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Abstract: Facial expression recognition has been well studied for its great importance in the areas
of human–computer interaction and social sciences. With the evolution of deep learning, there
have been significant advances in this area that also surpass human-level accuracy. Although
these methods have achieved good accuracy, they are still suffering from two constraints (high
computational power and memory), which are incredibly critical for small hardware-constrained
devices. To alleviate this issue, we propose a new Convolutional Neural Network (CNN) architecture
eXnet (Expression Net) based on parallel feature extraction which surpasses current methods
in accuracy and contains a much smaller number of parameters (eXnet: 4.57 million, VGG19:
14.72 million), making it more efficient and lightweight for real-time systems. Several modern
data augmentation techniques are applied for generalization of eXnet; these techniques improve
the accuracy of the network by overcoming the problem of overfitting while containing the same
size. We provide an extensive evaluation of our network against key methods on Facial Expression
Recognition 2013 (FER-2013), Extended Cohn-Kanade Dataset (CK+), and Real-world Affective Faces
Database (RAF-DB) benchmark datasets. We also perform ablation evaluation to show the importance
of different components of our architecture. To evaluate the efficiency of eXnet on embedded systems,
we deploy it on Raspberry Pi 4B. All these evaluations show the superiority of eXnet for emotion
recognition in the wild in terms of accuracy, the number of parameters, and size on disk.
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1. Introduction

Emotion classification is an essential feature of human intelligence which enables us to
communicate appropriately. For communication between humans and machines, the role of emotion
classification is even more influential [1]. Expression classification has a wide range of real-world
applications such as autism detection, depression detection, retail shopping (customer satisfaction),
educational sectors, and pain assessment [2]. These applications have brought a lot of researcher’s
attention towards emotion recognition, and many important works have been presented. All the
mentioned applications take frontal face real-world images as input, which are facial expressions
captured in a specific environment. Hence, facial expression recognition (FER) in the wild got much
attention for further research.

In the past, FER models based on handcrafted features [3–5] did not get much attention, since
such models usually yield less accuracy as compared to modern deep learning models. In Reference [5],
the author proposed the idea of double stage multi-task sparse learning models to differentiate face
parts. Alia et al. [4] introduced the Normalized Cross-correlation Coefficient (NCC)-based network
for the classification of frontal face expressions. Although, these methods proved effective for frontal
faces, they cannot get good performance for images in the wild.
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With the recent evolution of deep learning and Convolutional Neural Networks (CNN), various
models have shown effective results in the field of computer vision. Most of the crucial advances
inspired by AlexNet [6] and VGG [7] have been made [8–19], which use end-to-end approaches to
classify a given image using facial expression. The typical pattern among these works is the addition of
extra layers as well as increments of additional neurons per layer for achieving higher accuracy. This,
on the one hand, has provided better accuracy but, on the other, network sizes have grown too much
in width (number of layers) and height (number of features per layer). These large networks [7,20] not
only suffer from a higher probability of overfitting but also require extra computational power [21].

As mobile and embedded devices are becoming ubiquitous in daily lives, we need shallower
networks that can rely on less computing power and memory and denies the trade-off of accuracy vs.
efficiency. Recently, Shao et al. [18] built a shallow network (light-CNN) based on depth-wise separable
residual convolutions for FER in the wild. Their proposed light-CNN has a small number of parameters,
but their network did not achieve higher accuracy. Therefore, this paper proposes a lightweight parallel
feature extraction-based model having better performance on emotion classification and is suitable for
embedded and live applications.

The next problem that is facing deep CNN models is data, which is the most critical problem
in deep learning. Facial expressions can vary from one person to another because of variations in
poses, regions, genders, and environment. In the present, the dataset for FER in the wild is limited as
compared to frontal face databases. As a solution to this problem, there are many data augmentation
techniques [22–28] developed for increasing the number of samples. In this paper, we also use some of
these techniques for increasing the number of training samples, which helped us in achieving better
performance for emotion classification in the wild.

Finally, based on the above analysis, we developed a parallel feature extraction-based lightweight
CNN for facial emotion recognition in the wild. The proposed network is highly motivated by the
structures of References [7,21]. A wide range of experiments is performed on the (publically or
upon request) available emotion classification datasets: FER-2013, CK+, and RAF-DB. Evaluation of
eXnet in comparison to benchmark networks is also presented, which shows the superiority of the
proposed eXnet. In the end, the trained model is installed on the Raspberry Pi 4B embedded system to
check the efficiency of proposed models. The output of trained eXnet against face image is shown in
Figure 1. The results of extensive experiments show that our models also demonstrate vivid results on
real-time devices.

Figure 1. Visualization of eXnet.

Our contributions for this paper are follows:

1. We propose a novel, lightweight, and efficient CNN-based method “eXnet” for facial expression
recognition in the wild.
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2. In order to enhance the data and to stabilize the training process, we also utilize modern data
augmentation/regularization techniques:

• eXnet + cutout [22] (eXnetcutout)
• eXnet + mixup [23] (eXnetmixup)
• eXnet + cutout+ mixup (eXnetcm)

3. For quantitative analysis, we provide three types of evaluations:

• Ablation evaluation: variations among the structure, optimization methods, and loss functions
have been made to fine-tune the method. All variants of eXnet have been thoroughly
explained in Section 5.

• Benchmark evaluation: comparison of our method with the benchmark methods prove the
efficiency of our work as our approach acquires higher accuracy with much less number
of parameters.

• Real-time evaluation: installation of pretrained weights of eXnet on Raspberry Pi 4B
bespeaks that eXnet can recognize emotions in the wild more quickly in comparison with
existing approaches.

2. Related Work

Facial expression classification has been an active field for many years. A detailed and complete
description of facial expression and analysis is given by References [29,30]. In Reference [31], the author
gave a brief history of the importance of FER. They gave a complete review of the published number
of papers in research journals and conferences from 2006–2019. Recently, Huang et al. [32] published
a survey paper on emotion classification that gave the state-of-the-act results of more than eight famous
facial expression datasets till 2019. According to this survey article, Reference [19] presents a deep
learning method based on facial action units, and they achieved 72% accuracy on the FER-2013 dataset.

Glorot et al. [33] described that every facial behavior is directly associated with some emotion.
Facial expressions belong to some human functions like mental state; body language; and, most
importantly, voice. Recently, researchers have used voice recognition from videos for emotion
classification by combining facial features with audio features in temporal and nontemporal modes,
reporting better results [34].

Arriaga et al. [35] was inspired by the VGG [7] and GoogleNet [21] models and used a combination
of both models for the derivation of the shallower (smaller size) final model. The author trained their
model on the FER-2013 dataset and achieved only human-level accuracy of 65% in a lightweight model.

Jain et al. [17] also designed a deep neural network with residual blocks for the classification of
six emotions. The author selected the CK+ and Japanese Female Facial Expression (JAFFE) datasets for
the training of the network, claiming up-to-date accuracies of 93.24% and 95.23% on both datasets,
respectively. For the network design, two residual blocks, which placed after a combination of
2 convolutional layers with a pooling layer, were used, which resulted in top-of-the-line results.

Liu et al. [36] attempted to apply CNN on facial expression classification. They proposed three
different types of networks, and each of the networks performed better on some specific classes of
emotion as compared to the other two networks. By using a joint scheme on these three models,
the author got a final accuracy of about 65% on the FER-2013 dataset.

Tautkute et al. [10] recently claimed the best results on the CK+ and Indian Spontaneous Expression
Database ( ISED). The presented approach used deep align network for landmark detection, which
further led to the classification of facial expressions. The suggested network was trained on AffecNet
(a larger dataset from all previously available datasets for emotion classification). Furthermore, cross-
validation was also applied to other publically available datasets, which resulted in improved accuracy.

Recently, Shao et al. [18] presented three types of different models based on CNN. Out of the
three, one was a shallow network (Light_CNN), which was purely designed for hardware constraints.
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However, their shallow network can only achieve 68% on the FER-2013 and 92.86% on the CK+
datasets, which is marginally outperformed by our robust approach eXnet.

Mehta et al. [37] gave a comparative analysis about the intensities of emotions. They use different
types of hand-crafted features (Histogram of Oriented Gradients (HOG) and Local Binary Pattern
(LBP)). For the classification of emotion, Support Vector Machine (SVM) is used, which gave better
intensities about different types of emotions.

Li et al. [38] showed in his survey that the best accuracy is only 70% on the FER-2013 dataset
using pure CNN architecture. Sang et al. [9] achieved 71% accuracy on the same dataset, but their
model is not purely based on CNN. They used the joint model of CNN and Support Vector Machine
for achieving this accuracy. Agarwal et al. [14] gave an idea about how to choose kernel size and the
number of filters for a CNN for the problem of emotion classification. In his work, the author proposed
two types of models, one having constant and the second having the variable size of the kernels and
numbers of filters. By using these lightweight networks, the author achieved human-level accuracy
(65%) on the FER-2013 dataset without using fully connected or dropout layers.

In Reference [39], the author used a multi-column CNN method for emotion classification using
Electroencephalogram (EEG) signals. By using EEG signals, the proposed model classifies it in the
two types of emotions (valance and arousal). Recently, a number of researchers are attracted toward
detection of human emotional states (valance and arousal) through different types of physiological
signals. Santamaria et al. [40] presented a comparative study between manual and automatic (using
CNN) feature extractions from biomedical signals. Experiments of their proposed approach proved
that CNN-based features achieved better results as compared to traditional machine learning methods.

It is well known that data augmentation is the backbone for the successful outcomes of deep
learning applications expanding from image classification [6] to speech analysis [41]. To improve the
generalization of CNN, all the techniques in image classification uses translation, rotation, flipping,
resizing, random erasing, and cropping [7,21].

Zhu et al. [42] explained the technique for data augmentation using CycleGan [43] by employing
squared loss as an adversarial loss for the generation of additional images for the training process of
CNN that heightened 5–10% accuracy of emotion classification.

Recently, 3D-CNN is booming in the field of computer vision. Salama et al. [44] used 3D-CNN
for extracting spatiotemporal features in the EEG signals for emotion classification. They conducted
experiments on the DEAP (Dataset of Emotion Analysis using the EEG and Physiological and Video
Signals). Their proposed method achieved state-of-the-art recognition accuracies of 87.44% and 88.49%
for valence and arousal classes, respectively.

All of the above works achieved significant performance over the traditional practices on emotion
classification, but all of these models have some limitations either related to model size or accuracy.
In this work, we considered these limitations by building CNN-based frameworks achieving regular
performance for the same problem. Additionally, we also show the results of our shallow network
eXnet on an embedded system for better representation of performance on real-time devices.

3. Proposed Model

We propose eXnet, a shallow network (less number of layers and parameters) offering the higher
accuracy as compared to existing deep neural networks for emotion classification. This reduction
in the number of layers provides the benefit of fast performance on hardware-constrained systems,
and less number of parameters allow the network to gain more generalization under Occam’s razor
framework [35]. We also use some famous data augmentation strategies without influencing the
size of network to enhance the performance of our network. All the details about eXnet and data
augmentation techniques are provided next.



Sensors 2020, 20, 1087 5 of 17

3.1. eXnet: Expression Network

Broadly, we divide the working of eXnet into three stages based on the type of feature extraction.
The basic feature extraction stage takes an input of 48 × 48 × 3 and extracts the primary features
which are forwarded to the next stage for intermediate feature extraction. However, this extraction is
performed in a parallel manner providing sparsity to our network. The last stage is responsible for
final feature extraction and classification of those features into one of the seven possible outcomes.

3.1.1. Basic Feature Extraction

As shown in Figure 2, this stage contains two convolution layers, followed by max pooling
and batch normalization [45]. Throughout our model, each convolution layer is followed by
batch-normalization and Rectified Linear Unit (ReLU) activation function hence represented as CBR
(Convolution Batch-normalization ReLU). With the motivation of the lightweight network, we perform
max pooling in each stage. We start our network with the convolutional layer having kernel size of
3× 3 as suggested in Reference [7].

3.1.2. Intermediate Feature Extraction

Inspired by the performance of Inception Net [21] for parallel feature extraction, we utilize the
same approach for our method. We design two identical ParaFeat blocks, which serially process input,
each block containing two different routes for input. Route A contains two convolutions, a 1 × 1
followed by a 3 × 3, and on route B, input first goes through max pooling of 3 × 3 then follows the
precisely same convolutions as route A. To reduce the number of parameters on both routes, we utilize
1 × 1 convolution. The effect of 1 × 1 convolution on parameter reduction is also depicted next
(Section 5). This reduction in the number of parameters not only makes our network shallower but
also allows it to be more general and less prone to overfitting on small datasets, i.e., CK+. At this
step, the reduced feature map of route B is concatenated with the feature map of route A for a more
distinctive representation of the input. Both blocks end with max pooling of 2× 2 for downsampling of
the image. This part performs the extraction of required features from images as well as downsampling;
therefore, this section is the most important part in the whole eXnet architecture.

3.1.3. Final Feature Extraction

In this stage, we reduce the number of parameters drastically to make our network even more
sparse; therefore, the output from the intermediate feature extraction stage goes through 1 × 1
convolution followed by max pooling. The max pooling is repeated again but with the convolution of
3 × 3. Finally, we use a combination of a Global Average Pooling (GAP) [46] with two fully connected
layers in sequence for classification of extracted final features. The purpose of using GAP is to limit
the number of parameters, and fully connected layers are used for the translation of extracted features
into one of the seven basic emotions. The last full layer acts as softmax layer that provides us with the
probabilities for each emotion, and the maximum likelihood among all is classified as given by the
following equation:

Classi f iedemotion = max
(

P
(

Yi
x

))
(1)

where i ∈ [0, 6] is emotions classes and x is given input image.
For the classification of true emotion, here, we use a famous classification loss function named

cross-entropy loss, which is given by the following equation:

LCrossEntropy = −y. log y
′

(2)

where y is a vector of true labels and y
′

represents the estimated emotions.
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Figure 2. Structure of eXnet: 3× 3 and 1× 1 mentioned in the CBR (C = Convolutional layer, B = Batch
Normalization, and R = Relu) box shows the kernel size used in convolutions, and in the pool box,
S = stride.
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3.2. eXnetcutout

Deep learning networks should have the ability to learn dominant representations that are
important in handling complicated learning spaces. To capture such depictions, required network
capacity leads the network towards overfitting. Training needs a strong regularization of a network
for generalization to handle these types of issues. Reference [22] proposed a simple regularization
technique by cutting out a random portion of fixed size without manipulation of feature maps of
visual input during the training of the network. Unlike dropout and its variants, any rescaling of
weights at test time is not performed. Using the cutout technique for the training of our eXnet not only
enhances the performance of our network but also allows the eXnet to focus on complementary and
less prominent features. While testing, cutout encourages the proposed model to mask more minor
features rather than to rely only upon a few significant features.

3.3. eXnetmixup

Deep CNN has proved influential in vision tasks, but sometimes, such networks show unwanted
outcomes (i.e., memorization and sensitivity) when the image is slightly changed from training samples.
Reference [23] introduced a useful technique that trains a CNN on convex combinations of pairs of
samples and their respective labels, which allows CNN to favor simple linear behavior among training
samples. The term mixup suggests training a model on a mixture of pictures from a training set.
For emotion classification, we choose two images from the mentioned datasets. Instead of feeding
eXnet with the raw image, we do a linear combination of these images and then forward it to our
network. In simple, two pictures and their corresponding labels are randomly selected from the
training samples for simple random weighted summation. Mathematically, the mixing up of images
(I) and its respective labels (L) is given in Equations (3) and (4).

Imixup = λIi + (1− λ)Ij (3)

Lmixup = λLi + (1− λ)Lj (4)

where (Ii, Ij) are images, (Li, Lj) are labels of their respective images randomly selected from training
data, and λ ∈ [0,1]. Therefore, mixup expands the training distribution by combining prior knowledge;
that is, linear interpolation of feature vectors should result in linear interpolation of related labels.
Furthermore, this simple technique improves the accuracy and robustness of the proposed network
while facing adversarial examples.

3.4. eXnetcm(Cutout+Mixup)

In this technique, we use both operations (cutout and mixup) together during training. In order
to perform more enhancement of training images, first of all, we apply cutout on training images and,
after that, we use the mixup method for more generalization; a combination of these two strategies
performed better by achieving the best results for all datasets.

4. Experiments

We have conducted extensive experiments to demonstrate the effectiveness of the proposed
method in comparison with the most famous classification models including VGG19 [7], ResNet50 [20],
DenseNet [47], and DeXpression [13]. All networks trained on all three datasets which are publically
available and broadly used for facial emotion recognition. Detailed information about these datasets
and the embedded device used in the proposed methodology is described next.



Sensors 2020, 20, 1087 8 of 17

4.1. Datasets

4.1.1. FER-2013

The most famous and widely used dataset for expression recognition was published in ICML-2013
Challenges in Representation Learning, offering more than 35,000 gray-scale images of size 48× 48
with seven basic labeled emotions. For training, validation (Private_Test), and testing (Public_Test) of
our methods, we utilize the division provided by ICML-2013.

4.1.2. CK+

An extension of the CK dataset provides 327 labeled facial videos captured in a controlled
environment. Out of the 210 facial expressions, the ethnicity of 179 is Euro-Americans and 31 belong
to Afro-Americans, mostly subjects aged between 18–50 years. By extracting the last three frames from
each video clip, we end up with a total of 981 images for all seven emotions. For a fair evaluation of
the proposed methods, we randomly selected 10% of images from each emotion class.

4.1.3. RAF-DB

Real-world Affective Faces Database (RAF-DB) is considered as one of the larger datasets having
around 30,000 different facial images. This dataset provides forty annotations of each face image.
The whole dataset is divided into two distinct subsets; there are seven classes in a single label subset
and twelve classes in two tab subsets. Images in this collection vary greatly in ethnicity, age range, and
gender. The RAF-DB dataset includes different head poses and focuses on several conditions such as
lightning, occlusions, and post-processing operations. The database was divided into a training set
and a test set to give an objective measure of the entries. The facial expression images in both (training
and test) collections are identical. The training set consists of 80% images of the whole dataset, while
20% is used for testing.

4.1.4. Embedded Device

Raspberry Pi 4B is an embedded system used to check the performance of the propose model.
It gives drastic increases in processing speed, graphics, memory, and connectivity compared to the its
previous generations. It can be used in robots, live applications, and smart-home applications.

4.2. Data Augmentation

For basic data augmentation, we apply a centre crop of size 44 × 44 and a horizontal flip for
all datasets. We did not show any auxiliary task for face detection because we already resized the
image by focusing only on the face. For testing, 10-crop validation, a voting mechanism, takes four
crops from each corner as well as one from the center and then performs a horizontal flip on each to
pass 10 crops from a single test image through the network. Finally, the classification scores are then
combined to determine the most likely class.

4.3. Implementation Details

The implementation environment for experimentation of proposed methods consists of NVIDIA
Titan RTX having 576 tensor cores, 24 GB memory, and Ubuntu 16.04 operating system. Pytorch [48]
is chosen as a deep learning framework for the development of eXnet. A systematic and famous
cross-entropy loss is applied. The parametric settings for the training of eXnet on each dataset are
shown in Table 1. The cyclical learning rate is used only for FER-2013 and RAF-DB, starts decaying after
60 epochs, and continues decaying if loss is not improved after every five epochs. For the evaluation
of CK+ dataset, we apply 10-fold cross validation. The following data augmentation techniques are
applied to all datasets.
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Cutout [22] follows the same details for the training as mention in Table 1, except some additional
settings. Since this technique performs by cutting a portion of images from the dataset, we use the
random cut of size 10 × 10 on images to create augmented images for increasing the number of
training samples.

According to Reference [23], the author suggested to develop two different data loaders on every
iteration and to mixup the images from both data loaders. However, instead of feeding two batches at
the same time, we select one batch, shuffle the samples in the same batch, and then perform weighted
summation. Following the same training procedure given in Reference [23], the suggested value of α

is (0–0.4) for beta distribution. For emotion classification datasets, we trained the proposed network
on all values of α between (0.2–1.0) but the value of α = 0.6 with weight decay 1× 10−4 revealed
excellent results.

While applying cutout + mixup, initially, cutout is used on training images of all datasets as
preprocessing of training samples. In order to achieve more generalized data, after cutout, mixup is
also applied according to the same parametric settings mentioned above.

Table 1. Settings of parameters used for training of eXnet on all three dataset.

Dataset Parameters Values

FER-2013 Size of images used 48 × 48
Optimizer Stochastic Gradient Descent (SGD)
Number of epochs 200–250
Batch size 64
Learning rate 0.01
Momentum 0.9
Learning decay 4e-5
Cyclical learning rate Yes

CK+ Size of images used 48 × 48
Optimizer SGD
Number of epochs 60–100
Batch size 64
Learning rate 0.01
Momentum 0.9
Learning decay 4e-5
Cyclical learning rate No

RAF-DB Size of images used 48 × 48
Optimizer SGD
Number of epochs 150–200
Batch size 64
Learning rate 0.01
Momentum 0.9
Learning decay 1e-4
Cyclical learning rate Yes

5. Results

We evaluate the proposed approach in three different ways: (i) ablation evaluation, (ii) benchmark
evaluation, and (iii) real-time evaluation.

5.1. Ablation Evaluation

To highlight the impact of every component of eXnet on the accuracy, we trained more than
30 variants of eXnet; their results are shown in Table 2. FER-2013 dataset, with its official train,
validation, and test distributions, is used to perform this study. The input shape of our model is fixed
to 48× 48, the same as the size of images in the predefined settings of the dataset. The following
subsections define the systematic progress of the study.
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5.1.1. Effect of Depth Reduction on the Accuracy of the eXnet

According to deep learning, the depth of the network is directly proportional to the performance of
the network. By conducting experiments on depth of network, we removed the last two convolutional
layers from the network to reduce the size of the network. This reduction resulted in the form of lakes
in accuracy of network, as shown in Table 2. Therefore, these layers are necessary for achieving better
convergence of the network.

5.1.2. Effect of Pooling Layers on the Accuracy of the eXnet.

The pooling mechanism is requisite for the successful outcomes of CCNs. During this study,
it is noted that, if we use convolutional layers with lower strides (1,2) in the place of pooling layers,
the accuracy is decreased. However, using convolutions with higher strides (4,5) does not converge
the model while the number of parameters are also increased. Therefore, it is founded that the use
of pooling layers is necessary with convolutions for better outcomes of the network as mentioned in
Table 2.

Table 2. Ablation evaluation of eXnet.

Model Parameter Accuracy

Effect of depth reduction on the accuracy of the eXnet

eXnet after removal of initial two CBR blocks 67
eXnet after removal of last two CBR blocks 69

Effect of pooling layers on the accuracy of the eXnet

eXnet having convolutions with larger strides 58
eXnet having convolutions with smaller strides 65
eXnet having pooling layers >71

Effect of dropout layer on the accuracy of the eXnet

eXnet without dropout layer 69
eXnet with dropout between fully-connected layers 71

Effect of kernel size on the accuracy of the eXnet

eXnet with kernel size 32 48
eXnet with kernel size 16 57
eXnet with kernel size 8 68

Effect of ParaFeat blocks on the accuracy of the eXnet

eXnet after skipping first ParaFeat 68
eXnet after skipping second ParaFeat 67
eXnet without using both ParaFeat 62

Effect of fully connected layer on the accuracy of the eXnet

eXnet without any fully connected layer 60
eXnet without fully connected layer 1 65
eXnet without fully connected layer 2 68

Effect of changing optimizer on the accuracy of the eXnet

eXnet with Adaptive moment estimation (Adam) optimizer 70
eXnet with SGD optimizer 71.67

Effect of learning rate on the accuracy of the eXnet

eXnet with fix learning rate 69
eXnet cyclical learning rate 71.67
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5.1.3. Effect of Dropout on the Accuracy of the eXnet

During ablation study, dropout was not used between fully connected layers, which caused the
problem of overfitting. The network reached 100% training accuracy after 20 epochs having less than
60% test accuracy. The addition of dropout between fully connected layers overcame the problem of
overfitting to some extent, as displayed in Table 2.

5.1.4. Effect of Kernel Size on the Accuracy of the eXnet

Table 2 demonstrates the variation of accuracy due to kernel size. From the accuracy mentioned
in the table, it is clear that using higher kernel sizes cause unstable accuracy. Very high kernel size like
8, 16, and 32 do not converge with existing combinations of network parameters. The value of small
kernel size (2,3) yields in the form of good convergence of network. Therefore, from the start to end of
the network, the kernel size in convolutional layers is kept small.

5.1.5. Effect of ParaFeat Blocks on the Accuracy of the eXnet

Table 2 shows the importance of both blocks (Parafeat) as shown in Figure 2 of the network.
By using sequentially connected layers in the place of parallel feature extraction, blocks yield less
accurate results. Furthermore, during depth analysis, the addition of both blocks is required for getting
higher accuracy. The idea of parallel feature extraction was inspired by GoogleNet. Both Para f eat
blocks create parallel features of different scales and are used for dimension reduction and refinement
of extracted features. Therefore, using these blocks in our network yield impressive results.

5.1.6. Effect of Fully Connected Layers on the Accuracy of the eXnet

FER-2013 is a very challenging dataset, so convolutional layers are used for feature extraction
from given images. After extracting features, the input has to be classified into seven different classes.
For this purposes, fully connected layers are used. On the other hand, convolutional layers are local
and operated on a window of a specific size. However, for the translation of global information,
fully connected layers are used. Therefore, fully connected layers help in the extraction of the global
relationship between features. Table 2 shows the effect of using fully connected layers on the accuracy
of the network. Without using fully connected layers, only 60% accuracy is achieved.

5.1.7. Effect of Changing Optimizer on the the Accuracy of the eXnet

This subsection describes the effect of using different optimizers on the accuracy of the network.
Two types of optimizers (SGD and Adam) are used, it was noticed that Adam achieved the best
accuracy of 70.56% after (150) epochs. However, SGD, as compared to Adam, achieves an accuracy
of 71.67% with a slightly higher (200) number of epochs, as shown in the Table 2. Hence, the SGD
achieved accuracy higher than Adam.

5.1.8. Effect of Learning Rate on the Accuracy of the eXnet

Table 2 demonstrates the results of both (constant and cyclical) learning rates. In the beginning, we
used a constant learning rate of value 0.01, and 69% accuracy was achieved. After some experiments,
it was noticed that accuracy was not improving after more than ten epochs continuously. Then, the idea
of using a cyclical learning rate with a triangular strategy was used, where the learning rate fluctuates
between 0.01 and 0.0001. By using this idea, we obtained a better performance of the network as
compared to a constant learning rate.

5.1.9. Effect of 1× 1, 3× 3, and 5× 5 Convolutions on the Accuracy of the eXnet

At the last step, the best accuracy is achieved, with restrictions of a large size for the network.
The idea of using 1 × 1 convolutions is used to reduce the size of the model. According to the
structure of GoogleNet, 5× 5 convolutional layers increase the number of parameters on a large scale;
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so using higher convolutions in the network design is avoided. Table 3 shows the effect of using
1× 1 convolutions before 3× 3 convolutional layers on the size of the network while preserving the
same accuracy.

Table 3. Comparison between sizes of eXnet with different sizes of kernels in convolutional layers.

Model Param

eXnet with 5×5 and 3×3 conv 20 M
eXnet with only 3×3 conv 12 M
eXnet with 1×1 and 3×3 4.57 M

5.2. Benchmark Evaluation

We evaluate the proposed model on three different types of datasets for fair comparison.
All three datasets include seven kinds of expressions: neutral, surprise, sad, happy, fear, disgust,
and anger. We also test eXnet against existing popular classification methods; Tables 4–6 show the
results evaluation for the FER-2013, CK+, and RAF-DB datasets, respectively. Our method not only
outperforms other methods on all three datasets but also has less size on the disk as well. For a better
comparison of the proposed approach, we trained the (VGG, ResNet, DenseNet, and DeXpression)
networks under the same parametric settings as eXnet on all three datasets. The proposed shallow
network performed comparatively better than these models.

Table 4. Comparison of eXnet with benchmark networks on the FER-2013 dataset.

Model Accuracy (%) Params Size (MB)

VGG [7] 71.29 14.72M 70.94
ResNet [20] 71.12 11.17M 61.18
DenseNet [47] 67.54 3.0M 59.69
DeXpression [13] 68 3.54M 57.14
Liu et al. [36] 61.74 84M -
CNN + Support Vector Machine. [9] 71 4.92M -
Tang [11] 69.4 7.17M -
Shao at el. [18] 71.14 7.12M -
eXnet (ours) 71.67 4.57M 36.49
eXnetcutout (ours) 71.92 4.57M 36.49
eXnetmixup (ours) 72.67 4.57M 36.49
eXnetcm (ours) 73.54 4.57M 36.49

Table 5. Comparison of eXnet with benchmark networks on the CK+ dataset.

Model Accuracy (%) 10-Cross

VGG [7] 94.6
ResNet [20] 94
DenseNet [47] 92
DeXpression [13] 96
Tautkute et al. [10] 92
Lopes et al. [16] 92.73
Jain et al. [17] 93.24
Shao et al. [18] light-CNN 92.86 (without 10-cross )
Shao et al. [18] pretrained-CNN 95.29 (without 10-cross)
eXnet (ours) 95.63
eXnetcutout (ours) 95.81
eXnetmixup(ours) 96.17
eXnetcm (ours) 96.75
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Table 6. Comparison of eXnet with benchmark networks on the RAF-DB dataset.

Model Accuracy (%)

VGG [7] 82.39
ResNet [20] 81.71
DenseNet [47] 76.71
DeXpression [13] 76.33
Li et al. DLP+SVM [49] 74.20
Fan et al. [50] 76.73
eXnet (ours) 84
eXnetcutout (ours) 85.59
eXnetmixup (ours) 85.63
eXnetcm(ours) 86.37

According to Table 4, it can be seen that VGG19 got the highest accuracy among other benchmark
networks. Still, it also has the largest size on the disk and the highest number of parameters among all
models. The proposed eXnet achieves higher accuracy than VGG19, with almost 70% fewer parameters.
For DeXpression and Densenet, although having fewer parameters, their accuracy is much less and
the size of their model on the disk is much larger than eXnet.

During training and result collection, an important limitation of eXnet is noticed. The model has
to face the problem of overfitting against all three datasets. As a solution to this problem, we apply
some state-of-the-art regularization techniques [22,23]. These simple and easy to deploy techniques
not only overcome the problem of overfitting but also achieved excellent accuracy on all three datasets,
as shown in Figures 3–5. In all three graphical representations to evaluate the performance of eXnet,
part (a) indicates the performance of eXnet which clearly shows that eXnet overfit against datasets
during the training process, part (b) indicates the the performance of eXnetcutout, part (c) demonstrates
the performance of eXnetmixup, and part (d) denotes the results achieved by eXnetcm. The visualization
of our trained eXnet against face image is shown in Figure 1.

Figure 3. Performance of eXnet on the FER-2013 dataset.

Figure 4. Performance of eXnet on the CK+ dataset.
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Figure 5. Performance of eXnet on the RAF-DB.

5.3. Real-Time Evaluation

To analyze the efficiency of the proposed model on an embedded system, the pretrained model
of eXnet is deployed on Raspberry Pi 4B along with trained models of VGG, RestNet, and DenseNet.
We performed experiments by inputting ten images and by calculating the mean value of time for every
trained model. The results mentioned in Table 7 reveal that the proposed model also outperforms
other benchmarks in a time comparison.

Table 7. Time comparison of proposed model with benchmark networks on Raspberry Pi 4B.

Model Time for Emotion Classification

VGG [7] 3.92 s
ResNet [20] 3.86 s

DenseNet [47] 2.09 s
eXnet (ours) 0.998 s

6. Conclusions

In this work, we proposed a novel CNN architecture for faster emotion classification in the wild.
The ablation evaluation reveals the importance of each component for achieving higher accuracy, and
the benchmark evaluation shows the superiority of our network among existing ones. Our methods not
only achieves higher accuracy on the FER-2013, CK+, and RAF-DB datasets but also has less number
of parameters and size on disks in comparison to the existing methods. This reduction in the number
of parameters and size makes eXnet an ideal choice for embedded devices with low computational
power and memory. The results of the proposed model on embedded devices also evidence that our
shallow models can also be used in live applications (robots and mobile phones). In the future, we will
use the “quantization” method to bring about further improvement in the efficiency of eXnet for FER
in the wild.
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