
sensors

Article

NaviSoC: High-Accuracy Low-Power GNSS SoC with
an Integrated Application Processor

Tomasz Borejko 1,2, Krzysztof Marcinek 1,2,* , Krzysztof Siwiec 1,2, Paweł Narczyk 1,2,
Adam Borkowski 1, Igor Butryn 1, Arkadiusz Łuczyk 1, Daniel Pietroń 1, Maciej Plasota 2,
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Abstract: A dual-frequency all-in-one Global Navigation Satellite System (GNSS) receiver with a
multi-core 32-bit RISC (reduced instruction set computing) application processor was integrated
and manufactured as a System-on-Chip (SoC) in a 110 nm CMOS (complementary metal-oxide
semiconductor) process. The GNSS RF (radio frequency) front-end with baseband navigation engine
is able to receive, simultaneously, Galileo (European Global Satellite Navigation System) E1/E5ab,
GPS (US Global Positioning System) L1/L1C/L5, BeiDou (Chinese Navigation Satellite System)
B1/B2, GLONASS (GLObal NAvigation Satellite System of Russian Government) L1/L3/L5, QZSS
(Quasi-Zenith Satellite System development by the Japanese government) L1/L5 and IRNSS (Indian
Regional Navigation Satellite System) L5, as well as all SBAS (Satellite Based Augmentation System)
signals. The ability of the GNSS to detect such a broad range of signals allows for high-accuracy
positioning. The whole SoC (system-on-chip), which is connected to a small passive antenna,
provides precise position, velocity and time or raw GNSS data for hybridization with the IMU
(inertial measurement unit) without the need for an external application processor. Additionally, user
application can be executed directly in the SoC. It works in the −40 to +105 ◦C temperature range
with a 1.5 V supply. The assembled test-chip takes 100 pins in a QFN (quad-flat no-leads) package
and needs only a quartz crystal for the on-chip reference clock driver and optional SAW (surface
acoustic wave) filters. The radio performance for both wideband (52 MHz) channels centered at L1/E1
and L5/E5 is NF = 2.3 dB, G = 131 dB, with 121 dBc/Hz of phase noise @ 1 MHz offset from the carrier,
consumes 35 mW and occupies a 4.5 mm2 silicon area. The SoC reported in the paper is the first ever
dual-frequency single-chip GNSS receiver equipped with a multi-core application microcontroller
integrated with embedded flash memory for the user application program.

Keywords: multi-frequency; multi-constellation; GNSS application receiver; software defined radio

1. Introduction

The global GNSS (Global Navigation Satellite System) market has been growing continuously
over recent years [1,2]. Applications relying on GNSS positioning have become a part of everyday
life, leading to an increased variety of Location-Based Services (LBS). Nowadays, the LBS consumer
market is dominated by single frequency (typically L1/E1 band), low cost and highly integrated GNSS
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receivers [3–9]. The use of such receivers comes with two main limitations: low precision and low
reliability. Additionally, limitations such as: signal availability in challenging environments (such as
urban canyons) and susceptibility to multipath, interference, jamming and spoofing further obstruct
the penetration of the LBS segment by GNSS. Such hurdles are typically overcome by employing
multi-constellation, multi-frequency receivers which use additional complementary positioning
technologies (i.e., inertial measurement unit (IMU)) when necessary [10].

The positioning precision of single-frequency receivers is substantially affected by the ionospheric
delay effect. Although different models (e.g., Klobuchar, NeQiock-G) are used to compensate for this
effect, the resulting error is estimated as 7 m RMS (root mean square) [11]. As the ionospheric delay
depends on the signal frequency, the so-called ionospheric free combination may be used in dual
frequency receivers to reduce the positioning error related to the residual ionospheric delay down to
0.1 m RMS [11]. Another issue associated with positioning precision is due to the multipath effect,
which is especially important in urban canyons. There are methods to reduce the impact of this effect
and here, the use of multi-constellation GNSS provides substantial improvements [12].

The positioning reliability is also improved when using a multi-frequency multi-constellation
receiver. It is especially visible in urban environments, where signals can be shadowed by high
buildings. Having access to a higher number of satellites reduces the probability that the number of
visible satellites will drop down to a level which makes positioning impossible This receiver is also
more robust against spoofing, as spoofing devices need to generate replicas of all signals tracked by
the device.

The above techniques are available only in professional high-precision and reliable navigation
solutions, which are large in size, have a high power consumption and come at a high price. The existing
consumer and professional GNSS equipment, which is usually small in size and comes at a low cost,
is not suitable for many LBS applications that need reliable and precise (better than 1 m) positioning.

To overcome the limitations mentioned above, extensive research on the CMOS (complementary
metal-oxide semiconductor) integration of the dual-frequency radio frequency (RF) front-end for GNSS
has been performed [13–19]. So far, most of the designs either offer only configurability between
different bands of GNSS without the possibility of simultaneous multi-frequency reception of all
constellations by a single chip [13,15,16,19] or they do not receive all bands from the most popular
GNSS systems and focus only on L1/E1 and L5/E5a reception [14,17].

This paper presents the design of the CCNV1-A1 chip developed under the NaviSoC project [20],
the first ever dual-frequency, multi-band, multi-constellation navigation receiver integrated with
a multi-core application microprocessor as one SoC (System-on-a-Chip) capable of receiving,
simultaneously, all GNSS signals located in L1/E1 and L5/E5 bands. The scope of the paper covers
hardware description and results. The main focus is on the noise, gain and bandwidth of the designed
system, as these are the main parameters that can influence the overall system performance. The overall
navigation system is not fully covered. The receiver parameters, such as sensitivity, strongly depend
on the signal type received and demodulation algorithms. The algorithms are a part of navigational
software which is currently under development. For that reason, some system level parameters are
not presented.

The paper is organized as follows. Section 2 provides an overview of the SoC, application
processor unit and frequency plan with radio architecture. The circuit level design is described
in Section 3. A comparison with state-of-the-art parameters is reported in Section 4. The paper ends
with a conclusion.
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2. SoC Overview and RF Architecture

2.1. SoC Overview

An overview of the CCNV1-A1 chip is shown in Figure 1. The chip consists of a three-core
microcontroller featuring a rich set of peripherals, a 512 kiB SRAM (static random-access memory) and
a 768 kiB eFlash.
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Figure 1. Block diagram of the CCNV1-A1 GNSS receiver system-on-chip (SoC).

The peripherals associated with the GNSS receiver include two 256-point FFT (fast Fourier
transform) cores, as well as a dedicated module supporting signal acquisition (see Figure 1; GNSS
Controller). The microcontroller peripherals include a number of communications interfaces (UARTs,
SPIs, I2C, CAN, 1WIRE) and GPIO (general-purpose input/output), as well as timers, a watchdog and a
battery backed-up RTC (real-time clock) domain. Two out of the three cores support the instruction set
extension (GNSS-ISE [21]) for GNSS signal processing. GNSS-ISE forms two autonomous 16-channel
GNSS baseband coprocessors. The third core is intended for user application. The required external
components are a passive antenna, a crystal oscillator, a few capacitances which decouple supply and
optionally external SAW (surface acoustic wave) filters.

2.2. Radio Architecture for GNSS Signals

A detailed block diagram of the GNSS radio is shown in Figure 2. It is divided into three
main modules:

• RF circuits that amplify and filter the GNSS signals received from an external passive antenna and
pass them to the mixers,

• An LO (local oscillator) generation module implemented as an ADPLL (all-digital
phase-locked loop),
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• IF (intermediate frequency) blocks (programmable gain amplifier (PGA), low pass filter (LPF),
automatic gain control (AGC)) that process low-frequency I/Q (in-phase and quadrature) signals
for 3-bit complex analog-to-digital converters (ADC).Sensors 2020, 19, x FOR PEER REVIEW 4 of 31 
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This approach allows complex processing to be moved to the digital domain, making the receiver
more flexible. The GNSS AFE (analog front-end) was used to receive either any single GNSS signal or
all GNSS signals centered around L1/E1 and L5/E5 bands simultaneously (see Figure 3).
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2.3. Frequency Planning for Dual-Frequency Receiver

The continuous expansion of the GNSS space segment leads to an increase in the number of
navigational systems and signals available [22]. Because of that, choosing the appropriate frequency
bands for dual-frequency receivers has been an important task. Bands centered around 1575.42 MHz
(E1/L1 band of Galileo (European Global Satellite Navigation System) and GPS (US Global Positioning
System)) and 1191.795 MHz (Galileo and GPS E5/L5 band) frequencies were chosen after a detailed
analysis of the GNSS signals. The GNSS frequency spectrum depicted in Figure 3 clearly suggests that
these bands allow all global and regional GNSS constellations to be received. In this case, setting the
receiver bandwidth to 52 MHz allows for the reception of signals from all global systems—Galileo, GPS,
BeiDou (Chinese Navigation Satellite System) and GLONASS (GLObal NAvigation Satellite System of
Russian government), as well as local systems such as QZSS (Quasi-Zenith Satellite System developed
by the Japanese government) and IRNSS (Indian Regional Navigation Satellite System). To reduce
power consumption, the wideband RF processing is performed using a direct conversion receiver with
complex signal processing. Consequently, the IF bandwidth and sampling frequency may be limited
to 26 MHz and 64 MHz, respectively. As a result, a high positioning accuracy is achieved while the
power is kept at a reasonable level.

Both channels’ bandwidth and sampling frequency are highly configurable. Therefore, the best
accuracy/power ratio may be selected for any given application. This is a unique feature allowing the
use of CCNV1-A1 in a wide range of applications. The sampling frequency can be changed from 8 MHz
to 64 MHz. The channel bandwidth is automatically set to a frequency close to the Nyquist frequency.

3. Circuit Implementation

3.1. Low-Noise Amplifier

Two separate low-noise amplifiers (LNAs) for L1/E1 and L5/E5 bands were designed. LNAs
were implemented as classic single-ended cascode amplifiers with inductive source degeneration.
For better amplification and better matching of the output impedance, a source follower with an “L”
matching network was used at the outputs of the LNAs. Additionally, a band calibration circuit was
implemented as a bank of detachable capacitors, connected in parallel to the output LC load of the
amplifiers. Figures 4 and 5 show the post-layout simulation results for the S-matrix and the voltage
gain of the L1/E1 and the L5/E5 LNA, respectively. The L1/E1 and the L5/E5 LNA noise figure (NF)
characteristics are presented in Figures 6 and 7, respectively. The parameters of the L1/E1 LNA are: NF
= 2.2 dB, GV = 21.7 dB, S11 = −10.2 dB, S22 = −16.3 dB and IDD = 2.4 mA. The parameters of the L5/E5
LNA are: NF = 2.1 dB, GV = 20.8 dB, S11 = −12.0 dB, S22 = −14.6 dB and IDD = 2.3 mA.
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3.2. Active Balun and Down-Conversion Mixer

Figure 8 shows an active balun with ESD (electrostatic discharge) protection structures and a
simplified active down-conversion mixer. For clarity, only the in-phase part of the quadrature mixer is
shown in Figure 8. The quadrature part of the mixer was connected to ports P1 and P2.
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Figure 8. Active balun with ESD (electrostatic discharge) protection and a simplified in-phase mixer.

Active baluns (for L1/E1 and L5/E5 bands) perform triple functionality in GNSS AFE. They ensure
a 50 Ω input matching, provide additional signal amplification and supply a differential RF signal to
the down-conversion mixer. By using a center-tapped differential inductor to generate a differential
signal at the output of the balun, the phase shift reaches 180◦ with high accuracy and the gain at each
output is almost identical. The simulated PVT (process, voltage and temperature) variations of the
phase and gain variation between outputs do not exceed 5◦ and 1 dB, respectively. The use of active
baluns made it possible to reduce the noise requirements of the mixers. Figure 9; Figure 10 show the
post-layout simulation results for the reflection coefficient (S11), voltage gain and noise figure of the
L1/E1 and the L5/E5 balun, respectively. The L1/E1 and L5/E5 noise figure and the mixer conversion
gain for the balun and mixer combined are presented in Figures 11 and 12, respectively. The parameters
of the L1/E1 balun are: NF = 4.9 dB, GV = 15.1 dB, S11 = −37.3 dB and IDD = 0.54 mA. The parameters
of the L5/E5 balun are: NF = 4.6 dB, GV = 16.7 dB, S11 = −21.9 dB and IDD = 0.64 mA. The parameters
of the mixer for L1/E1 band are: NF = 15.5 dB, GMIX = 10.4 dB and IDD = 0.48 mA. The parameters of
the mixer for the L5/E5 band are: NF = 15.2 dB, GMIX = 10.3 dB and IDD = 0.48 mA. The combined
parameters for the L1/E1 band are: NF = 8.2 dB, GCONV = 25.0 dB and IDD = 1.02 mA. The combined
parameters for the L5/E5 band are: NF = 7.3 dB, GCONV = 26.5 dB and IDD = 1.12 mA.
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3.3. Radio-Frequency Front-End

The whole radio-frequency front-end was verified. Figures 13 and 14 show the conversion gain
and noise figure results for the L1/E1 and the L5/E5 front-ends. It can be seen that for the L1/E1,
the conversion gain was around 46.4 dB and the variation within the band was ±0.2 dB. The noise
figure for the L1/E1 band was kept below 2.4 dB. For the L5/E5 band, the conversion gain was around
47 dB and the variation within the band was ±0.3 dB. The noise figure for the L5/E5 band was kept
below 2.3 dB. The total power consumption of the L1/E1 and the L5/E5 front-ends were both around
5.1 mW (3.4 mA from 1.5 V supply voltage).
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3.4. Intermediate Frequency Block and ADC

The intermediate frequency signal processing chain was composed of four gain stages and a 3-bit
SAR (successive approximation) ADC. Figure 15 shows the block diagram of the implemented analog
IF with ADC. For clarity, only in-phase path and single-ended versions of the I/Q chain are presented.
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Figure 15. Block diagram of dual-frequency analog IF and ADC.

The first stage—preamplifier was optimized for low noise. The gain of the PGAs and low-pass
filter (LPF) is programmable, allowing a 48 dB dynamic range to be obtained. The bandwidth of
LPF is configurable to 4, 8, 16, 26 MHz and sets the overall cutoff frequency of the I/Q baseband.
In order to avoid saturation of the blocks, two DC (direct current) offset cancellation (DCOC) loops
were employed. The DC offset was filtered with a pseudo-resistor low-pass filter and subtracted in
the preamplifier and the PGA2, which were designed as double differential amplifiers. The DCOC
loops set the overall high-pass cutoff frequency to 50 kHz to avoid slow settling without compromising
signal integrity. A digital automatic gain control (AGC) circuit was included to ensure a constant
signal magnitude at the ADC input. The whole dual-frequency I/Q IF chain with ADC included draws
6.2 mA from a 1.5 V supply. The input referred RMS noise of IF integrated from 100 kHz to 32 MHz
is 46 µV. Both supply and ground were separated between the analog and mixed-signal parts of the
baseband to avoid interferences. Figures 16 and 17 show the IF chain gain characteristics for gain and
band sweep, respectively.
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3.5. Frequency Synthesizer and I/Q LO Signal Generation

The local oscillator (LO) block was used to generate quadrature signals for the mixer. In the
GNSS receiver designed, it was important to achieve both low phase noise and a flexible frequency
selection. The latter requirement requires the use of a fractional frequency synthesizer. To satisfy the
specification and keep the power consumption low, an all-digital phase locked loop (ADPLL) was
used. In ADPLL, the high frequency signal is generated in a digitally controlled oscillator (DCO) and
the signal frequency is determined by a series of bits. To obtain high accuracy of the output signal
frequency, it was necessary to implement a full custom designed MOM (Metal-Oxide-Metal) capacitor
with a very small capacitance value.

In ADPLL design there is a tradeoff between phase noise and power consumption. The DCO
is the most critical block as it is usually responsible for around 70% of the dissipated power in the
frequency synthesizer circuit. To generate quadrature signals, the DCO was designed to work on two
times higher frequency and its output is connected to a quadrature divider. To minimize the dissipated
power, a frequency divider was stacked on the Colpitts DCO [23]. The Colpitts oscillator architecture
was chosen because it has less phase noise and can work with a lower supply voltage in comparison to
cross-couple oscillators. On the other hand, a Colpitts generator requires a higher negative-gm to satisfy
the startup conditions when compared with a cross-coupled generator. This leads to increased power
consumption. For this reason, the typical Colpitts architecture was modified by adding a cross-coupled
transistor pair to relax the startup conditions and reduce power consumption (see Figure 19).
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Two ADPLLs for the L1/E1 and L5/E5 bands were implemented in the GNSS SoC. The phase noise
of each frequency synthesizer equals −121 dBc/Hz at 1 MHz from the carrier frequency, while 4.5 mA
is consumed from a 1.5 V supply. The post-layout DCO simulation tuning characteristics and phase
noise are presented in Figures 20–23.
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4. System-on-Chip Verification

A complete dual-frequency single-chip GNSS receiver including radio was implemented in a
110 nm CMOS technology (see Figures 24 and 25). A two-wideband of 52 MHz high gain RF AFE
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of 131 dB with NF 2.3 dB was integrated with a triple-core 32-bit RISC navigation and application
processor with user accessible eFlash. The radio part includes the LNAs, active baluns, mixers, ADPLLs
and IF with I/Q ADCs. The total chip area is 34 mm2. The chip used has been manufactured and is
currently in the measurement phase (see Figure 26). The manufactured SoC has been successfully used
to acquire the GNSS signals using an in-house developed antenna (see Figure 27). The acquisition time
used was 1 ms and the SNR (signal-to-noise ratio) obtained was 16.4 dB. The CCNV1_A1 was also
used to develop positioning software.
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Figure 27. GPS L1 acquisition results obtained with a CCNV1-A1 and in-house developed antenna
with a 1 ms acquisition time.

All the presented results are post-layout simulation-based. Table 1 summarizes the performance
of the presented dual-frequency receiver and a comparison with the state-of-the-art parameters.
The comparison indicates that this receiver supports most of the GNSS systems, simultaneously
working with only two RF channels. Additionally, it is important to mention that ultra-low leakage
technology with metal stack on aluminum was chosen. Its parameters, such as connection resistance,
inductance quality factor, and a high Vt of transistors, are unfavorable for analog and RF design in
particular, which should be taken into account during the comparison.
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Table 1. Comparison with previously published multiband GNSS receivers.

Parameter
Values

Ref [9] Ref [19] Ref [17] This Work

Process 40 nm 55 nm 65 nm 110 nm

GNSS bands
(simultaneous reception)

Galileo E1, GPS L1,
BeiDou B1, Glonass L1

Galileo E1/E5ab,
GPS L1/L2/L5,
BeiDou B1/B2,
Glonass L1/L2

Galileo E1/E5a, GPS
L1/L5, Glonass L1

Galileo E1/E5ab, GPS
L1/L1C/L5, BeiDou B1/B2,

GLONASS L1/L3/L5,
QZSS L1/L5, IRNSS L5

IF bandwidth 2–15 MHz 2–20 MHz 14/20 MHz 2–52 MHz

NF 2.1 dB 1.92–2.5 dB - 2.3 dB

Maximum Gain 78 dB 116 dB - 131 dB

ADC resolution 9 bit 4 bit 4 bit I/Q 3 bit

ADC sampling rate 66 MHz - 74 MHz 8–64 MHz

Phase noise at 1 MHz −94 dBc −112 dBc - −121 dBc

SRAM/FLASH -/- - 1 MB/- 512 kB/768 kB

RF/SoC area 0.25 mm2/6.4 mm2 8.4 mm2/- 4.5 mm2/22.5 mm2 4.5 mm2/34 mm2

RF power consumption 16 mW 36 mW - 35 mW

5. Conclusions

The main concept of this work was to integrate a dual-frequency, multi-system GNSS receiver into
one integrated circuit. In the introduction, it is explained why this integration provides improvements
in terms of both precision and reliability. The SoC was designed in a 110 nm ultra-low leakage device
with an aluminum metal stack. This is cost effective but poses technical challenges. It was shown that
even using such technology, it is possible to achieve state-of-the-art parameters. The receiver covers both
L1/E1 and L5/E5 bands for all available GNSS signals with the channel bandwidth configurable from
8 MHz to 52 MHz. Due to the design architecture used, the noise figure can be maintained within the
lowest range compared to the existing solutions which have the highest bandwidth. The implemented
dual-frequency GNSS AFE is highly configurable in terms of center frequency, channel bandwidth
and ADC sampling rate, to customize the CCNV1-A1 positioning accuracy performance vs. power
consumption for different types of applications. The accompanying GNSS-ISE baseband engine
comprises highly configurable tracking-loops as well as versatile PRN (pseudo random noise) code
generators (primary and secondary) to cover all mentioned GNSS systems. Currently, navigation
software covering acquisition, tracking and positioning is being developed. The final SoC version
including advanced power management has been designed.
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