produced peaks will not be retained if the peaks of Wv (τ, θ)χv (τ, fd) are added in reversed-phase
for different v at a certain (τ, fd) in (9a). However, when different modulated sequences are utilized in
the LFM-PC waveform set, only one peak arises at the origin of the delay-doppler space in Figure 4d,
where the shape of the ambiguity function is a thumbtack. This is as there is only one possible peak
produced by multiplying |Wv (τ, θ)| in Figure 3 with |χv (τ, fd)| in Figure 4b, and this sole peak, which
always appears, is located at τ = 0, fd = 0.

These simulations show that modulating the same PC sequence will cause a serious deterioration
on the ambiguity function behaviour of LFM-PC angular waveforms. Thus, we concluded that different
phase-coded sequences with good correlation properties are preferred to be modulated in the LFM-PC
waveform set for a good ambiguity function.
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3.3. The Superiority of LFM-PC Waveforms

The superiority of the LFM-PC waveform sets over the LFM and PC waveform sets are
demonstrated to provide useful guides on designing good LFM-PC waveforms. To compare the
ambiguity function of the LFM-PC waveforms with those of other waveforms, different ambiguity
functions are plotted in Figure 5 with the simulation parameters in Table 1. We discuss the two
kinds of waveform parameters affecting the ambiguity function of LFM-PC waveforms separately.
In Figure 5a–c, the effect of modulating PC sequences is individually analyzed by assuming that
the frequency intervals and bandwidths are uniform, and ∆ f m = ∆ f , ∀m. Thus, the waveforms in
Figure 5a–c are OFD waveforms. In Figure 5d, the effect of adjusting the frequency intervals and
bandwidths is individually analyzed by assuming no PC sequences are modulated.

(a) (b)

(c) (d)

Figure 5. The ambiguity functions of (a) orthogonal frequency division (OFD) PC waveform set;
(b) OFD LFM-PC waveform set; (c) OFD LFM waveform set; (d) optimized LFM waveform set.

The average ambiguity functions of the OFD PC and OFD LFM-PC waveform sets with 500
random PC sequence sets are shown in Figure 5a,b. Clearly, the ambiguity function of the OFD PC
waveform set in Figure 5a has a thumbtack shape. The ambiguity function of the OFD LFM-PC
waveform set in Figure 5b inherits the good properties from the OFD PC waveform set, and also has a
thumbtack-shape ambiguity function. However, the ambiguity function of the OFD LFM waveform
set in Figure 5c has widely-spread high grating lobes in the delay-Doppler space. These grating lobes
can greatly deteriorate the target detection performance. This problem has been pointed in [32,33];
there however, the high grating lobes were only discussed for the autocorrelation function at zero
doppler frequency.

In this paper, the high grating lobes are discussed for the ambiguity function, where both zero
and nonzero doppler frequencies are considered. Figure 5d gives the ambiguity function of the
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LFM waveform set proposed in [32]. The LFM waveform set proposed in [32] has non-uniform
frequency intervals and bandwidths, which were optimized to eliminate the high grating peaks of the
autocorrelation function of the OFD LFM angular waveform. By comparing with Figure 5c, the grating
lobes in Figure 5d have greatly reduced, but there are still some residues.

3.3.1. LFM-PC Waveforms vs. PC Waveforms

The ambiguity functions of OFD LFM-PC and OFD PC waveform sets are very similar. When
v = 0, |χ0 (τ, fd)| is the self-ambiguity function of the mth LFM-PC waveform. |χ0 (τ, fd)| has an ideal
thumbtack shape for a single PC waveform by setting µ = 0 in LFM-PC waveform. |χ0 (τ, fd)| has
an approximate thumbtack shape and a less prominent range-doppler coupling for a single LFM-PC
waveform. When v 6= 0, |χv (τ, fd)| is the cross-ambiguity function between the mth and the (m− v)th
LFM-PC waveforms translated v∆ f along the doppler axis, and has no peaks if different sequences are
modulated. Therefore, based on above theoretical analysis, both OFD LFM-PC and OFD PC waveform
sets have one peak at the origin of range-doppler space. The ambiguity function of the OFD PC
waveform set has an ideal thumbtack shape, as shown in Figure 5a. The ambiguity function of the OFD
LFM-PC waveform set has an almost thumbtack shape, and the range-doppler coupling is negligible,
as shown in Figure 5b.

The obvious advantage for the LFM-PC waveform set is that both the LFM characteristic and
PC characteristic are embodied in it, which are reflected from three aspects. First, the range-doppler
coupling in the ambiguity function originating from the LFM characteristic has been greatly weakened
by the PC characteristic. Secondly, an almost thumbtack shape and low sidelobe levels of the ambiguity
function of the LFM-PC waveform set has been strengthened by the PC characteristic. Thirdly, the weak
doppler tolerance of PC waveforms is compensated by the strong doppler tolerance of LFM waveforms
in the LFM-PC waveforms, thus the sidelobes of the LFM-PC waveforms rise with doppler frequencies
less slowly than those of PC waveforms. Accordingly, by formulating an optimization model for
LFM-PC waveforms, the LFM characteristic and PC characteristic in it can be balanced and optimized.

3.3.2. LFM-PC Waveforms Vs. LFM Waveforms

The ambiguity function of the OFD LFM waveform set can be derived from that of the LFM-PC
waveform set by setting dm,q = 1 and cm = m− (M + 1)/2. For the OFD LFM waveform set, based on
(9), |Wv (τ, θ)| is the same as (10), but |χv_OFD_LFM (τ, fd)| is rewritten as

|χv_OFD_LFM (τ, fd)|=
∣∣∣∣ sin[π(µτ+v∆ f+fd)(Tc−|τ|)]

π(µτ+v∆ f+fd)(Tc−|τ|)
(Tc−|τ|)

∣∣∣∣ . (11)

Equation (11) is derived directly from (8) when
∣∣rPC

m,m−v (τ)
∣∣ is a constant value for ∀m, v, τ.

When v = 0, |χ0_OFD_LFM (τ, fd)| represents the ambiguity function of a single LFM, and the
shape is an oblique blade. When v 6= 0, the |χv_OFD_LFM (τ, fd)| is obtained by translating the
|χ0_OFD_LFM (τ, fd)| along the doppler axis. The |χv_OFD_LFM (τ, fd)| for v = −6, · · · , 0, · · · , 6 is shown
in Figure 6. From Figure 6, the |χv_OFD_LFM (τ, fd)| for different v is the translational version of
|χ0_OFD_LFM (τ, fd)| along the doppler axis. Originating from the product of |Wv (τ, θ)| in Figure 3 and
|χv_OFD_LFM (τ, fd)| in Figure 6, the ambiguity function of OFD LFM angular waveforms in Figure 5c
has regularly-distributed peaks in the whole ambiguity function plane. Thus, the superiority of the
ambiguity function of LFM-PC waveforms over that of LFM waveforms is obvious.
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Figure 6. The |χv (τ, fd)| of OFD LFM waveform set for v = −6, · · · , 0, · · · , 6.

In [32,33], the grating lobes of the autocorrelation function of the LFM angular waveforms
were eliminated by formulating an optimization model with the optimization variables ∆ fm and Bm.
By adjusting the frequency intervals ∆ fm and the bandwidth Bm (i.e., the chirp rate, µm), the properties
of |Wv (τ, θ)| and |χv_OFD_LFM (τ, fd)| can be changed. The authors in [32,33] only manipulate with the
range sidelobes at zero doppler frequency, but we demonstrate in Figure 5d that the grating lobes in
the whole ambiguity function plane have been reduced. However, the range-doppler coupling is still
prominent, and there are residues of grating lobes, which are those irregular high sidelobes shown in
Figure 5d.

Therefore, inspired from the comparison results in Figure 5, we can conclude that: (1) The
method of modulating PC sequences is better than the method of adjusting the frequency intervals and
bandwidths to solve the grating lobe problem of LFM waveform set. (2) The method of modulating
PC sequences on LFM, as shown in Figure 5b, and the method of adjusting the frequency intervals and
bandwidths of LFM, as shown in Figure 5d, can be used jointly to optimize a good ambiguity function.

4. The Temporal-Spatial Characteristics of LFM-PC Angular Waveforms

To match the desired beampattern and obtain a good ambiguity function, the temporal-spatial
characteristics of LFM-PC waveforms should be optimized.

4.1. Range Sidelobes of LFM-PC Angular Waveforms

The ambiguity function χ(τ, fd, θ) can be seen as the autocorrelation function of the LFM-PC
angular waveforms at the specific doppler frequency fd and spatial angle θ. Thus, the range sidelobe
levels at different doppler frequencies are taken as the metric measuring the ambiguity function
behaviour. We take fd = 0 Hz and θ = 0◦ as an example to illustrate the influence of PC sequences,
frequency intervals, and bandwidths on the range sidelobes of LFM-PC angular waveforms. A similar
analysis and result can also be obtained for LFM-PC angular waveforms at other nonzero doppler
frequencies and other directions.

By substituting fd = 0 Hz and θ = 0◦ into (9), the auto-correlation function of the LFM-PC
angular waveforms at zero doppler frequency and zero direction can be obtained, and the |Wv(τ, 0)|
and |χm,v (τ, 0)| become

|Wv(τ)| = |Wv(τ, 0)| =
∣∣∣∣ sin[π(M− |v|)∆ f τ]

sin(π∆ f τ)

∣∣∣∣ , (12a)

|χm,v (τ)| = |χm,v (τ, 0)| =
∣∣∣∣rPC

m,m−v(τ)
sin[π(µτ + v∆ f )(Tc − |τ|)]

π(µτ + v∆ f )(Tc − |τ|)
(Tc − |τ|)

∣∣∣∣ . (12b)
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|χ(τ, 0, 0)| can be seen as a weighted sum of |χv (τ)|, and |Wv(τ)| is the weighting function.
Equation (12) can be compared with (9). Equation (12a) is the same as (10), where the |Wv(τ)| is a
periodic sampling function with peaks located at τ1 = ±n/∆ f , n = 0, 1, · · · , T∆ f − 1, and the peak
value is M− v. By substituting fd = 0 Hz into (8), |χm,v(τ)| in (12b) is a sinc-like function, and its
peak point is located at τ2 = −v∆ f

µ and peak value is (T − |τ2|)rPC
m,m−v(τ2). For OFD LFM waveforms,

rPC
m,m−v(τ2) is a constant, and when the peaks of the sinc-like function χv(τ) and the weighting function

Wv(τ) approach each other (i.e., τ1 ≈ τ2), the sidelobe terms of OFD LFM angular waveforms can be
added in phase to cause the discrete grating lobes, which was also illustrated in [32].

To solve the problem of discrete sidelobes, the authors in [32] proposed to adjust the carrier
frequency intervals and baseband signal bandwidths of the OFD LFM waveform set to stagger the
peak positions of |χv(τ)| and |Wv(τ)|, which makes τ1 6= τ2. Innovatively, we find that the magnitude
of the peak value of |χm,v(τ)| for OFD LFM-PC waveform set can be greatly influenced by the
peak-to-sidelobe ratio of the correlation function rPC

m,m−v(τ). Thus, by controlling the modulated
phase-coded sequences (i.e., rPC

m,m−v(τ)), the peak values of |χm,v(τ)| can be suppressed, and the
possible resulting peaks can also be eliminated.

The auto-correlation sidelobes of OFD LFM angular waveforms, random OFD LFM-PC angular
waveforms modulated with random PC sequences, random LFM angular waveforms with random
frequency intervals and bandwidths, and the optimized LFM angular waveforms in [32] at θ = 0◦

and fd = 0 Hz are shown in Figure 7. The simulation parameters are set in Table 1. Different chaotic
phase-coded sequences are modulated on different transmit channels. In Figure 7, by comparing the
results of the OFD LFM waveform set and the OFD LFM-PC waveform set, it is concluded that the
high grating sidelobes of OFD LFM angular waveforms can be greatly suppressed by modulating
different phase-coded sequences. By comparing the results of OFD LFM waveform set and the random
LFM waveform set, we concluded that the high grating sidelobes of OFD LFM angular waveforms
can be suppressed by adjusting the frequency intervals and bandwidths. We also concluded from the
result of optimized LFM angular waveforms, in [32], that by optimizing the frequency intervals and
bandwidths, the sidelobes can be further reduced.
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Figure 7. The autocorrelation functions of different angular waveforms.

Thus, by combining the method of the LFM waveform set in [32], which optimizes frequency
intervals and carrier bandwidths, and the method of modulating different phase-coded sequences
proposed in this paper, an optimization model can be established by jointly optimizing these three
variables to suppress range sidelobes of LFM-PC angular waveforms at different Doppler frequencies.
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4.2. The Transmit Beampattern of LFM-PC Waveforms

When using angular waveforms s(θ, t) as the detection signals, the target detection performance
is not only affected by the temporal correlation property of the s(θ, t) but also affected by the energy
distribution of the s(θ, t) in the space.

The distribution of electromagnetic energy of LFM-PC waveforms in various directions is reflected
by the transmit beampattern. By setting τ = 0, and fd = 0 in (3), the transmit beampattern PE (θ) can
be written as

PE (θ) =
∫ ∞

−∞
s(θ, t)sH(θ, t)dt =

1
T

∫ T

0
aT

t (θ) s (t) sH (t) a∗t (θ)dt
4
= aT

t (θ)Ra∗t (θ) , (13)

where R is the covariance matrix of the transmitted waveforms, and the element Rmi at the mth row
and the ith column of R is

Rmi =
∫ T

0
sm(t)s∗i (t)dt. (14)

It is obvious from (13) that the transmit beampattern PE (θ) is determined by the waveform
covariance matrix R. Thus, in this paper, we approximate the specific desired pattern by optimizing
the matrix R.

By substituting (1) into (14) and (13), it shows that frequency intervals, bandwidths and
phase-coded sequences of the LFM-PC waveforms all affect the transmit beampattern.

The transmit beampatterns of the OFD LFM waveform set, random OFD LFM-PC waveform
set modulated with random PC sequences, random LFM waveform set with random frequency
intervals and bandwiths, and the optimized LFM waveform set proposed in [32] are shown in Figure 8.
The beampattern of the OFD LFM is omnidirectional due to the waveform orthogonality; however,
the beampatterns of the random OFD LFM-PC and random LFM are not omnidirectional as the
phase-coded sequences, the nonuniform frequency intervals, and nonuniform bandwidths affect
the waveform correlation property. For the optimized LFM waveform set in [32], a constraint of
the omnidirectional transmit beampattern is inserted into the optimization model, thus its transmit
beampattern is approximately omnidirectional. Therefore, it is feasible to jointly optimize these
three variables of PC sequences, frequency intervals, and bandwidths to approximate the desired
beampattern, which is not limited to be omnidirectional.
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Figure 8. The beampatterns of different angular waveforms.

5. Constrained Transmit Beampattern Design

As the frequency intervals, carrier bandwidths, and phase-coded sequences all affect the transmit
beampattern and the sidelobe level, we consider optimizing these three variables to approach the
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desired transmit beampttern constrained by a good ambiguity function behaviour by using the LFM-PC
waveforms. The difference between the desired beampattern and the synthesized beampattern and the
maximum peak sidelobe level (PSL) of the ambiguity function of angular waveforms within a certain
doppler frequency range are taken as the two objective functions. Then, a bi-objective optimization
with multiple variables is formulated and solved.

5.1. Waveform Covariance Matrix Design

The transmit beampattern design problem can be converted into an optimal design problem of the
covariance matrix R of the correlated LFM-PC waveform set. Assume that the entire space Θ = [−π

2 , π
2 ]

is divided into L discrete points, and the desired beampattern of MIMO radar is Pd(θ), θ ∈ Θ. Then,
the optimization model for the covariance matrix R can be established as

min
R,α

L

∑
l=1

∣∣∣αPd(θl)− aH(θl)Ra(θl)
∣∣∣

s.t. R(m, m) =
E
M

, m = 1, 2, · · · , M,

R ≥ 0, (15)

where α is an optimal scaling factor. E is the total transmit power, and E
M is the transmit power from

each antenna. The objective function is the absolute integral difference between the desired transmit
beampattern and actual beampattern. The first constraint means that transmit power from all the
antenna elements should be equal, and the second constraint ensures that R is a positive semidefinite
matrix. The above optimization problem is convex [38,39], which can be efficiently solved by using the
CVX toolbox [40]. The optimal solution of (15) is Rd.

5.2. Optimization Problem Formulation

Based on the waveform covariance matrix design, the formulated problem can be transformed
into designing the correlated LFM-PC waveforms for the desired covariance matrix (equivalently the
desired transmit beampattern) constrained by the low range sidelobes.

The value of the first objective function corresponding to the beampattern matching error is

PAT : f1(∆ f , βs, φ) =

∥∥∥∥ 1
T

∫ T

0
s(t)sH(t)dt− Rd

∥∥∥∥
F
, (16)

where Rd is the desired covariance matrix corresponding to the desired beampattern solved in
(15). ∆ f = [∆ f1, ∆ f2, · · · , ∆ fM−1]

T is the vector consisting of the frequency intervals, and cm is
not constrained to be m− (M + 1)/2. βs = [B1, B2, · · · , BM]T indicates the column vector composed
of the bandwidths of transmitted waveforms, where Bm is the bandwidth of the mth transmitted
waveform. φ = [φ1,1, φ1,2, · · · , φ1,Q, · · · , φM,1, · · · , φM,Q]

T is the column vector of phase codes.
The value of the second objective function corresponding to the PSL is

PSL : f2(∆ f , βs, φ) = max
0<τ≤T

k=1,2,3,··· ,K
l=1,2,3,··· ,L

∣∣∣χ(τ, f k
d , θl)

∣∣∣ , (17)

where Fd = [ f 1
d , · · · , f k

d , · · · , f K
d ]T is the range of discrete doppler frequencies to be optimized, and

Θ = [θ1, · · · , θl , · · · , θL]
T denotes the discrete search space.
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Then, a bi-objective optimization problem for the LFM-PC waveform set is formulated as

P0 : min
∆ f ,βs ,φ

{ f1(∆ f , βs, φ), f2(∆ f , βs, φ)}

s.t.
M−1

∑
m=1

∆ fm = B− BM, ∆ fm > 0,

1
Tc
≤ Bi ≤ B−

i−1

∑
m=1

∆ fm, i = 1, 2, · · · , M,

φm,q ∈ {0,
π

2
, π,

3π

2
}, m = 1, 2, · · · , M, q = 1, 2, · · · , Q, (18)

where B is the total bandwidth. The first constraint is to ensure that the total bandwidth is unchanged
from the perspective of frequency intervals, and that the frequency intervals are positive. The second
constraint indicates that the lower limit of the carrier bandwidth is equivalent to the bandwidth of
the phase-coded sequence and ensures that the total bandwidth is unchanged from the perspective of
the bandwidths. The third constraint indicates that the phase coding is a four-phase coding, which is
used for explanation, and other poly-phase codes have similar results. It is found from (18) that by
adjusting the parameters ∆ f , βs, φ, the optimized waveform set can be the LFM-PC, the PC, or the
LFM waveform set.

The absolute optimal solution of the bi-objective optimization problem P0 is such that making
both PAT and PSL individually reach their minimum. However, the PAT and PSL are mutually
restrictive and incompatible. Thus we must explore the optimal solution under certain restrictions or
in certain senses.

5.3. The Proposed Optimization Algorithm

We propose finding the optimal solution of the bi-objective optimization problem based on
two stages of optimization. In the first stage, the PAT and PSL both decrease, and the ε-constraint
method [41] in multi-objective optimization theory is utilized. In the second stage, the PAT is taken as
the focus of consideration by relaxing the PSL to some extent, and the key objective method [41] in
multi-objective optimization theory is exploited.

5.3.1. Stage I-Joint Optimization of the Beampattern and PSL

In the first stage, the beampattern and PSL of the correlated LFM-PC waveforms are jointly
optimized. The ε-constraint method puts one objective function in the constraint by giving an upper
threshold ε, and then puts the other objective function in the constraint. This process is iterated,
and in each iteration, the model of only one objective function with the other objective function
as the constraint is built. In this way, the bi-objective optimization problem is transformed into a
single-objective optimization problem, iteratively. Each iteration contains two steps as follows.
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Stage I-Step 1: We first set the maximum PSL as the objective function and set the beampattern
matching error as the constraint. Then the first optimization problem is built as

P1(n) : min
∆ f ,βs

{ max
0<τ≤T

k=1,2,3,··· ,K
l=1,2,3,··· ,L

∣∣∣χ(τ, f k
d , θl)

∣∣∣ }
s.t.

M−1

∑
m=1

∆ fm = B− BM, ∆ fm > 0,

1
Tc
≤ Bi ≤ B−

i−1

∑
m=1

∆ fm, i = 1, 2, · · · , M,∥∥∥∥ 1
T

∫ T

0
s(t)sH(t)dt−Rd

∥∥∥∥
F
≤ ε2(n− 1), (19)

where P1(n) denotes the optimization problem P1 in the nth iteration. The third constraint indicates
that the beampattern matching error is bounded by threshold value ε2(n− 1), which is the optimal
beampattern matching error obtained in the second step of stage I at the (n− 1)th iteration.

The objective function is not convex. It is a nonlinear programming problem with not only linear
equality and inequality constraints, but also nonlinear constraints. As the frequency steps and carrier
bandwidths are continuous real variables, the sequence quadratic programming (SQP) algorithm [35]
is exploited to solve the problem.

The optimization goal of this step is to further reduce the PSL and reach a local optimum value
under the constraint of the matching error value ε2(n− 1). After solving P1(n), the optimum value of
the objective function is

ε1(n) = { max
0<τ≤T

k=1,2,3,··· ,K
l=1,2,3,··· ,L

∣∣∣χ(τ, f k
d , θl)

∣∣∣}n. (20)

Stage I-Step 2: We set the beampattern matching error as the objective function and set maximum
PSL as the constraint. The second optimization model is established as

P2(n) : min
φ
{
∥∥∥∥ 1

T

∫ T

0
s(t)sH(t)dt−Rd

∥∥∥∥
F
}

s.t. φm,q ∈ {0,
π

2
, π,

3π

2
}, m = 1, 2, · · · , M, q = 1, 2, · · · , Q,

max
0<τ≤T

k=1,2,3,··· ,K
l=1,2,3,··· ,L

∣∣∣χ(τ, f k
d , θl)

∣∣∣ ≤ ε1(n), (21)

where P2(n) denotes the optimization problem P2 in the nth iteration. The second constraint condition
indicates that the maximum PSL is bounded by the threshold value ε1(n), which is the optimal PSL
obtained in the first step of stage I at the nth iteration.

We utilize the adaptive clonal selection (ACS) algorithm [36] as the optimization algorithm, and
the optimization goal of this step is to further reduce the beampattern matching error and achieve a
local optimum value under the PSL constraint value ε1(n). After solving P2(n), the optimum value of
the objective function is

ε2(n) = {
∥∥∥∥ 1

T

∫ T

0
s(t)sH(t)dt− Rd

∥∥∥∥
F
}n. (22)

It is clear that the ∆ f and βs are continuous real variables, and φ consists of discrete real
variables. Thus, we optimize these two groups of variables alternatively in two steps as the alternative
optimization method in [42]. Each solution in iteration can be called a weakly valid solution in
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multi-objective optimization. Therefore, multiple iterations are needed to reduce the values of the two
objectives so as to achieve a relatively effective solution.

The initial parameters of each iteration are the optimized parameters of the last iteration. We stop
iterating when both the PAT and the maximum PSL no longer decrease. The designed LFM-PC
waveforms at the iteration termination point can be a valid solution for the optimization problem in
this paper.

5.3.2. Stage II-Mandatory Optimization of the Beampattern

After the first stage of joint optimization of the beampattern and PSL, the two objectives can
not decrease simultaneously. However, we can further decrease one objective by relaxing the other
objective through optimization.

Therefore, on the basis of the valid solution obtained in Stage I above, the idea of the key objective
method in multi-objective optimization theory is exploited, where the beampattern matching error
is regarded as the key objective to be mandatorily constrained. Then, we can obtain the optimal
synthesized transmit beampattern and relatively superior PSL.

The iterative optimization of the key objective method is conducted. As the optimization variables
include the continuous and discrete ones, there are also two steps in each iteration as follows.

Stage II-Step 1: The maximum PSL is set as the objective function, and the transmit beampattern
matching error is set as the constraint under a threshold. Then the third optimization problem is
established as

P3(n) : min
∆ f ,βs

{ max
0<τ≤T

k=1,2,3,··· ,K
l=1,2,3,··· ,L

∣∣∣χ(τ, f k
d , θl)

∣∣∣ }
s.t.

M−1

∑
m=1

∆ fm = B− BM, ∆ fm > 0,

1
Tc
≤ Bi ≤ B−

i−1

∑
m=1

∆ fm, i = 1, 2, · · · , M,∥∥∥∥ 1
T

∫ T

0
s(t)sH(t)dt−Rd

∥∥∥∥
F
≤ ε4(n− 1), (23)

where P3(n) denotes the optimization problem P3 in the nth iteration. The threshold ε4(n− 1) is the
beampattern matching error obtained in the second step of Stage II at the (n− 1)th iteration. The SQP
algorithm is utilized to solve P3(n). After solving P3(n), the optimum value of the beampattern
matching error is

ε3(n) = {
∥∥∥∥ 1

T

∫ T

0
s(t)sH(t)dt− Rd

∥∥∥∥
F
}n. (24)

Stage II-Step 2: The maximum PSL is set as the objective function, and the transmit beampattern
matching error is set as the constraint under a lower threshold. Then the fourth optimization problem
is established as

P4(n) : min
φ
{ max

0<τ≤T
k=1,2,3,··· ,K
l=1,2,3,··· ,L

∣∣∣χ(τ, f k
d , θl)

∣∣∣ }
s.t. φm,q ∈ {0,

π

2
, π,

3π

2
}, m = 1, 2, · · · , M, q = 1, 2, · · · , Q,∥∥∥∥ 1

T

∫ T

0
s(t)sH(t)dt−Rd

∥∥∥∥
F
≤ ε3(n), (25)

where P4(n) denotes the optimization problem P4 in the nth iteration. The threshold ε3(n) is the
beampattern matching error obtained in the first step of Stage II at the nth iteration. The ACS
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algorithm is utilized to solve P4(n). After solving P4(n), the optimum value of the beampattern
matching error is

ε4(n) = {
∥∥∥∥ 1

T

∫ T

0
s(t)sH(t)dt− Rd

∥∥∥∥
F
}n. (26)

The initial parameters of each iteration are the optimized parameters of the last iteration. It is clear
that · · · ≥ ε3(n−1) ≥ ε4(n−1) ≥ ε3(n) ≥ ε4(n) ≥ · · · . After iteratively optimizing the problems P3(n)
and P4(n), the beampattern matching error becomes lower and lower. The beampattern matching
error is mandatorily reduced, while the maximum PSL is relaxed. However, the PSL is still acceptable
due to the first stage of optimization. We determine the solution obtained at this stage as the optimal
solution of the constrained beampattern design problem in this paper.

5.4. Detailed Execution and Complexity Analysis

5.4.1. Detailed Execution of the Optimization Algorithm

Combining the joint optimization of Stage I and the mandatory optimization of Stage II, the basic
steps of the total optimization process above are summarized as follows.

1. According to the desired beampattern, Pd(θ), the desired waveform covariance matrix, Rd,
is obtained by solving the convex optimization in (15).

2. The initial frequency intervals ∆ f , carrier bandwidths βs and phase codes φ of the correlated
LFM-PC waveforms are randomly selected under their corresponding constraints. The initial
phase codes φ are generated from the hyper-logistic chaotic sequences.

3. We generate an initial threshold value, ε2(0) = ε0, to start the optimization problem P1(n) (i.e.,
the Stage I of optimization). We use the optimum value ε2(n− 1) of the objective function in
P2(n− 1) as the constraint threshold in P1(n), and solve the optimization problem, P1(n), by the
SQP algorithm. Then, we use the optimum value, ε1(n), of the objective function in P1(n) as the
constraint threshold in P2(n), and solve the optimization problem, P2(n), with the ACS algorithm.
Iterating Stage I-Step 1 and Stage I-Step 2 as · · · → P1(n− 1)→ P2(n− 1)→ P1(n)→ P2(n)→
· · · . The iterations in the first stage terminate when both the PAT and the maximum PSL no longer
decrease.

4. We utilize the optimal parameters at the end of Stage I as the initial parameters of Stage II. We use
the optimal value ε4(n − 1) of the beampattern matching error in P4(n − 1) as the constraint
threshold in P3(n), and solve the optimization problem, P3(n), by SQP algorithm. Then, we use
the optimal value, ε3(n), of the beampattern matching error in P3(n) as the constraint threshold
in P4(n), and solve the optimization problem, P4(n), by ACS algorithm. Iterating Stage II-Step 1
and Stage II-Step 2 of the second stage as · · · → P3(n− 1)→ P4(n− 1)→ P3(n)→ P4(n)→ · · · .
The iterations terminate when the PAT no longer decreases or the iteration number reaches the
maximum number Im.

The flowchart for the overall optimization algorithm is shown in Figure 9.
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Figure 9. The flowchart of proposed optimization algorithm.

5.4.2. Complexity Analysis of the Optimization Algorithm

The complexity of the main steps in our optimization algorithm is analyzed as follows.
(1) The complexity of SQP: The implementation of the SQP algorithm consists of three main stages,

which are updating the Hessian matrix, the quadratic programming solution, and line search, and the
merit function [43]. Among these stages, the most costly step should be either the Hessian updating
or the QR factorization. For an SQP problem with X variables and Y constraints, the complexity of
Hessian matrix updating is O

(
X2), and the complexity of QR factorization is O

(
Y2X

)
. The overall

complexity is O
(
X2 + Y2X

)
.

(2) The complexity of calculating the maximum PSL in (17): The ambiguity function at each
doppler frequency and space angle can be regarded as a correlation function of the spatial synthesized
signal. For M transmit antennas, the complexity of calculating the spatial synthesized signal with Q
length is O (MQ). For a Q length of spatial synthesized waveform sequence, the correlation function
is calculated by the Fast-Fourier-Transform (FFT) for the saving computation, and the complexity is
approximatelyO (Qlog2Q). These two main steps are repeated for K doppler frequencies and L spatial
angles. Thus, the overall complexity for calculating the maximum PSL is O (KLMQ + KLQlog2Q).

(3) The complexity of calculating the beampattern matching error in (16): For a waveform
set of waveform number M and waveform length Q, the complexity for calculating the waveform
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covariance matrix R
4
= 1

T
∫ T

0 s (t) sH (t)dt is O
(

M2Q
)
. The complexity for calculating the norm error

of ‖R− Rd‖F is O
(

M3). Thus the overall complexity for calculating the PAT is O
(

M2Q + M3).
(4) The complexity of ACS algorithm: The ACS algorithm consists of seven steps of population

initialization, affinities calculation and ordering, clonal operation, mutation operation, clone selection
operation, population regeneration, and termination. We assume the population number of antibodies
is Np. After cloning and mutation, the population number is changed into Npq. To find the best
antibody, the affinities of all the antibodies in the population (i.e., the objective function) have to be
calculated. Thus in one iteration of the ACS algorithm, the complexity is about O

(
NpqTo

)
, where To is

the complexity of computing the affinity function. If the iteration number of ACS is Iacs, the overall
complexity of ACS is O

(
IacsNpqTo

)
.

Finally, according to the detailed execution of the optimization algorithm in Section 5.4.1,
the overall computation complexity C of our proposed algorithm is

C =O
(

2Im[(2M)2 + (2M + 1)22M]
)
+O (2Im[KLMQ + KLQlog2Q]) +O

(
2Im[M2Q + M3]

)
+O

(
2Im IacsNpq[(KLMQ + KLQlog2Q) +

(
M2Q + M3

)
]
)

, (27)

where Im is the maximum iteration number, and O (·) is the big-O notation.

6. Simulation Analysis

In this section, simulations are provided to verify the efficiency of the proposed algorithm.
A colocated MIMO radar with a ULA is considered. The number of transmit antennas is
M = 7, and the pulse duration is T = 400 us. The length of the phase-coded sequence is
Q = 63, and the total bandwidth is B = 500 kHz. The initial frequency intervals and carrier
bandwidths of the LFM-PC waveforms are randomly selected under their corresponding constraints.
The initial phase codes are chosen from the hyper-logistic chaotic sequence, and difference sequences
are modulated on different carriers. The discrete space search range is assumed to be Θ =

[−90◦, · · · ,−1◦, 0◦, 1◦, · · · , 90◦] with a sampling grid of 1◦. The discrete doppler frequency range
is assumed to be Fd = [−0.1/Tc, · · · ,−0.004/Tc, 0, 0.004/Tc, · · · , 0.1/Tc]T with a sampling grid of
0.004/Tc.

6.1. One-Main-Lobe Scenario

We first focus on a one-main-lobe scenario. A symmetric beampattern of mainlobe width 60◦ is
desired, where the mainlobe region [−30◦, 30◦] and the sidelobe regions [−90◦,−30◦] ∪ [30◦, 90◦] are
both uniformly discretized with a grid size 1◦. In this case, the desired beampattern can be represented

as Pd(θ) =

{
1, θ ∈ [−30◦, 30◦]

0, otherwise
.

The first stage of the iterative optimization is carried out for the correlated LFM-PC waveform set
first. The values of the two objective functions, PSL and PAT, varied with the iteration number at Stage
I of the optimization, are shown in Figure 10. In Figure 10, both the PSL of angular waveforms and
the PAT are reduced with the iteration number. The ε-constraint method with one objective function
alternating as the objective and the other objective function alternating as the constraint can effectively
accelerate the convergence speed. Then, the second stage of iterative optimization is performed by
setting the beampattern matching error as the key objective. The values of the two objective functions,
PSL and PAT, varied with the iteration number at Stage II of optimization are shown in Figure 11.
In Figure 11, the beampattern matching error is further reduced; however, the peak sidelobe level will
jitter. This phenomenon is consistent with the concept there is no absolute optimal solution in the two
objectives optimization problem.
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Figure 10. The iterative process of optimization in the first stage for the one-main-lobe.
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Figure 11. The iterative process of optimization in the second stage for the one-main-lobe.

By the proposed optimization algorithm, the optimized bandwidths, frequency intervals, and
phase-coded sequences of seven optimized waveforms are provided in Tables 2 and 3 respectively,
where the optimized waveform data after both Stage I and Stage II is given, and W1–W7 index the
seven waveforms.

Table 2. Optimized bandwidths and frequency intervals for the one-main-lobe (/kHz).

Items W1 W2 W3 W4 W5 W6 W7

Stage I

BLFM,m 104.224 1.116 234.896 160.923 235.397 148.47 206.866
Bm 210.877 157.504 282.812 225.172 283.228 216.448 260

∆ fm 0 31.928 66.137 30.962 14.977 43.474 52.519

Stage II

BLFM,m 135.69 443.136 138.041 162.470 234.948 150.389 206.866
Bm 207.889 157.5 285.429 226.28 282.854 217.769 260

∆ fm 0 32.189 65.817 31.719 14.967 43.237 52.068
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Table 3. Optimized phase codes for the one-main-lobe (/ π
2 ).

Stage I

W1 223222200120100021332113301210121320001333203000120021113001103
W2 102012032132200102002020012102220200001320111212201320121120100
W3 001000010200013000102021211312002301320132002210012200101012000
W4 020010013200001121200020121120131110021320032110201213332133322
W5 233203021032120100121212302230130132111020211032011120013330013
W6 203320001210132220012213033113201000332012012020333211001222032
W7 000013211201331001000202131213200101133130133233001032000023331

Stage II

W1 123220000020112202002103002220121322002232103000022001120200100
W2 102212032002200212022020002202220200001120011222100320121010000
W3 000001000100023000102010001002022301300002102211020001121210110
W4 020010013001012022000020111120120210022320202200201113032031022
W5 213003020102121201220211302231130202122011122032001110012330010
W6 223220001212032200112212033020202002302010002021313211001222232
W7 000213211200131001000200031110000201030110032031212000011021212

By substituting the optimal waveform parameters obtained at the end of Stage I and Stage II
of optimization into the correlated LFM-PC waveform set respectively, we can obtain the transmit
beampatterns of the correlated LFM-PC waveforms at Stage I and Stage II in Figure 12. As shown in
Figure 12, the beampattern designed by CVX is the benchmark, and the synthesized beampatterns at
both Stage I and Stage II of optimization approach the desired beampattern well. Compared with the
synthesized beampattern at Stage I, the synthesized beampattern at Stage II is more closely approaching
the benchmark. The transmit beampattern of our proposed algorithm is also compared with that of
the sequential iterative algorithm (SIA) proposed in [28] with ξ=0.5, where the waveform parameters
are the same as those in this paper, and the LFM reference waveforms given in [28] are utilized. It is
observed from Figure 12 that our proposed algorithm can obtain better transmit beampattern than the
SIA to match the desired beampattern.
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Figure 12. The optimized beampatterns for the one-main-lobe.

The −16.5 dB contour maps of ambiguity functions of the optimized LFM-PC angular waveforms
at Stage I and Stage II are both shown in Figure 13. The area of grey shadow in Figure 13 denotes the
optimized Doppler frequency range Fd. This range is not wide due to the heavy computation load. It is
shown in Figure 13 that the sidelobes of optimized LFM-PC angular waveforms within the Doppler
frequency range Fd at the end of Stage I have been reduced and are below -16.5 dB. After the Stage II of
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optimization, the sidelobes of optimized LFM-PC angular waveforms within the Doppler frequency
range Fd increase a little bit and are slightly above −16.5 dB.
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Figure 13. The sidelobes of the optimized LFM-PC waveforms for the one-main-lobe.

Figures 12 and 13 demonstrate that the termination point of the first stage of optimization
can provide a valid solution, and the beampattern and range sidelobes of LFM-PC waveforms are
acceptable; however, they can be further optimized. In the second stage of iterative optimization,
the transmit beampattern is mandatorily optimized. The final optimized waveform parameters of
Stage II of the iterative optimization are taken as the optimal solution of the constrained beampattern
design problem in this paper.

The ambiguity functions of the approximate LFM waveforms designed by SIA with ξ=0.5 and the
LFM-PC waveforms after two stages of our proposed optimization algorithm are shown in Figure 14a,b
respectively. Obviously, the waveforms optimized by our proposed algorithm have a thumbtack-shape
ambiguity function, while the approximate LFM waveforms designed by SIA have a worse ambiguity
function with a serous delay-Doppler coupling. Moreover, by comparing with the ambiguity function
in Figure 5c,d, the ambiguity function of the optimized LFM-PC waveforms is much better, and at the
same time, the desired beampattern can be approached. The sidelobes within the Doppler frequency
range Fd have been suppressed, but the sidelobes outside Fd are not suppressed. The more Doppler
frequencies that are considered, the heavier the computation load is.

(a) (b)

Figure 14. For one-main-lobe, the ambiguity functions of (a) the approximate
linear-frequency-modulation (LFM) waveforms by sequential iterative algorithm (SIA), ξ=0.5;
(b) the optimized LFM-PC waveforms.
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For the one-main-lobe scenario, Table 4 further verifies the efficiency of the proposed optimization
in the temporal and spatial characteristics of the correlated LFM-PC waveforms, quantitatively.
We conclude from Table 4 that: (1) The range sidelobes of LFM-PC waveforms before or after
optimization are much lower than those of the OFD LFM waveforms. (2) The OFD LFM waveforms
and the correlated LFM-PC waveforms before optimization cannot approach the desired one-main-lobe
beampattern; however, the LFM-PC waveforms after optimization can match the desired beampattern
well, and the matching error is small. (3) The real values of the PSL drop from 0.2218 before
optimization to 0.1576 after two stages of optimization, and the corresponding dB values drop from
−13.8080 dB before optimization to -16.0489 dB after two stages of optimization. (4) The beampattern
matching errors drop from 1.9919 before optimization to 0.6677 after two stages of optimization.
(5) From the joint optimization at Stage I to the mandatory optimization at Stage II, the matching error
is reduced, but the sidelobes have slightly increased. The mandatory optimization of the beampattern
is achieved at the slight loss of the sidelobe performance. (6) Our proposed waveforms (random
LFM-PC or optimized LFM-PC) outperform the SIA-designed waveforms in [28] in terms of both the
PSL and PAT performance.

Table 4. Optimization results for one-main-lobe.

Waveforms PSL PSL (dB) PAT

OFD-LFM 0.4640 −6.6696 2.4220
Random LFM-PC 0.2218 −13.8080 1.9919
LFM-PC of Stage I 0.1457 −16.7308 1.1291
LFM-PC of Stage II 0.1576 −16.0489 0.6677

SIA ξ=0.5 0.6187 −4.1701 0.9999

6.2. Two-Main-Lobe Scenario

We consider a two-main-lobe scenario, where the desired beampattern has two beams directed
at −40◦ and 40◦, and the mainlobe width is 40◦. Then, the desired pattern can be represented as

Pd(θ) =

{
1, θ ∈ [−60◦,−20◦] ∪ [20◦, 60◦]

0, otherwise
, and the discrete grid is 1◦. Similarly, the first stage of the

iterative optimization is first performed, and the values of the two objective functions, PSL and PAT,
varied with the iteration number at Stage I of optimization, are shown in Figure 15. As shown in
Figure 15, both the PSL and PAT have decreased. Then, the second stage of iterative optimization is
performed by setting the beampattern matching error as the key objective. The values of two objective
functions PSL and PAT, varied with the iteration number at Stage II of optimization, are shown in
Figure 16. As shown in Figure 16, the PSL of optimized angular waveforms has a small rise, but the
PAT of optimized angular waveforms has decreased considerably.
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Figure 15. The iterative process of optimization in the first stage for the two-main-lobe.
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Figure 16. The iterative process of optimization in the second stage for the two-main-lobe.

Similarly, the optimized bandwidths, frequency intervals, and phase-coded sequences of seven
optimized waveforms after Stage I and Stage II are summarized in Tables 5 and 6 respectively.

Table 5. Optimized bandwidths and frequency intervals for the two-main-lobe (/kHz).

Items W1 W2 W3 W4 W5 W6 W7

Stage I

BLFM 96.719 335.681 4.163 8.661 136.176 253.396 206.866
Bm 184.826 370.794 157.555 157.737 208.207 298.355 260

∆ fm 0 12.659 12.661 10.101 28.688 175.397 0.491

Stage II

BLFM 99.787 333.01 4.108 6.977 133.815 257.315 206.866
Bm 186.45 368.378 157.553 157.654 206.67 301.691 260

∆ fm 0 12.503 12.734 10.927 28.696 174.633 0.503

Table 6. Optimized phase codes for the two-main-lobe (/ π
2 ).

Stage I

W1 211202213212101112310220113330122002103333112333213101223132002
W2 320333202010003313200132332213303122023321121313022121313220001
W3 131321311300132201000332101120313100131210233013320131333321332
W4 213100003233022232211030023322333032132110101230131210221201003
W5 121033130112312120131333133302230133203311212003130012000221010
W6 111120031201320113212330123131102133213031031033203121321310232
W7 003320133123132213131231002013323211321320321333301201310021300

Stage II

W1 100101113202101212010020113330122012103230122303113011222132001
W2 010333200000000113100131332213003122021321210300022101010222010
W3 220111311001000221110201101000013211031010200010120122330321232
W4 213211022000122130200001001012310230022110201000020211220110003
W5 221000100001002120002302103100201200102301121210222002000212000
W6 010120000201311103001000020130102200011101020100202012300310120
W7 000300130120122200031000011010000121200320020130210101200022310

By substituting the waveform parameters obtained at the termination points of Stage I and
Stage II of optimization into the correlated LFM-PC waveforms, the transmit beampatterns are
shown in Figure 17. The −16.28 dB contour maps of ambiguity functions are shown in Figure 18.
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The optimization results are similar with those in the scenario of one-main-lobe. The beampattern
designed via CVX is the benchmark. The beampattern designed by the SIA in [28] is also utilized
as a comparison method. It is demonstrated that our synthesized transmit beampattern approaches
the desired beampattern well, and the PSL of angular waveforms within the predetermined doppler
frequency range Fd reaches a low level at the first stage of optimization, which is below −16.28 dB.
By the second stage of the optimization, our synthesized beampattern is much better in terms of
approaching the desired beampattern, while the PSL within Fd rises a little bit, and is above −16.28 dB.
The rises of the PSL is negligible, and the transmit beampattern is mandatorily optimized.
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Figure 17. The optimized beampatterns for the two-main-lobe.
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Figure 18. The sidelobes of the optimized LFM-PC waveforms for the two-main-lobe.

The ambiguity functions of the approximate LFM waveforms designed by SIA in [28] and the
final optimized LFM-PC waveforms are demonstrated in Figure 19a and b, respectively. The ambiguity
function of our proposed waveforms has a favored thumbtack shape, while that of the SIA-designed
waveforms has a serous delay-doppler coupling. In our proposed algorithm, the sidelobes within
the doppler frequency range Fd have been greatly suppressed. Further research will be continued to
design the constrained beampattern with optimized sidelobes at a lower computation load for a wider
doppler frequency range.
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(a) (b)

Figure 19. For the two-main-lobe, the ambiguity functions of (a) the approximate LFM waveforms by
SIA, ξ=0.5; (b) the optimized LFM-PC waveforms.

We further summarize the values of PSL and PAT for the two-main-lobe desired pattern
quantitatively in Table 7. The conclusions reflected by these values are similar with those in Table 4.
We find that: (1) The real values of the PSL drop from 0.2614 before optimization to 0.1897 after the
two stages of optimization, and the corresponding dB values of the PSL drop from −11.6539 dB before
optimization to −14.4387 dB after the two stages of optimization. (2) The beampattern matching errors
drop from 2.9812 before optimization to 1.6053 after the two stages of optimization. (3) From Stage I to
Stage II, the PAT is further reduced at the cost of about 2 dB increase on PSL, which is realized through
the mandatory optimization. (4) By comparing the values in Table 4 and Table 7, after two stages of
optimization, both the PSL and the PAT for the two-main-lobe scenario is higher than those for the
one-main-lobe scenario. This means that it is more difficult to match the two-main-lobe beampattern
than the one-main-lobe beampattern. (5) The PSL performance of our designed LFM-PC waveforms
is much better than that of the SIA-designed waveforms. The PAT error value of the SIA-designed
waveforms seems slightly better than that of our proposed waveforms, which is because the PAT is only
a rough metric to describe the matching degree, and cannot judge the goodness of the beampattern
completely. From Figure 17, the two mainlobes of the SIA-designed waveforms are not as obvious as
those of our proposed waveforms.

Table 7. Optimization results for the two-main-lobe.

Waveforms PSL PSL (dB) PAT

OFD-LFM 0.4640 −6.6696 3.1086
Random LFM-PC 0.2614 −11.6539 2.9812
LFM-PC of Stage I 0.1541 −16.2439 2.1303
LFM-PC of Stage II 0.1897 −14.4387 1.6053

SIA ξ = 0.5 0.6912 −3.2081 1.1269

7. Conclusions

In this paper, the constrained transmit beampattern design problem using the correlated LFM-PC
waveforms was considered. The ambiguity function of the LFM-PC waveforms was analyzed, and the
superiority of the multicarrier LFM-PC waveform set was verified. Then, based on the temporal
and spatial characteristics of the LFM-PC waveform set, a bi-objective optimization problem was
formulated to design the transmit beampattern constrained by a good ambiguity function property.
The frequency steps, carrier bandwidths, and phase-coded sequences of the LFM-PC waveforms were
chosen as the optimization variables. We proposed a two-stage optimization strategy to solve this.
In the first stage, the transmit beampattern and sidelobe level were jointly optimized. In the second
stage, the transmit beampattern was mandatorily optimized at the slight loss of sidelobe performance.
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Simulation results demonstrate that by using the LFM-PC waveforms, the desired beampattern can be
approached well; the range sidelobes are effectively suppressed; and a thumbtack-shape ambiguity
function is obtained.
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