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Abstract: This review presents various ways of detection of different physical quantities based
on the frequency change of oscillators using piezoelectric crystals. These are influenced by the
reactance changes modifying their electrical characteristics. Reactance in series, in parallel, or a
combination of reactances can impact the electrical crystal substitute model by influencing its resonant
oscillation frequency. In this way, various physical quantities near resonance can be detected
with great sensitivity through a small change of capacitance or inductance. A piezoelectric crystal
impedance circle and the mode of frequency changing around the resonant frequency change are
shown. This review also presents the influence of reactance on the piezoelectric crystal, the way
in which the capacitance lost among the crystal’s electrodes is compensated, and how the mode of
oscillators’ output frequency is converted to lower frequency range (1–100 kHz). Finally, the review
also explains the temperature–frequency compensation of the crystals’ characteristics in oscillators
that use temperature–frequency pair of crystals and the procedure of the compensation of crystals own
temperature characteristics based on the method switching between the active and reference reactance.
For the latter, the experimental results of the oscillator’s output frequency stability (f out = ±0.002 ppm)
at dynamical change of environment temperature (0–50 ◦C) are shown.

Keywords: piezoelectric impedance; reactance influence on resonance; detection principle of
piezoelectric oscillators

1. Introduction

There are many different types of oscillators using crystals as the key components of their circuit.
The quartz oscillator, in particular, is uniquely suited for the manufacture of frequency selection or
frequency control devices [1–3]. On the other hand, these oscillators can be used for the detection
of various physical quantities based on the frequency change that can be triggered by mechanical
influence on the crystal [4] or electrical influence on its substitute electrical model [1,5]. The purpose
of this study is to provide an overview of various ways of detection of physical quantities using
oscillators with a piezoelectric crystal (as an oscillating element) and reactance connected in series or in
parallel. The latter influences the crystal’s electric substitute model and consequently its performance
characteristics (the oscillating frequency near the resonance) [6–8]. The advantage of this method is
great enhancement of sensor sensitivity, excellent temperature compensation, as well as compensation
of capacitance among the crystal’s electrodes and other parasitic impedances.

Current state of the research field: In [9], a calibration method based on self-reciprocity is
proposed for the determination of transducer sensitivity, which can be applied to both planar and
focused transducers. The two-port electrical network of the experimental setup is analyzed, and
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a simplified measurement procedure is described in which the “impedance mismatch” problem
is solved. Another paper [10] presents an equivalent circuit model, a systematic design, and an
optimization method for developing a broadband annular diaphragm piezoelectric micromachined
ultrasonic transducer (A-PMUT). By utilizing array analysis methods, an annular diaphragm is
regarded as an array consisting of equally spaced sector diaphragms influencing each other by crosstalk
effects [11]. The model successfully explains the phenomenon of multi-resonance peaks in the frequency
response curve, sharing the same vibration mode. Researchers in [12] present an initial, large-scale
investigation into embedding shear-mode lead zirconate titanate piezoelectric transducers into the
bond line of laminate structures, near the centerline, for the ultrasonic detection of joint defects.
Simulations were performed for models containing disbonds, through-thickness cracks, and voids
with experimental validation of a specimen containing a void to evaluate the effectiveness of lead
zirconate titanates embedded in a bondline as sensors for damage detection. In [13], implantable
middle ear hearing devices were developed as a new technology to overcome the limitations of
conventional hearing aids. In this article a new piezoelectric transducer based on a piezoelectric
stack is proposed and designed. This new transducer, attached to the incus body with a coupling
rod, stimulates the ossicular chain in response to the expansion-and-contraction of its piezoelectric
stack. In [14], the research describes the design of an amplifier for a piezoelectric transducer used
in underwater communication applications. The proposed architecture combines hysteretic ripple
current-mode control with an adaptive soft switching technique to achieve improved power efficiency
over the full output power range. This is achieved by dynamically controlling the inductor current
ripple to keep the converter running in soft switching. In [5], two piezoelectric transducers were
designed to meet the strict underwater application backgrounds such as high pressure, corrosion
resistance, and high strength. The two models were constructed and compared with chosen sets
of geometric parameters, which can also provide a reference for low-frequency transducer design.
The experimental results of proposed transducers show a good consistency, which indicates that
the cavity structure can reduce the resonance frequency. In [15] a general model was developed
that describes the electrical responses of thickness-shear mode resonators subject to a variety of
surface conditions. The model incorporates a physically diverse set of single-component loadings,
including rigid solids, viscoelastic media, and fluids (Newtonian or Maxwellian). In [16] the method
improving quartz oscillator temperature–frequency characteristics compensation is switching between
two impedance loads. By modifying the oscillator circuit with two logic switches and two impedance
loads, the oscillator can switch oscillation between two resonance frequencies. The difference in
resonance frequencies compensates the temperature–frequency characteristics’ influence as well as the
influence of offset and quartz crystal ageing.

This work provides an overview of ways of detection of different physical quantities using
oscillators with piezoelectric crystals and load impedance connected in series or parallel through which
we impact the electrical substitute crystal model and its performance characteristics. In oscillators
with load capacitance or inductance in series or parallel with the crystal unit, the oscillation frequency
depends on the capacitive or inductive load that is applied. The frequency will increase if the capacitive
load is decreased and decrease if the load is increased. The amount of frequency change (in ppm) as a
function of load capacitance is different for various ways of influencing the electrical substitute model
of the piezoelectric crystal. It indicates how far from the nominal frequency (intended oscillating
frequency) the resonant frequency can be forced by applying the load. In this case, it can be used for
measurement purposes, allowing the measurement of various physical quantities based on capacitive
and inductive influence on the quartz crystal’s oscillation frequency. A huge advantage of these ways
of detection of piezoelectric oscillators is a very good temperature compensation of the crystal’s own
temperature–frequency characteristics (although this is not always necessary in certain cases) and an
improved impedance-to-frequency change sensitivity.
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2. Piezoelectric Crystal Equivalent Circuit and its Impedance

The operation of a piezoelectric crystal is frequently explained using the equivalent circuit,
illustrated in Figure 1, representing an electrical depiction of the quartz crystal unit [1,6,15,17,18].
The capacitance labeled C0 is real capacitance, comprising the capacitance between the electrodes
and the stray capacitance associated with the mounting structure. It is also known as the "shunt"
or "static" capacitance, and represents the crystal in a non-operational state. This can also depend
on the medium where the piezoelectric is located, namely conductive or non-conductive medium.
The other components represent the crystal in an operational or motional state; L1, C1, and R1 identify
the "motional inductance", the "motional capacitance", and the "motional resistance", respectively.
The motional inductance L1 represents the vibrating mass of the quartz plate, while the motional
capacitance C1 represents the elasticity or stiffness of the plate. The motional resistance R1 represents
the bulk losses occurring within the vibrating plate.
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Figure 1. The piezoelectric crystal equivalent circuit (Butterworth Van-Dyke (BVD) model) [19,20].

The piezoelectric crystal has two resonance frequencies, namely the series resonance frequency f s

and the parallel resonance frequency f p. The series and parallel resonance frequencies and the quality
factor Q are specified by the following equations [1,6,21]:
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The complex impedance equation for the piezoelectric crystal equivalent circuit (Figure 1) [1,6,21] is
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By introducing the normalized frequency Ω = ω/ω0, which is related to the resonance frequency
ω0 = 1/

√
L1C1, taking into account ω0L1= 1/ω0C1 and ω0= ωs and Equation (4), we can write [6,18]
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Taking into account various ways of oscillation of piezoelectric crystals, Table 1 shows values or
value ranges for individual electrical equivalent circuit elements (Figure 1). For individual frequencies
of crystal’s oscillation, it is possible to select given values for R1, C1, and L1.

Table 1. Element data for electrical substitute model of the piezoelectric crystal (quartz) (Figure 1) for
various frequencies of oscillation (Equation (7)) [6].

f S R1 C1 L1

Bending vibration 1–50 kHz 5–50 kΩ 0.01 pF 104 –103 H

Longitudinal vibration 50–200 kHz 2–5 kΩ 0.10 pF 10–100 H

Surface vibration 150–800 kHz 0.5–10 kΩ 0.02 pF 1–10 H

Thickness shear vibration 0.5–20 MHz 2–2000 Ω 0.01 pF 10–100 mH

For the selected data C1 = 3.24 fF, L1 = 7281 H, and R1 = 30 kΩ [6] from Table 1, a series resonance
frequency f s = 1/(2π·

√
L1C1) = 32.768 kHz can be calculated. By introducing a normalized frequency

Ω (Equations (5)–(7)), the crystal’s impedance change near the series resonance frequency (32.768 kHz)
can be described in Figure 2. By changing the normalized frequency Ω from 0 to∞, the piezoelectric
crystal impedance changes (Equations (6) and (7)) in the impedance circle (Figure 2). Place 4 (Figure 2)
represents series resonant frequency Ωs, and place 7 represents parallel resonant frequency Ωp. In both
cases, impedance imaginary parts are zero. At Ωs the impedance real value is very small, while at
Ωp it is very big. Even though the real parts of impedance differ by a factor of 2500 for the resonant
frequencies Ωs and Ωp, the resonant frequencies differ by only 0.05%. At places 6 and 8, the absolute
value of the impedance imaginary parts has the greatest value.
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3. Reactance Influence on Resonance of Piezoelectric Crystals

Different ways of detecting physical quantities based on the change in frequency of oscillators
operating with piezoelectric crystals can be demonstrated by the effect of reactance on the resonant
frequency of piezoelectric crystals. Presented is the influence of reactance on the piezoelectric crystal,
the way in which the capacitance lost among the crystal’s electrodes is compensated, and how the
mode of oscillator output frequency is converted to lower frequency range.
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3.1. Load Capacitance Influence on Resonance

Usually, to set the resonance frequency, the load capacitance is connected in series or in parallel
with the piezoelectric crystal, depending on whether we wish to influence its series or parallel resonant
frequency (Figure 3a,b) [1,3,6,21,22].
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In order to calculate the influence of the series capacitance CL (Figure 3) on the series resonance
frequency f s, the crystal resistance R1 (Equation (4)) is neglected (R1 = 0), so that the series impedance
is obtained for the series quartz coupling and the series capacitance [6,18,23,24].
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If we know the range of capacitance CL change, Equation (10) can reflect the change of frequency
fs∗ (for example, the capacitance change CL = 5–15 pF (Figure 4)). For greater changes of capacitance
CL > 15 pF, the frequency change fs∗ is a lot smaller.

f ∗s (CL) =
1

2π·
√

L1C1

(
1 +

C1

2(C0 + CL)

)
(12)
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3.2. Capacitance Compensation of Piezoelectric Electrodes

Capacitance C0 (Figure 1) represents the capacitance between the electrodes of the piezoelectric
crystal, and can be compensated with the inductance LL in series with the crystal (Figure 5a) provided
that (Equation (13)) [6,18,20,25] is

LL =
1
ω2

s C0
(13)
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If we take into account Equation (9) and Equation (13) (compensation C0), the new resonant
frequency ( fss

∗) is expressed with Equation (14). With this equation, enhanced pulling sensitivity df 1

near the series resonant frequency f s (Equation (1)) is achieved, as shown in Figure 6.
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∗(CL) (Equation (16)) as result of changing of capacitance CL (in the range from

od 5–15 pF).

Conversely, with high load capacitance CL the pulling sensitivity is very small, so 100 pF likely
represents, approximately, the upper limit.

The pulling sensitivity df 2 (Figure 6) of the crystal unit can be also increased if the C0 is compensated
by parallel inductance Lp to the crystal (Figure 5b). The equation for compensation is

Lp =
1
ω2

s C0
(15)

fsp
∗(CL) =

1
2π·
√

L1C1

√
1 +

C1

CL
(16)

When CL is connected in series with the piezoelectric crystal (without compensation C0), the
frequency change fs∗(CL) is the smallest in the range 5–15 pF (Figure 6). With connection CL in parallel
and compensation C0, the change of frequency fsp

∗(CL) is somewhat greater but nonlinear.
With connection in series CL and compensation C0, the change of frequency fss

∗(CL) is the
greatest (the greatest frequency pulling) and linear near the resonant frequency f s. This sensitivity and
linearization study is described in more detail and compared with other studies in [26].

3.3. Load Inductance Influence on Resonance

There is another possibility to increase the pulling sensitivity and this is to replace the series load
capacitor CL with a series load inductance LLL (Figure 7) [6,18,25].
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Capacitor CZ (Figure 7) is intended to cancel the effective series resistance of the circuit and not to
act as a load capacitor for the crystal. Capacitor CZ = ~10 nF and plays the role of connecting capacitor
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that has practically no influence on the piezoelectric series resonant frequency f s, which is why in
Equation (14) the expression 1/CL can be ignored and left out, which gives us Equation (17) [26].

fsss
∗(LLL) �

1
2π·
√

L1C1

1 +
C1

2
(
C0 −

1
ω2

s LLL

)
 (17)

If we take in account (experimental data) that C1 = 3.24 fF, L1 = 7281 H, R1 = 30 kΩ, and f 0 =

32.768 kHz from Table 1, and that inductance LLL is changed in the range 7.1–7.5 H in Equation (17),
we can show the frequency pulling df 3, which is almost linear in Figure 8 and for the experimental
data amounts to 8.75 kHz/5 mH. There is, however, one potential disadvantage to this method. The
effective Q of the combination L1 and LLL (Figure 7) is dramatically reduced due to the relatively low
Q of the inductance LLL employed. Furthermore, there is also an additionally tuned circuit created,
consisting of LLL, C1 and C0 of the piezoelectric element.
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All piezoelectric crystals have spurious resonances (unwanted resonance responses) beside the
main resonance frequency. They are represented in the equivalent circuit by additional resonant circuits
in parallel with R1, L1, and C1 [3], and they are just other vibration modes at higher frequency values.

3.4. Ceramic Resonators

A cheaper alternative to the quartz crystal is a ceramic resonator. This device uses mechanical
resonance of a piezoelectric ceramic, typically lead zirconate titanate, which vibrates in various
mechanical modes depending on the chosen resonant frequency f s_cer. The approximate frequency
ranges are shown in Table 2 [27–30].

Table 2. Frequency ranges for various mechanical modes vibration [30].

f s_cer

Longitudinal mode 30 kHz–1 MHz

Area mode 100 kHz–2 MHz

Thickness shear mode 1 MHz–10 MHz

Expansion thickness mode 2 MHz–100 MHz

Surface wave mode 10 MHz–1 GHz
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The equivalent circuit of the ceramic resonator is identical to that of the quartz crystal (Figure 1),
but the component values give it orders of magnitude lower Q. In terms of oscillation frequency
accuracy, the resonator sits between the quartz crystal and the LC resonant circuit (an electric circuit
consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C,
connected together). The temperature compensation of a resonator is of the order of 10−5/◦C compared
to the more than 1 ppm/◦C achievable with quartz, and the 10−3–10−4/◦C of LC circuits. Its initial
frequency tolerance is of the order of ±0.5%, whereas quartz routinely achieves ±0.003%. To achieve
these figures using LC, circuits would need a trimming adjustment. On the other hand, the resonator
is cheaper and smaller than the quartz crystals and can use the same or similar oscillator circuits.
An advantage of the resonator is that because of its lower Q, the oscillation will start up more quickly
than for an equivalent crystal circuit, which makes it attractive for applications that spend a lot of their
time in “sleep” mode with the oscillator powered off. All of these characteristics make the ceramic
resonator the component of choice for frequency control of low- and mid-performance digital products,
where a stable clock frequency is needed but where absolute accuracy or close control of temperature
compensation is not a requirement. It is available in a wide range of standard frequencies (Table 2),
matched to particular consumer applications [27–31].

3.5. Oscillator Frequency Transformation Using Reference Oscillator

Oscillator frequency measurement by frequency counter is more accurate when the frequency f osc

of detection oscillator (Figure 9a) >1 MHz) is transformed to lower frequency range (f out1 = 1–100 kHz).
For this transformation, a reference oscillator and a low pass filter are used and a precise comparator
circuit (or Schmitt trigger circuit) is added, which transforms a triangular signal to a rectangular
signal. When using this transformation, more decimal places on the display of the frequency counter
(experimentally used HM8123-X, Hameg Instruments) are accurate [1,2,31].
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The output frequency f out1 (Figure 9a) is defined as

fout1 =
[
( fre f + d fre f (T) + d fre f (t)) − ( fosc + d fosc(T) + d fosc(t))

]
+ d fc_error1 (18)

If crystal ageing d fosc(t) and reference oscillator crystal ageing d fre f (t) (t − time) are approximately
the same (they compensate), we get Equation (19), where the temperature–frequency change
(d fre f (T), d fosc(T)) (T—temperature) is not approximately the same. In Equation (19) the frequency
measurement error d fc_error (counter error) also has to be taken into account, which includes also

fout1 =
[
( fre f + d fre f (T)) − ( fosc + d fosc(T))

]
+ d fc_error1v (19)

A piezoelectric crystal (Figure 9a) must have the temperature–frequency characteristics as much
as possible independent of the temperature (AT-cut 0′ (the crystal’s x axis is inclined by 35◦15′ from
the z (optic) axis, typically operate in fundamental mode at 1–30 MHz, Figures 10 and 11) in the
working temperature range of 10–40 ◦C. The reference oscillator (Figure 9a) is an oven-controlled crystal
oscillator (OCXO). Experimental data were: OCT18T5, 1.25–100.0 MHz, stability 0–60 ◦C = ±0.01 ppm,
ageing ±0.5 ppm/year, supply voltage variation ±5%. Using the method shown in Figure 9, stability of
f out1 = ±2 ppm can be achieved in the temperature range of 10–40 ◦C (Figure 10, cutting angle 0′) [3].

4. Temperature–Frequency Characteristics Compensation of Piezoelectric Crystals

With accurate detection principles using piezoelectric oscillators, the temperature stability of
piezoelectric crystals is important. Different methods of temperature–frequency compensation of
crystals in oscillators using temperature–frequency pairs of crystals and a procedure for compensation
of the inherent temperature–frequency characteristics of crystals based on the method of switching
between active and reference reactances are shown. For the latter, experimental results of the dynamic
stability of the oscillator output frequency are also presented.

4.1. Crystal Temperature Sensitivity

Due to the crystal’s physical properties, AT-cut crystals are predominantly used in oscillator
circuits [1,32]. Their main advantage is the low temperature sensitivity in the temperature range
between 10 and 40 ◦C. The curves are represented as the cubical parabola with the temperature
intersection point of 25 ◦C, depending on the crystal cut angle and the mechanical construction
(Figure 10) [1,33,34]. Equation (18) describes the piezoelectric crystal’s temperature–frequency change
(in ppm) with regard to the temperature change in the range of −60 to +110 ◦C (Figure 10).

d f
f

= A
(
T − Tre f

)
+ B

(
T − Tre f

)2
+ C

(
T − Tre f

)3
(20)

where T is environment temperature; Tref is reference temperature; and A, B, and C are coefficients
determined with regard to the respective angles of the cut [6,21,35].

Figure 11 demonstrates the typical synthetic crystal temperature–frequency characteristics in case
of differently cut crystals [21]. The resonator plate can be cut from the source crystal in many different
ways. At the CT-cut of the crystal (300–900 kHz, face shear, 38◦) the temperature–frequency curve is a
downward parabola. At the GT-cut of the crystal (0.1–3 MHz, width-extensional, 51◦7’) the temperature
coefficient between −25 to +75 ◦C is near-zero, due to cancelling effect between two modes. At the
BT-cut (0.5–200 MHz, thickness shear, −49◦8’), the characteristic is similar to the AT-cut operating in
b-mode (fast quasi-shear). It has well known and repeatable characteristics. DT-cut (75–800 kHz, face
shear, −52◦) is similar to CT-cut. SL-cut is (−57◦) a face-shear. The temperature–frequency curve is a
downward parabola. The temperature coefficient is lower than the CT-cut, where the frequency range
permits. At the XY-cut (3–85 kHz, length–width flexure) the crystal is smaller than other low-frequency
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cuts, and has low impedance and low C0/C1 ratio. The chief application is the 32.768 kHz crystal.
NT-cut (8–130 kHz) is length–width flexure (bending) [6,17,35].
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4.2. Piezoelectric Crystal Temperature–Frequency Characteristics Compensation

In case of temperature-dependent piezoelectric crystals and an external influence on the oscillating
frequency with an additionally connected capacitance or inductance, the crystal oscillation cannot be
temperature-compensated in the temperature range −20 to +70 ◦C in the same way as it is possible to
do with TCXO or OCXO oscillators that are hermetically closed in the housing. For this reason, two
ways of compensation were used. In the first case, two oscillators and two crystals with approximately
the same temperature characteristics (temperature pairs) were used. In the second case, one oscillator
and one crystal were used, and the switching method between two impedances was employed.
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4.2.1. Similar Crystal Temperature–Frequency Characteristics Compensation

In the case of two crystals of similar temperature–frequency characteristics, the two oscillators
and two crystals are approximately the same frequency (Figure 12) [1,2,31,36,37]. Impedance Zref is the
same as Zx and serves to create the same oscillating conditions in terms of impedance between the
piezoelectric crystals. The frequency difference between both oscillators is � 1 kHz.
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The changing of impedance Zx triggers the change of the oscillator’s frequency f osc1 in the range
between 1 and 100 kHz, where at the low pass filter output (R3, C1) a triangular signal is created that is
changed, using a comparator, into the square one that is more suitable for a frequency measurement
of greater quality [1,2,38,39]. Equation (21) describes the output frequency f out2 at which the crystal
ageing can be ignored, since it is the same for the two crystals, as described in Equations (18) and (19).

fout2 = [( fosc1 + d fosc1(T)) − ( fosc2 + d fosc2(T))] + d fc_error2 (21)

Temperature–frequency changes (d fosc1(T) and d fosc2(T)) in Equation (21) are not equal, and they
are not fully compensated, because the temperature–frequency characteristics of the quartzes Q1 and
Q2 are very similar but not equal. The actual stability of the output frequency fout2 is ±1 ppm in the
temperature range 10–40 ◦C (Figure 10, cutting angle 0′) [3,6].

4.2.2. Crystal’s Temperature–Frequency Characteristics Compensation by Switching between the
Load Capacitances

Figure 13 shows the switching method for the compensation of the crystal’s own temperature–
frequency characteristics by two capacitances Cref and Cx. Simultaneously, inductance Lcom compensates
capacitance C0 between the piezoelectric crystal electrodes, which improves the pulling sensitivity.
The measurement method is based on the oscillator and the switching part of the circuit, alternatively
switching reactances with the digital signal (Q = 1, Q = 0) [1,2,16,22,31,40,41]. The output frequency
f out3 (Equation (22) represents the output oscillator frequency, which is synchronously measured
with regard to the switch of the digital signal. The switch time duration is in the range millisecond
to seconds.

fout3
(
Q, Q

)
=


⌈
( fCre f (t1) + d fCre f (T1) + d fCre f (t1) − fr) + fc_errorQt1

⌉
−

⌈
( fCx(t2) + d fCx(T2) + d fCx(t2) − fr) + fc_errorQt2

⌉  (22)

fout3
(
Q, Q

)
=

[
( fCre f (t1) − fCx(t2)) + ( fc_errorQt1 − fc_errorQt2)

]
(23)
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Figure 13. (a) Detection principle by one oscillator and the switching mode method compensating
crystal’s own temperature–frequency characteristics and crystal’s electrode capacitance; (b) experimental
piezoelectric detection oscillator with two equal capacitances Cx and Cref and oscillator symmetrical
construction [16].

When the capacitances Cx and Cref are the same, f osc remains the same at Q = 1 and Q = 0 and
depends on the crystal resonant frequency f s (Equation (1)), crystal temperature characteristics f s(T),
and its ageing f s(t). However, when the capacitances are different, the frequency f osc depends on
the quartz crystal resonant frequency f s, the dCx change (frequency pulling) and crystal temperature
characteristics f s(T), and its ageing f s(t). In case of the difference of both frequencies fosc for Q = 1
and Q = 0, df (T) and df (t) compensate because only one temperature–frequency quartz characteristic
is involved. In Equation (22), the crystal’s ageing d fCre f (t1) and d fCx(t2) (t—time) are approximately
the same and they compensate each other. Temperature–frequency changes d fCre f (T1) and d fCx(T2)

(T − temperature) are the same and they compensate each other when the temperature change is not
so high in a short period of time up to 1 second. Reference frequency f r from the reference oscillator is
also compensated in Equation (22) by two switches, namely Q and Q. We get Equation (23), where the
frequency measurement counter error fc_errorQt1 − fc_errorQt2 is subtracted and reduced to minimum.
This method highly compensates the quartz crystal’s temperature–frequency characteristics. The
stability of the output frequency fout3 is ±0.001 ppm in the temperature range 10–40 ◦C (Figure 10,
cutting angle 0′) [3,16,18].

4.2.3. Crystal’s Own Temperature–Frequency Characteristics and Simultaneous Crystal Electrode
Capacitance Compensation with one Inductance

Figure 14 shows the switching mode method for the compensation of the crystal’s own temperature–
frequency characteristics by two inductances, Lref_com and Lx (Lref_com � Lx) [1,2,16,22,31,40,41].
Capacitance C0 compensation between the piezoelectric crystal’s electrodes is achieved by the value of
Lref and Lx, and by the already explained Equations (13) and (14). The measurement method is similar
as described in Section 4.2.2.
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Figure 14. Detection principle by one oscillator and switching mode method compensating the crystal’s
temperature–frequency characteristics and the crystal’s electrode capacitance by the same inductance.

The output frequency f out4 (Figure 14) can be written with Equation (24), in which the
crystal’s ageing d fLre f (t1) and d fLx(t2) are approximately the same and they compensate each other.
Temperature–frequency changes d fLre f (T1) and d fLx(T2) are almost the same and they compensate
each other, when the temperature change is not so high in a short period of time. Reference frequency f r

from reference oscillator is also compensated in Equation (24) by two switches, Q, Q.We get Equations
(25), where the frequency measurement counter error fc_errorQt1 − fc_errorQt2 is subtracted and reduced to
minimum. This method highly compensates the quartz crystal’s temperature–frequency characteristics.

fout4
(
Q, Q

)
=


⌈
( fLre f (t1) + d fLre f (T1) + d fLre f (t1) − fr) + fc_errorQt1

⌉
−

⌈
(( fLx(t2) + d fLx(T2) + d fLx(t2) − fr + fc_errorQt2)

⌉  (24)

fout4
(
Q, Q, t

)
=

[
( fLre f (t1) − fLx(t2)) + ( fc_errorQt1 − fc_errorQt2)

]
(25)

Figure 15 shows experimental results of the frequency stability ( fLx(t2) + d fLx(T2) + d fLx(t2) −

fr + fc_errorQt2) (Equation (24) (at the beginning of temperature cycling the stable frequency fout4
(
Q
)

was 1000 Hz at 0 ◦C) occurring when the temperature is changed in the range of 0–50 ◦C and fixed
value Lx (Figure 14). The crystal used (5 MHz) in the experiment was an AT-cut (cut angle: 0′) quartz
crystal with temperature change ±5 ppm in the range 10–40 ◦C. The A and B areas (Figure 15) illustrate
dynamic change of frequency at the temperature change ranging from 0 to 50 ◦C and back to 0 ◦C.
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Figure 15. Frequency stability (( fLx(t2)+ d fLx(T2)+ d fLx(t2)− fr + fc_errorQt2) occurring when changing
the temperature in the range 0–50 ◦C (measurement time 2.5 h—two cycles).

Figure 16 illustrates frequency stability d fout4
(
Q, Q, t

)
(Equation (25)) during the change of

temperature in the range 0–50 ◦C at the fixed value Lx (Figure 14) once both frequencies are deducted.
Deduction of both frequencies in relation to Q and Q signals is performed by LabVIEW software.
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In addition, Figure 16 also illustrates the temperature compensation of the quartz crystal natural
temperature characteristics because only one characteristics of the crystal is involved.
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Figure 16. Frequency difference stability d fout4
(
Q, Q, t

)
at the change of temperature in the range

0–50 ◦C, and fixed value Lx (measurement time 2.5 h—two cycles).

The comparison of results in Figures 15 and 16 points to dynamic frequency stability change
(Figure 16) and to the high frequency difference stability (±0.01 Hz) area when the temperature changes
less quickly. The stability of the output frequency f out3 is±0.002 ppm in the temperature range 10–40 ◦C
(Figure 10, cutting angle 0′) [3,16,18].

5. Discussion

The impedance characteristics as well as series or parallel resonant frequency of the piezoelectric
crystals near the resonance can be changed with reactance. The impedance conditions can be best
demonstrated by introducing the norm frequency Ω, where the real impedance is the smallest at
series resonant frequency and the greatest at the parallel resonant frequency. The imaginary part of
impedance in both cases is zero. While the serial load capacitance influences series resonant frequency,
the parallel load capacitance influences the parallel resonant frequency. Based on this influence the
pulling sensitivity is determined. The latter can be further enhanced by compensating the crystal’s
capacitance C0. The comparison of characteristics from Figure 6 shows that the pulling sensitivity is the
greatest and linear (df 1) near the piezoelectric crystal series resonance frequency at the compensation of
capacitance C0. The serial load inductance can also increase the pulling sensitivity so that we calculate
the serial load inductance LLL for the compensation C0. Close to the value LLL, the pulling sensitivity
(df 3) is increased when LLL is changed (Figure 8).

Since the ceramic piezo resonators have the same substitute equivalent circuits of quartz crystals,
they can be treated in the similar way when they operate in the oscillating mode. Additionally, the
oscillating circuits are similar or the same as in quartz crystals. Due to the lower Q-factor, they have a
quicker “start-up” in oscillators.

When measuring the frequency with the help of a reference oscillator OCXO and the transformation
of the signal into a square one, the measurement is more accurate. This is because the frequencies
greater than 1 MHz are transformed into the range 1–100 kHz (at lower frequencies the frequency
counters measure frequency more precisely for several decimal points as they do at the frequencies
higher that 1 MHz).

Temperature dependence of piezoelectric crystals is present in all cuts and is expressed in ppm.
For a precise measurement when using oscillators and piezoelectric crystals and outside reactances, the
compensation of piezoelectric crystal’s own temperature–frequency characteristics is advisable. When
using two oscillators (Figure 12) and temperature pair of crystals that have as similar characteristics as
possible, this compensation is in the range below 1 ppm. However, when we use one oscillator, one
crystal and the switching of two reactances this compensation (crystal’s own temperature–frequency
compensation) is approximately 0.001 ppm [16]. This method and the results were confirmed by the
experimentally produced prototype (Figure 13b).
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The factors affecting frequency stability such as wide operating temperature range, ageing
and drive level, as well as all other crystal characteristics influencing the stability should also be
considered because a stable oscillator circuit plays an important role in the frequency pulling sensitivity
increase [32]. Frequency stability also depends on the temperature coefficient of the compensation
inductance Lcom and Lref_com material. Stability of the electronic circuit depends upon the circuit type
and quality of its elements. It is also important that the drive level of the quartz crystal does not exceed
5 µW [34].

6. Conclusions

This review presents various ways of detection with piezoelectric crystals in oscillator circuits
with additionally integrated outside reactances and temperature compensations of the crystal’s
own temperature–frequency characteristics for measurement purposes. The review provides
possible oscillator’s frequency, sensitivity and linearity settings. The increased pulling range can
be used for the determination of many different measurements such as low capacitance change,
nano-inductance, nano-extension and compression, nano-positioning, angle, pressure, nano-force, and
other non-electrical quantities.
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