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Abstract: Improving the accuracy and efficiency of bridge structure damage detection is one of the
main challenges in engineering practice. This paper aims to address this issue by monitoring the
continuous bridge deflection based on the fiber optic gyroscope and applying the deep-learning
algorithm to perform structural damage detection. With a scale-down bridge model, three types of
damage scenarios and an intact benchmark were simulated. A supervised learning model based on
the deep convolutional neural networks was proposed. After the training process under ten-fold
cross-validation, the model accuracy can reach 96.9% and significantly outperform that of other four
traditional machine learning methods (random forest, support vector machine, k-nearest neighbor,
and decision tree) used for comparison. Further, the proposed model illustrated its decent ability in
distinguishing damage from structurally symmetrical locations.

Keywords: bridge damage detection; fiber optic gyroscope; deep learning; convolutional
neural network

1. Introduction

Dynamic modal analysis has been the most commonly used approach for structural damage
detection in civil engineering [1–3]. The use of wavelet, Hilbert–Huang transform, and other
signal processing methods are also the conventional choices for structural damage detection that
directly analyze the perturbation of vibration signals [4]. Various structural non-destructive testing
approaches [5–7] are also significant means for detecting structural damage. Over the last decade,
machine-learning algorithms have been used to address a wide range of vibration-based damage
detection problems [8,9]. Although most of these techniques are based on vibration responses and such
approaches still dominate the diagnosis and prognosis of structural health monitoring [10], feature
extraction processes heavily relying on handcrafted intervention prior to damage classification [11]
have often become major challenges that limit the effectiveness of various methods.

With the ability of automatic feature extraction and classification, deep convolutional neural
networks (CNN) have been explored to address the range of difficulties in such following areas as
computer vision [12,13], speech recognition [14], natural language processing [15], medical image
processing [16], pathological signal classification [17,18], mechanical fault diagnosis [19–21], impact
evaluation of natural disasters on infrastructure systems [22], and structural damage detection [23–25].

Most of the research efforts on deep CNN-based structural damage detection are essentially
associated with the supervised learning processes. In this emerging area, Cha et al. [23] pioneered the
deep CNN study of damage detection for cracks in concrete structures, and subsequently, Cha et al. [26]
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further expanded the detection objectives of structural damage based on the faster Region-CNN
(R-CNN). The recent study based on R-CNN to quantify the identified concrete spalling damage in
terms of volume was reported in [27]. Xue and Li [28] established a fully convolutional neural networks
model to classify the concrete tunnel lining defects. Other image-based researches on structural
damage detection using deep learning were reported in [29–31]. In addition to two-dimensional
convolution operations on structural images, one-dimensional convolution operations which usually
spend a considerably cheaper computational cost than that of recurrent neural networks [32], are
employed by researchers to perform the signal-based structural damage detection. The structural
vibration signal as a typical type of one-dimensional time series [33] data is used to perform deep
CNN-based structural damage detection. For instance, Abdeljaber et al. [18] proposed a method for
detecting structural damage using one-dimensional CNN for multi-nodal vibration testing of steel
frames. Lin et al. [25] simulated the vibration response of simply supported beams under various
damage scenarios and proposed a procedure for detecting the categories of structural damage using the
one-dimensional CNN. Huang et al. [34] analyzed the mechanical operation process through vibration
signal by constructing a one-dimensional CNN.

Although deep CNN technology to some extent relieves the heavy pre-processing on the raw
data or feature crafting for the damage detection when using vibration signals, the analysis of bridge
damage detection is more complex comparing to that of simple structures, which needs more support
of structural responses. In other words, compared with the amount of the degree of structural
freedom, the scale of available vibration sensors used for bridge structural damage detection are
often finite or even insufficient. To obtain as much structural dynamic information as possible in
the case of limited measurement points, sensor optimization layout [35] is generally considered,
which results in a decrease in damage detectability of complex structures. Therefore, a novel type of
structural response which can easily cover the whole and local test requirement and provide enough
structural information for the analysis of damage detection by using deep CNN should be attempted
and explored. In this paper, we aimed at the multi-dimensional type of signal and chose a test
technique for continuous curve mode of deformation based on fiber optic gyroscope (FOG) to produce
continuous deflection of bridge. Detailed fundamental principles of the FOG-based testing technique
were reported in [36–38]. A corresponding sample set based on supervised learning techniques was
established, and a specific one-dimensional CNN model was proposed to automate feature extraction
and classification. Specifically, the scheme procedure for the production of structural damage scenarios
based on deformation responses was elaborated. The deformation responses and corresponding output
labels were established through data augmentation and pre-processing. Furthermore, architectures
and algorithms of the proposed one-dimensional CNN, and the partition rules of the dataset used for
method verification were discussed. Finally, the performance of the proposed approach was compared
with the results of other pattern recognition methods, all of which were conducted under the ten-fold
cross-validation [39].

2. Design and Implementation of Structural Damage Scenarios

2.1. Experimental Platform and Instrumentation

A scale-down model of cable-stayed bridge was used as the experimental platform to represent
the responses due to the simulation damage. The model shown in Figure 1 with the main span
of 9.7 m, tower height of 3.46 m, deck width of 0.55 m, and 56 stay cables, was manufactured at a
scale of 1:40. Figure 2 further illustrated a structure diagram and a physical structure of the device
dedicated to measuring continuous deflection of the bridge model, which was triggered by a remote
controller to perform mobile measurement. When the test device [36] moved along the surface of
the bridge model, data of continuous deflection can be collected at sampling rate 150 Hz. Since the
measurement period based on the motion carrier was relatively short, the continuous deflection
obtained chronologically at each time was regarded as a multi-dimensional variable acquired at the
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same moment, and the deflection of main span was chosen as the structural deformation response
used for subsequent analysis.
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2.2. Experimental Design and Procedures

The change in structural geometry can reflect a certain degree of transformation of interior
mechanical properties. Further, structural damage is one reason for the change of interior mechanical
properties of structure. Therefore, the different damage scenarios of the structure theoretically have
corresponding structural deformation states. Continuous deflection can provide the dense deformation
information, which can present more abundant structural response information than other finite
point-based geometry measurement methods [40–42]. In the context of an experiment based on
supervised learning, it was assumed that the change in the continuous deflection of bridge was only
due to the result of structural damage. A metal pad (42.8L × 12.8W × 0.2H cm) with slope at both
ends was used to simulate structural deformation caused by damage rather than physically destroying
the structure [43]. The pad as an obstacle was placed on the movement path of the measuring device
to simulate the deformation caused by structural damage. Compared with the situation without the
pad, the measuring device can capture responses of the continuous deflection of bridge under the
disturbance of the pad. This localized continuous deflection caused by the influence of the pad was
clearly the most important of the continuous deflection of the entire bridge. Using such local responses
instead of the global deflections can undoubtedly simplify the training process of the following
supervised learning algorithm.

By this way, as shown in Figure 3, when the pad was not placed, the corresponding continuous
deflection of the bridge was defined as U0. For each of the three damage scenarios, one pad was placed
at a position each time, and therefore, U1, U2, and U3 can be obtained. Here, U0, U1, U2, and U3 as
raw data of continuous deflection represented four types of simulated structure states, respectively.
To improve the training efficiency and save the computational overhead of the supervised learning,
U1, U2, and U3 were truncated to u1, u2, and u3. Such truncated selection in the areas affected by the
pad can be estimated through both the original testing curves and the dimension of pad in the context
of experiment based on supervised learning. In the intact and three damage scenarios, the actual
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benchmarks of u1, u2, and u3 were u01, u02, and u03, respectively. A common baseline for the three
damage scenarios was defined to facilitate analysis. The weights of u01, u02, and u03 were regarded as
equal and their average u0 was designated as the nominal benchmark of u1, u2 and u3. The following
work utilized u0, u1, u2, and u3 to conduct the damage detection based on deep CNN algorithm.Sensors 2019, 19, x FOR PEER REVIEW 4 of 15 
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Figure 3. Locations of the metal pad used to assist in simulated damage scenarios.

2.3. Raw Samples of Continuous Deflection of Bridge

The spatial resolution in motion direction refers to the adjacent sampling interval of the device
in Figure 2. This parameter is determined by the wheel diameter and the reticle of the rotational
speed code wheel, and is approximately 1.48 mm. For the continuous deflection of the main span,
taking intact scenario for an example shown in Figure 4, the deformation response of U0 consisted of
sequence data of 6554 dimensions which depicted the length of main span of 9.7 m. Due to the high
spatial resolution, the continuous curve clearly reflected a certain degree of pre-camber applied at the
main span. Moreover, the continuous curve revealed that the experiment platform did not exhibit
completely symmetrical structural deformation owing to the handcrafted control for the cable force.
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The local continuous deflection curves of u0, u1, u2 and u3 were shown in Figure 5. Each type of
the local continuous deflection curve contained 390 dimensions of sequence data. The coverage length
of the area affected by the pad was considered to be the primary basis for determining the length of the
local continuous deflection. Moreover, through preliminary data observation, the length of the region
having the largest influence range among the three disturbance positions of the pad was selected,
rounded, and defined as the final truncated length, which guaranteed the consistency of multiple sets
of sample dimensions. The continuous curve mode test technique was used to separately collect the
structural response of the scale-down bridge model under intact and simulated structural damage,
and five groups of U0, U1, U2, and U3, were collected, respectively. Therefore, five groups of u0, u1,
u2, and u3 corresponded to four types of structural conditions, namely intact, damage1/4, damage1/2,
and damage3/4, and these were used as raw samples to conduct the following study.
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3. Detection Methodology Based on Deep CNN

3.1. Data Augmentation and Pre-processing

Data augmentation and pre-processing are two essential tasks before carrying out deep learning.
The former is always the first choice to boost the performance of a deep network. For image recognition
based on deep CNN, there are a wide range of ways to perform data augmentation [12,44,45]. However,
the above approaches are not suitable for signal-based pattern classification when using deep CNN
algorithm. As shown in Figure 6a, dividing the raw acquisition signals into the same sub-fragment
directly is common means of data augmentation [24,25]. It can be seen from Figure 6b that, for
fragments of the same length as that in Figure 6a, the overlapping zone set in the adjacent fragments
causes the amount of the fragment m to be larger than n shown in Figure 6a, which effectively increases
the amount of data size.
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Since the original experimental samples were small, the overlapping zone was taken as g = 1.
It was obvious that the larger the value of k in Figure 6, the smaller the number of fragments after data
augmentation and vice versa, which also indicated the greater number of fragments needed more
computational overhead of model training. With the consideration of a tradeoff result between the
training objective of model and the computational overhead, the length of fragment was set as k = 50,
followed by the 390-dimensional original sequence becoming 341 50-dimensional sequence samples.
For the five raw groups of u0, u1, u2, and u3, after data augmentation, the sample set of u′0, u′1, u′2,
and u′3, each including 1705 samples, corresponding to Figure 7a–d, were shown by mesh graphics.
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To eliminate the difference in the deflection amplitudes of four types of samples in Figure 7 and
boost a better classification effect [46,47], a type of min-max normalization [48] expressed in Equation (1)
is used to normalize all the amplitudes to the range of 0~1.

u′′i =
u′i −min(u′i )

max(u′i ) −min(u′i )
, (i = 0, 1, 2, 3 . . .) (1)

As shown in Table 1, raw and truncated represented the continuous deflections of the test area
and analysis area shown in Figure 3, respectively. After data augmentation and normalization based
on the truncated stage, each category of the four-dataset including intact and three types of simulated
damage contained 1705 samples. The four types of state, namely, u′′0 , u′′1 , u′′2 , and u′′3 were used as
input data, in which u′′0 represented the intact baseline and the rest three represented different damage
scenarios. One-hot form was used to describe the output labels corresponding to the four categories,
meaning that the label vector was generated by the rule that the vector had all zero elements except the
position j, where j was the type number of structural state.

Table 1. The dataset details of training and test.

Processing Stage Variable Dimension of Each Variable Total Samples

Raw U0 U1 U2 U3 6554
4 × 5 = 20Truncated u0 u1 u2 u3 390

Augmentation u′0 u′1 u′2 u′3 50 4 × 1705 = 6820Normalization u′′0 u′′1 u′′2 u′′3

The entire measurement process was performed under stable temperature field, and the data of
this study came from actual measurements, which already contained noise disturbances existing in the
indoor environment. Therefore, extra interferences of simulated noise and temperature effect were not
further considered here.
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3.2. Descriptions of the Proposed CNN Architecture

Table 2 gave the details of the proposed CNN structure through the trial-and-error under the
current computing resource configuration. The model structure was inspired by Cifar-10 [49], in
which operations of convolution and pooling were not pairwise used. Figure 8 showed the graphical
representation of CNN structure with 50 input sample lengths where the green, blue, and yellow
referred to the kernel size, max-pooling, and fully connected layer, respectively.

Table 2. The details of CNN structure.

Layers Type No. of Neurons
(Output Layers) Kernel Size Stride Padding Activation

0-1 Convolution 25 × 20 2 2 Same PReLU
1-2 Convolution 25 × 20 2 1 Same PReLU
2-3 Max-pooling 24 × 20 2 1 Valid ——
3-4 Convolution 12 × 32 2 2 Same PReLU
4-5 Convolution 12 × 32 2 1 Same PReLU
5-6 Max-pooling 11 × 32 2 1 Valid ——
6-7 Convolution 11 × 20 2 1 Same PReLU
7-8 Convolution 11 × 20 2 1 Same PReLU
8-9 Max-pooling 10 × 20 2 1 Valid ——

9-10 Flatten 200 —— —— —— ——
10-11 Dense 128 —— —— —— PReLU
11-12 Dense with dropout 64 —— —— —— PReLU
12-13 Dense 4 —— —— —— Softmax

Note: PReLU—parametric rectified linear unit.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 15 

 

Normalization 0u ′′  1u ′′  2u ′′  3u ′′  
The entire measurement process was performed under stable temperature field, and the data 

of this study came from actual measurements, which already contained noise disturbances existing 
in the indoor environment. Therefore, extra interferences of simulated noise and temperature effect 
were not further considered here. 

3.2. Descriptions of the Proposed CNN Architecture 

Table 2 gave the details of the proposed CNN structure through the trial-and-error under the 
current computing resource configuration. The model structure was inspired by Cifar-10 [49], in 
which operations of convolution and pooling were not pairwise used. Figure 8 showed the graphical 
representation of CNN structure with 50 input sample lengths where the green, blue, and yellow 
referred to the kernel size, max-pooling, and fully connected layer, respectively. 

Table 2. The details of CNN structure. 

Layers Type 
No. of Neurons 
(Output Layers) 

Kernel 
Size Stride Padding Activation 

0-1 Convolution 25×20 2 2 Same PReLU 
1-2 Convolution 25×20 2 1 Same PReLU 
2-3 Max-pooling 24×20 2 1 Valid —— 
3-4 Convolution 12×32 2 2 Same PReLU 
4-5 Convolution 12×32 2 1 Same PReLU 
5-6 Max-pooling 11×32 2 1 Valid —— 
6-7 Convolution 11×20 2 1 Same PReLU 
7-8 Convolution 11×20 2 1 Same PReLU 
8-9 Max-pooling 10×20 2 1 Valid —— 
9-10 Flatten 200 —— —— —— —— 

10-11 Dense 128 —— —— —— PReLU 
11-12 Dense with dropout 64 —— —— —— PReLU 
12-13 Dense 4 —— —— —— Softmax 

Note: PReLU – parametric rectified linear unit. 

 

Figure 8. The proposed deep CNN architecture. 

Layer 0 as the input layer in Figure 8 was convolved with a kernel of size 2 to produce Layer 1. 
The convolution and cross-correlation were used interchangeably in deep learning [50], which can 
be described as: 


=

+=
N

n
nnii

1
)k()s()f(  (2) 

Figure 8. The proposed deep CNN architecture.

Layer 0 as the input layer in Figure 8 was convolved with a kernel of size 2 to produce Layer 1.
The convolution and cross-correlation were used interchangeably in deep learning [50], which can be
described as:

f(i) =
N∑

n=1

s(i + n)k(n) (2)

where s is input signal, k is filter, and N is the number of elements in s. The output vector f is the
cross-correlation of s and k. Next, Layer 1 was convolved with a same kernel size to produce Layer 2.
After two times of convolution, a max-pooling of size 2 was applied to every feature map (Layer 3).
By repeating the above operations two times, other four convolutional layers and two max-pooling
layers were created. In Layer 9, the neurons were then fully connected to 200 neurons in Layer 10 by
flatten. Eventually, Layer 10 was fully connected to 128 neurons in Layer 11 and Layer 11 was fully
connected to 64 neurons in Layer 12. Finally, Layer 12 was connected to the last layer (Layer 13) with
4 output neurons which represented intact, damage1/4, damage1/2 and damage3/4.
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Because the gradient of the left side of rectified linear unit (ReLU) [51] as shown in (3) is always
zero, the activation operation may become invalid during training process if the weights updated by a
large gradient become zero after being activated.

f(x) =
{

x, x ≥ 0
0, x < 0

(3)

The Leaky ReLU method [52] is a good alternative to address such problem by considering a
parameter α in (4),

f(x) =
{

x, x ≥ 0
αx, x < 0

(4)

where α is usually set to a small number, and once α is set, its value will keep constant. This allows a
small, non-zero gradient when the unit is not active. The parametric rectified linear unit (PReLU) [53]
which has the same mathematical expression to Leaky ReLU, takes this idea further by making the
coefficient α into a parameter that is learnt along with the other neural network parameters. Since it
was not necessary to consider how to specify α, PReLU was used to take the place of Leaky ReLU
in this work as an activation function for the convolutional layers (1, 2, 4, 5, 7 and 8) and two fully
connected layers (11 and 12).

Further, the Softmax function was used to compute the probability distribution of the four output
classes, which can be expressed as follows:

pk =
exk

n∑
i=1

exi

(5)

where xk is the input of last layer, n is the number of output nodes and output values of pk are between
0 and 1 and their sum equals to one. Equation (5) was used for Layer 13 in Figure 8 to predict which
category the input signals (intact, damage1/4, damage1/2, or damage3/4) belonged to.

Compared with shallow neural networks, deep CNN as a more complicated model contains
more hidden layers and more weights, and is particularly prone to overfitting. In the proposed deep
CNN, a dropout rate of 0.35 was used before the classification layer (Layer13) as shown in Table 2,
which together with early stopping [54] mentioned in the following, effectively suppressed incidence
of overfitting during all training processes.

3.3. Training Setting

Ten percent of the total dataset was used for test, while the rest 90% was divided into two parts,
namely, training (80%) and validation (20%). The reason for validation was to evaluate the performance
of the model for each epoch and prevent overfitting.

Because the cross entropy function is much more sensitive to the error, the learning rules derived
from the cross entropy function generally yield better performance. Here, categorical cross entropy
was used as the objective function to estimate the difference between original and predicted damage
types, expressed as follows:

J =
k∑

i=1

[−diln(yi) − (1− di)ln(1− yi)] (6)

where J is the cross entropy, yi is the output of prediction class, di is the original class in the training
data, and k is the number of output nodes.

To minimize the above objective function, adaptive moment estimation (Adam) was selected as
the optimization algorithm. It calculated an adaptive learning rate for each parameter and stored both
an exponentially decaying average of past squared gradients and an exponentially decaying average
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of past gradients [55]. Details about the training parameters in this work are given in Table 3, in which
the early stopping technique was used to control training epochs and further avoid overfitting, and the
parameters set in Adam were based on the suggestion in [56].

Table 3. The training parameters of CNN structure in this work.

Batch Size Epoch Patience in Earlystopping
Adam

Initial Learning Rate β1 β2 ε

128 5000 500 0.001 0.9 0.009 1.0 × 10−8

Moreover, a ten-fold cross-validation approach was used in this study, the purpose of which was
to reduce the sensitivity of algorithm performance to data partitioning and to obtain as much valid
information as possible from the enhanced data. First, all the prepared dataset was randomly divided
into ten equal parts. Nine out of ten parts of the total were used to train the proposed deep CNN while
the remaining one-tenth dataset were used to test the performance of the model. This strategy was
repeated ten times by shifting the training and test dataset. The accuracies reported in the paper were
the average values obtained from ten evaluations.

4. Results and Discussion

The proposed CNN model was implemented by Python package Tensorflow and Keras [57].
The average training runtime of each fold for the proposed model was approximately 15 minutes,
which was run on a GPU core (GTX 1080 Ti) with twelve 2.20 GHz processors (Intel Xeon E5-2650 v4).
According to the setting in Table 3, the training processes showed that in the initial 500 epochs,
the convergence speed was rather quickly for all of the dataset from the ten-fold cross-validation, but it
still needed approximately 3000 to 4500 epochs to reach the best performance based on the patience
rule set in early stopping. The typical training process regarding accuracy and loss represented by
fold 2 is shown in Figure 9, which stopped at the epochs of 3036.
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The confusion matrix cross all ten-fold was presented in Figure 10a. It was observed that 98.3%
of u′′0 signals were correctly classified as intact. Moreover, 1.7% of u′′0 were erroneously classified as
other damage categories. Further, a high percentage of 98.4% of u′′1 signals were correctly classified as
damage1/4 with 1.3% of u′′1 wrongly classified as damage3/4. For u′′2 the accuracy rate for damage1/2

reached 96.8% with 2.9% of u′′2 wrongly predicted as damage3/4. Similarly, 94.2% of u′′3 signals were
correctly classified as damage3/4 with 5.8% wrongly classified as intact (1.1%), damage1/4 (1.9%),
and damage1/2 (2.8%).
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Furthermore, to evaluate the capability in each fold of cross-validation, average accuracy results
shown in Figure 11 for different classes were compared between the proposed model and other
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four pattern recognition methods. When the samples were directly used to classify without heavy
consideration regarding features extraction, the accuracy of automatic detection for proposed CNN
model (96.9%) was obviously better than that of random forest (RF) (81.6%), support vector machine
(SVM) (79.9%), k-nearest neighbor (KNN) (77.7%), and decision trees (DT) (74.8%). Here, the allocation
of dataset of the four comparison methods was consistent with the proposed deep CNN algorithm.
To fully compete with the proposed model, the most decent key hyperparameters set in sklearn [58] for
RF, SVM, KNN and DT were derived through trial-and-error. To further quantify the effect of classifiers,
Figure 10b–e show confusion matrices of the other four methods, respectively. It was observed that the
best accuracy in various comparison methods can reach to 90.3% as shown in Figure 10b, which was
still inferior to the lowest accuracy 94.2% as shown in Figure 10a.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 15 

 

 

(e) 

Figure 10. The confusion matrices of (a) CNN, (b) random forest, (c) support vector machine, (d) 
k-nearest neighbor, and (e) decision trees. 

Furthermore, to evaluate the capability in each fold of cross-validation, average accuracy results 
shown in Figure 11 for different classes were compared between the proposed model and other four 
pattern recognition methods. When the samples were directly used to classify without heavy 
consideration regarding features extraction, the accuracy of automatic detection for proposed CNN 
model (96.9%) was obviously better than that of random forest (RF) (81.6%), support vector machine 
(SVM) (79.9%), k-nearest neighbor (KNN) (77.7%), and decision trees (DT) (74.8%). Here, the 
allocation of dataset of the four comparison methods was consistent with the proposed deep CNN 
algorithm. To fully compete with the proposed model, the most decent key hyperparameters set in 
sklearn [58] for RF, SVM, KNN and DT were derived through trial-and-error. To further quantify the 
effect of classifiers, Figures 10b–e show confusion matrices of the other four methods, respectively. It 
was observed that the best accuracy in various comparison methods can reach to 90.3% as shown in 
Figure 10b, which was still inferior to the lowest accuracy 94.2% as shown in Figure 10a. 

 

Figure 11. Comparisons of average accuracy in each fold of cross-validation 

Next, as shown in Figure 12a, for all five methods, the classification effects on damage1/4 

obviously outperformed the results of the other three categories. Moreover, the detection results of 

Figure 11. Comparisons of average accuracy in each fold of cross-validation.

Next, as shown in Figure 12a, for all five methods, the classification effects on damage1/4 obviously
outperformed the results of the other three categories. Moreover, the detection results of damage3/4

were the worst in all methods, having a direct influence on the average accuracy of various ways.
Further, as shown in Figure 12b, the classification imbalance presented in the confusion matrix was
most severe when KNN was used as the classifier. This phenomenon may be related to the relatively
lower algorithm complexity of KNN [59,60] compared with other methods mentioned in this work.
Only the proposed approach based on deep CNN effectively mitigated this imbalance, although the
accuracy of damage3/4 in Figure 10a was still slightly less than the other three classes. The limited
data samples should be a major aspect for such imbalance. In addition, current tests were all from the
one-way results and lack of the data from the opposite direction. This may introduce a cumulative
system error to the results of the structural response. Further, only slight pre-processing was carried
out for the original dataset, which reduced the learning ability of each method mentioned in this paper.
Actually, as shown in Table 4, the other four machine learning methods for comparison had fewer
key parameters to consider in the process of balancing training accuracy and training error than the
proposed method. This weak complexity, determined by the principles of the algorithm, resulted in a
poor predictive effect on training and validation. Therefore, under the same circumstance, the proposed
approach clearly demonstrated better overall performance in automatic feature extraction than other
comparison means.
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Table 4. Key parameters set in the comparison methods.

RF SVM KNN DT

FS criteria = gini
Number of DT = 150

Kernel = rbf
gamma = 10

C = 10

K = 6
DM = euclidean FS criteria = entropy

Note: FS—Feature selection, gamma—The influence of kernel radius, C—The penalty parameter, K—k value defined
in KNN, DM—Distance metric.

5. Conclusions

A deep learning CNN model with 11 trainable hidden layers was proposed to automatically extract
and classify the bridge damage represented by the continuous deflection of bridge. Although current
research on the use of FOG-based test technique to detect the damage of a scale-down bridge model
through deep learning is just a pilot study, the following conclusions can be drawn:

(1) In the case where it is easy to measure the FOG-based continuous deflection of the target structure,
it is convenient to build structural deformation database that can provide sufficient training
samples for deep learning-based damage detection.

(2) Based on the data preparation strategies adopted in this work, one-dimensional convolution
operation can effectively extract the detailed features of bridge deflection after a slight
data pre-processing.

(3) The deep CNN-based method as a classifier has at least 15.3% accuracy advantage over
other traditional methods mentioned in this paper in distinguishing different types of bridge
deformation modes.

(4) Even if the same level structural damage occurs at a symmetrical position, the proposed method
can still achieve satisfactory results with a deviation of only 4.2% for the recognition accuracy of
damage at the symmetrical position.

(5) For an actual bridge with a complete deformation monitoring database, the advantage of deep
learning on automatic extracting of features of large-scale database can be exploited to search
the damage or provide the preliminary diagnostic findings. Moreover, since the FOG-based
measurement system has higher test accuracy for larger distributed deflections [61], the proposed
method should be more suitable for long-span bridges.
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