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Abstract: Wireless networks have been widely deployed with a high demand for wireless data traffic.
The ubiquitous availability of wireless signals brings new opportunities for non-intrusive human
activity sensing. To enhance a thorough understanding of existing wireless sensing techniques and
provide insights for future directions, this survey conducts a review of the existing research on
human activity sensing with wireless signals. We review and compare existing research of wireless
human activity sensing from seven perspectives, including the types of wireless signals, theoretical
models, signal preprocessing techniques, activity segmentation, feature extraction, classification, and
application. With the development and deployment of new wireless technology, there will be more
sensing opportunities in human activities. Based on the analysis of existing research, the survey points
out seven challenges on wireless human activity sensing research: robustness, non-coexistence of
sensing and communications, privacy, multiple user activity sensing, limited sensing range, complex
deep learning, and lack of standard datasets. Finally, this survey presents four possible future research
trends, including new theoretical models, the coexistence of sensing and communications, awareness
of sensing on receivers, and constructing open datasets to enable new wireless sensing opportunities
on human activities.
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1. Introduction

The rapid development and the pervasiveness of wireless networks has stimulated a surge in
relevant research of wireless sensing, including detection, recognition, estimation, and tracking of
human activities. Wireless sensing reuses the wireless communication infrastructure, so it is easy
to deploy and has a low cost. Compared to sensor-based and video-based human activity sensing
solutions, wireless sensing is not intrusive and of fewer privacy concerns. Specifically, video-based
sensing is restricted in line-of-sight (LoS) and light conditions and raises more privacy concerns.
Sensor-based sensing incurs extra cost due to additional sensors, as well as accompanying some
inconvenience on wearing for users.

During the propagation of the wireless signal from the transmitter to the receiver, the wireless
signal is affected by obstacles in the transmission space, resulting in attenuation, refraction, diffraction,
reflection, and multipath effects. Therefore, wireless signals arrived at the receiver carry the
environmental information. Human activity will affect wireless signal propagation, which can
be captured inside the received signals. Since different activities may lead to various patterns inside
wireless signals, it can be used for different wireless sensing applications. Recent research has applied
wireless sensing on motion detection, activity recognition, action estimation, and tracking. Various
wireless sensing applications target their specific purpose and use unique signal processing techniques
and recognition/estimation algorithms. To enhance a thorough understanding of existing wireless
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sensing techniques and provide insights for future directions, this survey conducts a review of the
existing research on human activity sensing with wireless signals.

Figure 1 shows an overview of the survey. After discussing the related work in Section 2,
we introduce the background and characteristics of wireless signals in Section 3. The theoretical
models from wireless signals to the features of human motion are discussed in Section 4. The signal
preprocessing for noise and outlier reduction are shown in Section 5. The preprocessed signal sequences
are fed to the detection module to cut out the signal segment corresponding to every single action,
shown in Section 6. The feature extraction applied on the action segment are described in Section 7.
The activity classification algorithms are compared in Section 8. According to the output types,
different applications of wireless activity sensing are reviewed in Section 9. With the development and
deployment of new wireless infrastructure, the challenges and future trends for enabling new sensing
applications and capabilities are discussed in Section 10. The main contributions of this survey are

as follows.
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Figure 1. Overview of wireless sensing and survey organization.
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1. We provide a comprehensive review of human activity sensing with wireless signals from seven
perspectives, including wireless signals, theoretical models, signal preprocessing techniques,
activity segmentation, feature extraction, classification, and application.

2. We discuss the future trends on human activity sensing with wireless signals, including new
theoretical models, the coexistence of sensing and communications, awareness of sensing on
receivers, and constructing open datasets.

2. Related Works

There are some surveys on wireless sensing with specific wireless signals for specific application
scenarios. Some surveys [1,2] focus on indoor localization and tracking with wireless signals.
Yang et al. [1] present a survey on the studies of applying Wi-Fi CSI for indoor localization and
tracking. Xiao et al. [2] focus on both device-free and device-based localization with multiple kinds of
wireless signals.

Many surveys [3-8] concentrate on the application of Wi-Fi CSI for human behavior recognition.
Zou et al. [3] give a brief review of the Wi-Fi CSI based sensing systems, which describes the concept of
Wi-Fi CSI, presents the general framework of Wi-Fi CSI sensing systems, and discusses the remaining
challenges and open issues. Wu et al. [4] divide Wi-Fi CSI sensing solutions into two categories of
patter-based and model-based and give a brief review on the studies of two approaches and show the
potential of Fresnel zone model-based sensing systems. Yousefi et al. [5] present a short survey on
human behavior recognition using Wi-Fi CSI, which presents the framework of activity recognition
and points out that deep learning techniques may improve the activity recognition performance. In [6],
the authors provide a review of recent advances in CSI-based sensing systems, which illustrates the
applications of human motion detection, macro and micro activity recognition, and human localization,
with discussions of the limitations and challenges. Wang et al. [7] introduce the basic principle of
Wi-Fi CSl-based behavior recognition and review the key algorithms for each step of Wi-Fi sensing,
including base signal selection, signal pre-processing, feature extraction, and classification. Ma et al. [8]
give a comprehensive survey on Wi-Fi sensing, including signal processing techniques, algorithms,
applications, challenges, and future trends.

Liu et al. [9] review the existing wireless sensing systems in terms of their basic principles,
techniques, and system structures with Wi-Fi RSS and CSI, FMCW, and Doppler shift. In [9],
they review the existing studies from the perspectives of specific applications, including intrusion
detection, room occupancy monitoring, daily activity recognition, gesture recognition, vital signs
monitoring, user identification, and indoor localization.

This survey differs from previous surveys on three points. Firstly, it expands the wireless signal
types for human activity sensing and describes the pros and cons for each type of wireless signal
on sensing, which includes RFID, FMCW, Wi-Fi, visible light, acoustic, LoRa, and LTE. Secondly,
this survey provides a comprehensive summary of the models between human activity and wireless
signals and a detailed comparison on signal pre-processing, signal segmentation, feature extraction,
and classification for each existing wireless sensing studies. Thirdly, the survey analyzes the potential
challenges and points out future trends to enhance wireless sensing capabilities. Table 1 summarizes
the comparison between this survey and previous surveys.

2.1. RFID

Radio Frequency Identification (RFID) is a communication technology for contactless two-way
communication to identify and exchange data. In general, the RFID system consists mainly of low-cost
tags and readers. The tags contain built-in coils and chips. The reader sends out a specific frequency
signal. When the tag is close enough to the reader, the coil electromagnetic induction generates electrical
energy after the tag receives the transmitted signals, and the chip transmits the stored information
through the antennas. The reader accepts and recognizes the information sent by the tag, then delivers
the identification results to the host.
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Table 1. Summary of related surveys on wireless sensing.
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Reference

Signals

Topic Focus

Application Scope

Yang et al. [1], 2013

Wi-Fi (RSS, CSI)

RSS and CSI-based solutions

indoor localization

Xiao et al. [2], 2016

UWB, RFID, Wi-Fi,

models, basic principles, and data

indoor localization

acoustic fusion techniques
Zou et al. [3], 2017 Wi-Fi (CSI) model-based (CSI-Speed model, human beﬁavmr
Fresnel zone model) approaches recognition
pattern-based and model-based human behavior
Wu et al. [4], 2017 Wi-Fi (CSI) (CSI-Speed model, AoA model, recognition, respiration
Fresnel zone model) detection
Yousefi et al. [5], 2017 Wi-Fi (CSI) deep learning classification human bet'h.amor
recognition
CSl-based sensing mechanism, detection (motion),
- methodology (signal pre-processing, recognition (daily
Al-qaness etal. [6], 2019 Wi-Fi (CSD) feature extraction, classification), activity, hand gesture),
limitations and challenges localization
base signal selection, signal
Wang et al. [7], 2019 Wi-Fi (CSI) pre-processing feature extraction, behavior recognition
classification, issues, future trends
signal processing, model-based and
Ma et al. [8], 2019 Wi-Fi (CSI) learning-based algorithms, detection, recognition,

performance, challenges, future
trends

estimation, tracking,

Liu et al. [9], 2019

Wi-Fi (RSSI, CSI), EMCW,
Doppler shift

basic principles, techniques and
system structures, future directions
and limitations

detection, recognition,
localization, tracking

This survey

RFID, FMCW, Wi-Fi,
visible light, LoRa,
acoustic, LTE

model (Doppler, Fresnel zone,
FMCW, AoA, mD-Track), signal
pre-processing, segmentation,
feature extraction, classification,
challenges, future trends

detection, recognition,
estimation, tracking

The tags can be classified according to internal electrical energy and frequency. On the one hand,

tags can be divided into active and passive tags according to whether they can communicate actively
with the reader. The difference lies in the availability of internal electrical energy. On the other hand,
in terms of frequency, tags can be divided into low frequency, high frequency, UHF, and microwave tags.

As shown in Table 2, passive RFID mainly works between 125 kHz and 13.56 MHz, and its
communication distance is very close, usually less than 1.2 m. Active RFID is powered by an external
power source and actively sends signals to the RFID reader. Active RFID mainly works in higher
frequency bands such as 900 MHz, 2.45 GHz, or 5.8 GHz. The long-range and high-efficiency of active
RFID makes it essential in some applications that require high-performance and large-scale properties.

Table 2. Summary of different types of RFID. Here p represents passive and a represents active.

Type Energy Frequency Distance Penetration
LF p 125 kHz <10 cm blocked by metal
HF p/a 13.56 MHz <12m blocked by metal
UHF p/a 860~960 MHz <4m blocked by metal, liquid
microwave p/a 2.45 GHz, 5.8 GHz <100 m blocked by metal, liquid

Since the human body reflects the RFID signals, many studies apply RFID in human activity
sensing [10-13]. For example, FEMO [14] calculates phase difference by measuring the phase of the
reflected signals of the tags mounted on the dumbbells and establishes the relationship between the
fitness actions and the phase differences. The pros and cons of using RFID in human activity detection
and recognition are summarized as follows:
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Pros: RFID uses the principle of electromagnetic induction, so its wireless sensing ability is less
affected by the environment. It can be used even in harsh conditions.

Cons: Many researches value the low-cost features of tags. However, RFID solutions are only
working with the assistance of expensive readers.

2.2. FMCW

Frequency modulated continuous wave (FMCW) performs continuous modulation on the
frequency of the transmitted signals. According to the pattern of triangular waves, the distance
of the object can be estimated by leveraging the time difference and frequency difference between the
transmitted and received signals. The signal frequency difference is relatively low, generally kHz,
so the processing hardware is relatively simple and suitable for data acquisition and digital signal
processing. FMCW signals are widely used in human sensing [15-17]. For example, RF-Capture [15]
uses a combination of FMCW and antenna arrays to estimate the distance and direction between
humans and antennas to track human motions. The pros and cons of using FMCW in human activity
detection and recognition are summarized as follows:

Pros:

1.  High sensitivity: Phases are extremely sensitive to small changes in the object position, which help
estimate the tiny vibration frequency of the target (e.g., vibrations of breathing and heartbeat).

2. High resolution: The wireless bandwidth determines distance resolution. FMCW radar usually
has a large bandwidth, so it achieves a high distance resolution.

Cons: The range of measurement is relatively short, and it is difficult for the signal isolation of
sending and receiving.

2.3. Wi-Fi

Wi-Fi infrastructures have been widely deployed nowadays. Therefore, Wi-Fi has become a hot
research direction in the field of human activity sensing. At present, there are two main metrics used
in Wi-Fi sensing. One is received signal strength (RSS), the other is channel state information (CSI).

RSS represents the strength of the received signal. In general, the RSS value is inversely
proportional to the signal propagation distance. As the propagation distance increases, the signal
attenuation becomes more significant, resulting in a decrease in the RSS value measured by the receiver.
At present, most commercial Wi-Fi devices support obtaining RSS from the MAC layer, which measures
the quality of the channel link. Sigg et al. [18] adopt RSS to recognize four activities, including lying
down, crawling, standing, and walking with an accuracy of 80%. WiGest [19] leverages RSS values to
sense in-air hand gestures and achieve a recognition accuracy of 96%.

Channel state information (CSI) launches from the IEEE 802.11n standard. Its core technologies
include multiple-input multiple-output (MIMO) and orthogonal frequency-division multiplexing
(OFDM). After dividing the limited spectrum resources into subcarriers, space-time diversity technology
is applied to reduce the noise interference of the signal in space, and the communication capacity
increases when using multiple antenna pairs. CSI represents the frequency response of each subcarrier
of every antenna pair. CSI requires equipping with particular types of wireless network cards (e.g.,
Intel 5300 or Atheros Ath9k).

In Figure 2, H represents the CSI information in MIMO-OFDM channels, which is a
four-dimensional volume. N represents the antenna number at the transmitter, and M is the antenna
number at the receiver. The first two dimensions marked in green represent the spatial domain.
The third dimension marked in red belongs to the frequency domain, which represents the number of
subcarriers under each antenna pair. The number of subcarriers obtained with the Atheros CSI Tool
is 56 and is 30 subcarriers with Intel CSI Tool. The last dimension in blue indicates the time domain.
Table 3 shows a comparison between RSS and CSIL.
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Figure 2. Four-dimensional CSI matrix of MIMO-OFDM channels.

Table 3. Comparison between RSS and CSI.

Attribute RSS CSI
network layer MAC physical
access communications equipment CSI tool
generalization all devices some devices
sensitivity low high
time resolution packet-scale multi-path signal cluster scale
frequency resolution / subcarrier scale

Due to the fine-grained information provided by Wi-Fi CSI, the use of Wi-Fi motion sensing has
become a hot topic in recent years [19-22]. This paper reviews a variety of models on the relationship
between human action and Wi-Fi, including the Doppler model, Fresnel zone model, and raw signals
model in Section 3. The pros and cons of using Wi-Fi in human activity detection and recognition are
summarized as follows:

Pros: Wi-Fi infrastructures have been widely deployed. Due to the fine-grained information
provided by CSI, Wi-Fi can sense tiny movements such as finger gestures.

Cons: Wi-Fi cannot support motion sensing and communication at the same time. Moreover,
Wi-Fi is relatively less robust to the environment changes than other signals.

2.4. Visible Light Communication

With the increasing applications of visible light communication (VLC), several studies conduct
human tracking with visible light [23-25]. Any opaque object will shadow the beam emitted by the
light source, so the key idea of human sensing by VLC is to analyze the shadows cast continuously on
the floor to infer the user’s posture. The pros and cons of VLC-based human sensing are as follows.

Pros:

1. Low cost: VLC uses low-cost, high-efficiency photodiodes (LED), which can reuse the existing
lighting infrastructure.

2. High transmission efficiency: VLC transmission process is fast and not subject to electromagnetic
interference.

Cons:

1.  Deployment effort: For perception accuracy, it needs to deploy hundreds of photodiodes.
High maintenance costs: Photodiodes age fast and have a weak anti-fouling ability. In order to
ensure the perception accuracy of human actions, it is necessary to replace the old photodiodes in
time, resulting in higher maintenance costs.

3. Vulnerable to ambient light: different intensity levels of ambient light may push photodiodes up
into the saturation region, affecting the accuracy of motion perception.
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2.5. Acoustic

The speakers and microphones of commercial off-the-shelf smart devices can generate and receive
continuous sound waves. The human motion may affect the propagation of sound waves and create
the phase difference or Doppler shift on received sound waves. By analyzing the received sound
waves, the researchers may analyze the movement distance or corresponding direction of the human
motion, which makes it possible for acoustic-based human sensing [26,27]. The pros and cons of
acoustic signals for human sensing are as follows.

Pros: Due to the lower propagation speed comparing to RF signals, acoustic sensing can achieve
millimeter-level accuracy.

Cons: Acoustic signals are vulnerable to interference from other signals in the band, so the choice
of user scenarios is harsh. The noise in the environment will affect the accuracy of motion estimation.

2.6. LoRa

LoRa is a radio frequency transmission technique based on a spread spectrum modulation derived
from chirp spread spectrum technology, which enables long-range transmissions with low power
consumption. LoRa offers a long communication range for up to several kilometers, with the ability to
decode signals as weak as —148dBm [28]. Because the human body may affect the propagation of LoRa
signals, LoRa signals can help realize human sensing [29-31]. The pros and cons of LoRa signals for
human sensing are as follows.

Pros: LoRa has a high penetration capacity and a wide range of communication. The transmission
distance of LoRa signals extends to about 3-5 times compared to the traditional radio communication
distance so that it can be applied to the perception and detection of a wide range of targets.

Cons: The longer sensing range implies that the interference range is also longer due to the higher
signal receiving sensitivity. The received signal is more complex to extract human motion because of
the interference of many unrelated objects during sensing.

2.7. LTE

LTE signals have almost seamless coverage everywhere, which can be used in wireless induction
as an easy-to-receive signal source. The movement of the human body may cause a change in the
CSI of the LTE signals so that LTE signals can help in human sensing [32,33]. LTE is also suitable for
the fingerprint algorithm to realize human localization [34,35]. The pros and cons of LTE for human
sensing and localization are as follows.

Pros: The base stations to transmit LTE are widely distributed, so LTE signals are easy to receive,
both indoor and outdoor. LTE signal reception is stable and not easily disturbed by other signals so
that it will be a stable and reliable signal for human sensing.

Cons: The distribution of LTE signal base station is far away, and the signal propagation has
long delays and offsets, so the accuracy of human localization based on LTE is still questionable.
Besides, LTE transmission contains other unrelated information, so LTE-based motion-sensing requires
specialized algorithms to reduce noise and separate signals.

3. Modeling Human Activity with Wireless Signal

In order to apply wireless signals to sense a variety of human activities, the most critical issue is to
understand the relationship between human behaviors and wireless signals, i.e., it is the first question
of how human motion affects the propagation of wireless signals.

In a typical indoor environment, shown in Figure 3, the yellow line represents the line-of-sight path
(LoS) from the transmitter to the receiver, where the signal propagates directly without obstructions.
In general, the signal attenuation on the LoS path is relatively small, so it’s received power is almost
the highest among the multi-path propagations. The green line labels the paths of the signals reflected
by the ceiling, the floor, or other obstacles inside the room. The red line shows the signals reflected by
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human motion, which is the focus of human motion sensing research. Signals from different paths
experience with various delay, attenuation, or frequency shift, resulting in total signal distortion.
These signals propagate along different paths and superimpose as a composite value at the receiver,
called the multi-path effect [36].

Reflected by the ceiling

Ceiling »

«ﬁn/ tosi (o)
.

Figure 3. Indoor multi-path effect model.

In the time domain, the received signal Y(t) is a convolution of the transmitted signals X(t)
and the channel’s impulse response (CIR) H(t), shown in Equation (1). H(t) is defined in Equation
(2). a,(t) represents the amplitude attenuation of the n'" path, 7,(t) represents the propagation
time delay, e7/27/(!) represents the phase offset on the n'" path, and §() represents a pulse
function, respectively.

Y(t) =H(t) @ X(t) (1)

H(t) = ) an(D)e P05t -1, (1)) @)
n
Channel frequency response (CFR) is the frequency domain form of CIR, which represents the
distortion that occurs on the frequency domain of the wireless signals. CFR can be obtained by
performing Fourier Transformation (FFT) on CIR, as shown in Equation (3). Accordingly, in the
frequency domain, the received signal spectrum Y (f) is the product of the transmitted signal spectrum
X(f) and H(f), shown in Equation (4).

H(f) = FFT[H(t)] = ) a(t)e 220 &)

n

Y(f) = H(f) = X(f) )

Among the variables involved in the above formula, X(t), X(f), Y(t), and Y(f) are measurable,
while H(t) or H(f) are unknown. Hence, the motion recognition research seeks to derive H(f) and
further deciphers the human action inside H(f).

There are three critical parameters inside Equation (3), which are the amplitude a,, phase 7,
and frequency f. These three parameters are the primary aspects of wireless signals. For human
motions, there are also three critical metrics: velocity, direction, and distance to the LoS path or the
receiver (RX). Motion detection determines whether human motion exists, which often relies on coarse
speed estimation in signals to find the speed change caused by human movement. Action recognition
needs to identify the difference between multiple types of actions, so it needs more fine-grained speed
information, distance range, and direction that an action span. Motion tracking needs to locate the
position, direction, and distance to the receiver. Thus, this paper reviews the relationship model
between phase, frequency, and amplitude of wireless signals and speed, direction, and distance of
human activity. Table 4 provides a summary of the models between human activity characteristics and
critical parameters of wireless signal propagation.
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Table 4. Summary of models between human activities and parameters of wireless signal propagation

Signal Feature Motion Feature Models
. Coarse-grained estimation
Phase Velocity [13,20,21,26,33,37-54]
. Doppler effect model [10,12,22,55-63],
. Velocity FMCW chirp model [17,64]
requency
Direction Doppler effect model [22,57,58]
Distance (dRX) FMCW chirp model [15-17,64-68]
CSI-Speed model [36,69], Coarse-grained
Velocity estimation [14,18,19,23-26,37,40,42,43,46,47,
49,50,52-54,70-105]
Amplitude Distance (dLoS) Fresnel zone model [106-110]
Direction Fresnel zone model [106], AoA with
antenna array [11,15,65,111-115]
aw Signal Distance, Direction, Velocity mD-Track [116]
3.1. Phase

As human actions may change the length of some signal propagation path, resulting in phase
offset, the phase information is used to deduct human motion. Figure 4 shows a raw phase sequence
of the received signals with an Intel 5300 wireless network card when there is no human motion
around. The raw phases are marked in blue in Figure 4. The raw phases from a single antenna
are randomly distributed because it suffers from random phase offsets. The random offsets come
from the immeasurable nature of carrier frequency offset (CFO) and sampling frequency offset (SFO)
between transmitter and receiver. Therefore, the phase information cannot be used directly. The red
dot represents the phase difference between two antennas at the receiver. It keeps stable without
human existence. Previous research [37,117] show that the RF oscillator is frequency locked on a single
commercial wireless NIC at startup. Therefore, there is no sampling frequency difference among
the antennas on the same NIC. Thus, many researchers adopt phase differences as input for models
associated with human motion and wireless signals [37,38,70-72]. The phase difference can derive the
rough speed of the human movement.

4 T - - -r -r =T T ™ ™

+ Raw Phase
Phase difference | o
+ T

=T

$+ T

Phase(Radian)

4 i i i I 1 L 1 1

0 100 200 300 400 500 600 700 800 200 1000
Packet Index

Figure 4. Phase difference distribution.

Phase difference vs. human velocity: Higher the velocity, more intense the fluctuation of the
phase difference. However, the phase difference can only roughly estimate human actions whose
velocity varies significantly. The phase difference can be used to separated walking and running from
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other static actions, such as sitting, lying, and standing. For the action recognition problem, with the
assistance of feature extraction, phase difference helps in distinguishing multiple actions [39,70-72].
Phase differences can hardly solve motion tracking problems because the spatial details (distance,
direction) are hard to derive from phase differences.

3.2. Frequency

The human movement causes a change in the length of the reflection path, resulting in frequency
shifts. By measuring signal frequency, the direction, speed, and distance involved with human
movement can be deduced.

Frequency vs. human velocity: The relationship between human speed and signal frequency can
be derived using the Doppler effect model. The Doppler effect indicates that when the human body
moves relative to the transceiver, it produces a high frequency when approaching, or a low frequency
when away from transceiver [55]. When the transmitter transmits the signal with the frequency f;,
the received signal frequency f; is calculated as Equation (5).

fr = ft + fDoppler )

fDoppler is the Doppler frequency shift caused by human movement, which can be deduced because f;
and f, can be measurable [56]. fp,pper models the human speed as Equation (6).

Upath
fDoppler = ftpT (6)
Vpath is the speed at which the length of the reflective path changes due to human movement, shown in
Figure 5, called Doppler velocity. v,y is the fundamental reason for the Doppler shift caused by

human motion.

f , wall(reflector)

» = —n 3
\ U ‘ "]‘[::llh ‘|I'.l||l t

’ .
,/ moving human

Figure 5. Path length change due to the human movement.

We further explore the relationship between v,y and human speed, shown in Figure 6. Figure 6
shows the deployment scenario that the human is on an ellipse with the transceivers on the focuses.
From the ellipse property, the length of the reflected path by the human body is constant if the human
moves along the ellipse. The speed of human movement can be divided into the tangential and
normal speed. Tangential velocity directs along the ellipse, which does not change the length of the
propagation path in a short period. Therefore, it does not generate a Doppler shift. On the contrary,
normal velocity governs the human body away from the ellipse and thus produces a non-zero Doppler
frequency shift.
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Figure 6. Geometrical relationship between human velocity and Doppler velocity.

Frequency vs. human direction: In a fixed place, when people are moving at the same velocity
in different directions, introducing distinct Doppler shifts, shown in Figure 7. ;4,41 is calculated as
Equation (7). Here 0 indicates the direction of human movement.

Onormal = Chuman cos6 (7)

o=~ tangent

"<\ human
velocity2

normal
velocity

Figure 7. Directional ambiguity on symmetric velocity.

It is not possible to derive tangential velocity using only one pair of transceivers. WiDance [57]
proposes a scheme to solve the tangential ambiguities by adding an orthogonal receiver, shown in
Figure 8. When a person moves to the region Normal2, the length of the reflection path of the ellipse
2 becomes shorter, thereby generating a negative Doppler frequency shift. Similarly, when moving
away from the region Normal2, the length of the reflection path to the left receiver becomes longer,
causing a positive Doppler shift. A pair of transceivers can only judge the direction with the constant
speed. In contrast, two orthogonal receivers can identify the direction of human movement at
various speeds. For human orientation recognition, two orthogonal receivers can judge eight basic
directions [57]. For the tracking of human movements, it requires more receivers to get more accurate
spatial information about the direction of human motions [58].

Frequency vs. human velocity and distance: Accurately extracting a phase from an analytical
signal requires that the signal contains only one frequency component at any given time. The chirp
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signal is an example of this type [106]. Human activities can be captured by radio signals reflected
from the human body, which results in estimating the delay of the wireless signal from the transmitter
to the reflected human body and back to the receiver. FMCW chirp has the advantage as a model
that can compare different carrier frequencies at the same time. FMCW chirp converts the problem of
estimating the time of flight (ToF) into a measurable frequency difference to capture human motion,
which derives distance and speed information about human activities. For stationary people, only the
distance needs to be measured. For the human motion, FMCW can measure the speed at which people
move and their distances to the receiver.

normal 1

¢ |

normal?

velocity

human
velocity

Figure 8. Doppler effect on multiple directions.

1. Distance measurement when a person is still

Figure 9 shows the principle of FMCW chirp, where the transceiver sends out signals repeatedly
swept across a specific bandwidth. Here the transmitted and received waves are labeled in red and blue,
respectively. Figure 9 describes the FMCW triangular wave produced by the frequency synthesizer.
ft and f; represent the transmitted and received signal frequency, respectively. After signal reflection
from the human body, the frequency difference f;, is introduced as Equation (9). In Figure 9, the time
difference t; can be measured, which are linear related to the distance between the human body and
the transceiver drx. Label fpgy as the frequency sweep bandwidth and #; as the half cycle of the wave
generated. According to the triangle similarity of Equation (10), drx is calculated as Equation (11).

fo=fi—fr ®)
_ 2dRrx

te = — )
fo _ foEv (10)

ty ts

f b Cls
drx = 11
L (11)
Frequency
A ts fl fl.
fDE\"

Time

Figure 9. Principle of FMCW chirp
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2. Speed and distance measurement

In the scene of human movement, it needs to take Doppler shifts into account. In Figure 10,
the frequency difference can be calculated as f, — f; , which changes regularly over time. Here f;, and
fpa represent the frequency difference of the stabilization phase as Equations (12) and (13). Combining
the Doppler model of Equation (14), the distance drx and the speed of human movement vy, can be
calculated as Equations (15) and (16). FMCW chirp is usually used in conjunction with the antenna
array to solve human tracking problems (more details in Section 3.3).

fou = fo = fooppler (12)

foi = fo + fDoppler (13)
Fouppter = 2L Snunan T (14)
drx = Z_Cj;%v(fbu + foa) (15)
human = fﬂ(fbd = fou) (16)

Frequency
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Figure 10. Frequency deviation on FMCW chirp on human motion.
3.3. Amplitude

As the presence of human motion changes the pattern of multi-path propagation, the amplitude
attenuations of the signals on different propagation paths are varying. This section presents the
relationship between human motion and signal amplitude.

Amplitude sequence is accessible on commercial Wi-Fi devices without special equipment required.
The amplitude value measured by the receiver is the superposition of the received signals from all
the propagated paths, which is a more intuitive index compared to phase and frequency. WiFall [73]
finds that the impact of human activity on different amplitude streams varies over time. Furthermore,
the amplitudes of subcarriers among adjacent frequencies share more similarities than those with larger
frequency gaps. The amplitude characteristics of signals can deduce distance direction, and speed of
human motion.

Amplitude vs. human distance: The Fresnel zone model can be used to deduce the relationship
between amplitude and the distance of human motion. Fresnel zone is a series of concentric ellipsoidal
with two foci corresponding to the transmitter and receiver antennas, shown in Figure 11. P and P,
are the locations where two radio transceivers reside. Q, is a point on the n'" ellipse. For a given radio
wavelength A, the boundary of the n' Fresnel zone is calculated as Equation (17).

1
IP1Qnl + 1P2Qu| = IP1P2| = ZnA (17)
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> Boundary of 3st Fresnel zone

D]
> Boundary of nst Fresnel zone
B i ) _—

2 Boundary of 2st Fresnel zone

Figure 11. Fresnel zone model.

Zhang et al. [107] show that when the length difference between the two paths is of one wavelength
A, the phase difference between them is 27t. The received signals can be viewed as the superimposition
of two major components, including one from the LoS path P; P, and the other from the reflected path
P1Qy + P2Qy. It is worth noting that for reflected signals, the phase reverses by n. The total phase
difference equals to the sum of the phase difference between LoS and the reflection path and the phase
difference 7t caused by reflection. Therefore, when a person resides in the odd-Fresnel zone boundary,
the overall phase difference is 2n7, which will reinforce the strength in the received signals, shown in
Figure 12a. On the contrary, when a person appears in the even-numbered Fresnel zone boundary,
the total phase difference is (2n 4- 1)1t, which weakens the composite signal amplitude, shown in
Figure 12b.

Amplitude Amplitude

AN ANV AN AVAYAVAYAVAN
YRV EAViRLVLV,

(a) (b)

Figure 12. Signal amplitude with the human residing on the boundaries of Fresnel zones of odd and
even numbers (a) odd zone (b) even zone.

As n increases, the magnitude of the peaks and valleys decreases. Thus, when a person crosses the
boundaries of several Fresnel zones in turn, there will be the peaks on signals when the phase difference
is2m, 4 m, ... 2nm and the valleys when the phase differenceis 3 7, 5 7, ... (2n 4- 1)7. By observing
the peaks and valleys of the amplitude series, it is possible to determine whether a person locates in
an odd or even Fresnel zone boundaries and the coarse distance from the LoS path [108]. For subtle
human movements (breathing or finger gestures), the movement distance is often small so that the
corresponding amplitude changes are difficult to distinguish. Niu et al. [118] propose adding multiple
virtual paths to make a weak amplitude change more drastic and easy to judge.

Amplitude vs. human direction: The calculation of human direction from amplitude measurements
have two models as follows.

1. Fresnel zone model

A single-frequency carrier cannot deduce the direction of human motion. With Wi-Fi MIMO-OFDM
technology, multi-subcarrier can help calculate the direction of human action. Each subcarrier will
create its Fresnel region independently. These multi-frequency Fresnel zones share the same foci and
shape but different sizes. The subcarrier with a shorter wavelength has a smaller ellipsoid than the
neighbor subcarriers. Therefore, the peaks and valleys of different subcarrier waveforms appear at
different times, causing their waveforms to have phase differences. Figure 13 shows the example of



Sensors 2020, 20, 1210 15 of 45

the signal waveforms received on two adjacent subcarriers when a person crosses the Fresnel zone
inward. By adopting cross-covariance in the sliding window to calculate the time delay between the
waveforms of subcarriers, the positive delay means walking inwards and vice versa.

AVARVARV.

Figure 13. Delayed waveforms for subcarrier 1 and 2.

Amplitude

2. Antenna array

The antenna array can measure the amplitude on multiple antennas to obtain the angle of arrival
(AoA) of the signal, thereby deriving the direction of human motion. In Figure 14, when the signals
arrive at a certain angle, there is a difference in the path length for the signals received by the different
antennas. Variations in path length result in various delays 7, so there is a phase difference among the
signals for different antennas. By measuring the received signals on every antenna, the power at any
given angle 6 can be obtained through Equation (18).

N i cost
i na_cos
z Yne J2m
n=1

d is the distance between two antennas, A is the signal wavelength, and ndcos indicates the signal
propagation path length of the n'* antenna. The arrival angle 0 of the received signal can be derived
when P(0) maximizes, which reflects human motion direction. When combining with the speed model
of FMCW chirp, human motion tracking can be tackled. ArrayTrack [119] deduces the relationship
between the length of the signal propagation path and the phase change.

P(6) = (18)

Figure 14. AoA model with the antenna array

3. Amplitude vs. Human Velocity
CARM [36] proposes the CSI-Speed model, which correlates amplitude with motion velocity.
Depending on whether the wireless signal is affected by human movement, the channel frequency
response can be divided into static parts and dynamic parts. The static parts Hs(f, t) is not affected
by human actions, so it keeps a constant value. The dynamic part Hy(f, ) is time-varying because
the emergence of human actions will change multiple signal propagation paths. H(f,t) is defined as
Equation (19).
Hy(f,) = ) ax(f, t)e /w0 (19)

kEPd
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a(f,t) represents a compound value of amplitude attenuation and initial phase offset of a signal
passing through the k' path. 7(t) is the phase difference caused by the propagation delay of the
k™" path.

When a person moves a small distance from time 0 to t, resulting in the length of the k' path

changes from dy(0) to di(t). T (t) can be defined as i (t) = M As A = ]% e 12 (t) can be written

ase -~ . When the path length changes one wavelength, the phase shift of the received signal is 2.

The complex value H(f,t) at the receiver can be calculated as Equation (20). e~/2™** indicates the
phase difference caused by the carrier frequency shift A f between transmitter and receiver. When a
person moves at a constant velocity in a short period, the rate of change in path length is also constant vy.
The instantaneous CFR power is derived as Equation (21). Here 2ndk(0> + ¢gr and M + P
are constant values, which represent initial phase offsets. The total CFR is the sum of a series of
sinusoids and static constants, where the frequency of the sinusoids is a function of the speed v in path
length change caused by human movement. By measuring these frequencies and then multiplying
their wavelengths, the human motion speed vy can be derived. Hence, the CSI-Speed model infers the
human motion velocity from the measurable CFR.

H(f,t) = e 7O (H(f, 1) + Hy(f, 1)) (20)
H0F = 5 2|Hs<f,t>ak<f,t>|cos(%+Wk +ou)

- 2|ak f t (f/ t)| COS<2n(Uk_vl)t + 2n(d(0)=d,(0)) (21)
k1 klePd A A

+¢u)+ |ﬂkft|+|Hsft|

3.4. Raw Signals

Due to the multipath effect, the received signals are the superposition of the propagated signals
along different paths. If each reflection path affected by human motion can be resolved from the
received signals, it will definitely improve performance for passive human localization and motion
tracking. mD-Track [116] constructs the path resolving model to jointly estimate the multi-dimensional
parameters of each reflection path, including angle-of-arrival (AoA), angle-of-departure (AoD),
time-of-flight (ToF), and Doppler shift.

mD-Track models the received signal as the superposition of signals along L distinct paths as
Equation (22). s;(t;v;) indicates the signal along the Ith path where v; = (¢}, @1, 1,71, 1]. Here ¢, ¢, 1,
y, and a represents AoA, AoD, ToF, Doppler shift and complex attenuation respectively. The goal of
mD-Track is to estimate the path parameters V = [v1,v,...,v] for all L paths in Y(#).

L
Y() = Y si(bv) + W) (22)
=1
(0, T, 7)esy = argo max|z(, ¢, 7,7)| (23)
2(d,9,7,7) = f e_jzm’F_l{gH (<p)Hc(¢)*@LTF}u*(t—T)dt (24)
T

mD-Track employs iterative parameter refinement for each propagation path in multiple rounds.
During each round, the parameters of the current signal path are estimated through solving the
optimization problem defined in Equation (23) and (24). Here g(¢) characterizes the phase relationship
of the signal coming out of the transmitting antennas while the receive array steering vector c(¢)
characterizes the phase relationship of the signal arriving at the receiving antennas. H is the CSI matrix,
and LTF is the preamble according to the 802.11n standard [120]. U(t) is the residual signals after
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eliminating the estimated signals from the received signals. mD-Track points out that the proposed
iterative optimization is a maximized expectation problem belonging to the EM family [121,122],
which guarantees the converge. After separating each reflection path, the AoA, AoD, and ToF of
each path can be used for human localization, while the Doppler shift of each path can be used in
motion tracking.

4. Signal Preprocessing

This section presents the signal preprocessing methods for motion sensing with wireless signals
in recent years, including noise reduction, calibration, and redundant removal. Table 5 provides a
summary of the signal preprocessing techniques.

Table 5. Summary of signal preprocessing.

Category Example Pros and Cons

time-domain filter: moving average
[14,45,53,54,70,73,100,123], median [74],
single-sideband Gaussian [76], weighted
Noise Reduction moving average [42,46,73,75,87,103,124],
local outlier factor [59], Hampel filter
[49,59,77,86], Savitzky—Golay filter
[86,108,125,126]

Pros: low computation cost, suitable
for coarse-grained motion recognition
and tracking; Cons: poor sensitivity to

fine-grained gestures

frequency-domain filter: passband
[37,41,44,57,58,87,93], wavelet
[19,59,87,92,93,95,97,127], Kalman
[10,24,25,32,41,50,66,103,124], Butterworth
[12,19,39,40,43,46,51,52,70,71,74,75,80-83,
89,108], Birge-Massart [78]

interpolation [37,51,66,92], normalization [50,77,79,94,128,129], phase calibration

Pros: high sensitivity to all activities
including finger gestures; Cons:
complex calculation.

Noise Reduction

Calibration [21,42,44,51,52,68,90]
first PC selected [42,45,57,58,84], first PC discarded [36,80], second PC selected [51],
Redundant third PC selected [69], first two PCs selected [43], top-5 subcarriers [39], static
Information Removal environment removal [15,22,65], multipath mitigation

[20,68,87,93,102,105,110,111,113,114]

4.1. Noise Reduction

The raw signals extracted from the PHY layer are very noisy due to hardware defects or some
particular noise in the environment. To use wireless signals for human motion sensing, eliminating as
much noise as possible is the first step.

Time-domain filtering: Moving average filter and median filtering are simple methods for
time-domain analysis. Each data point is replaced by an average or median value of adjacent data
points. For example, SEARE [74] adopts a moving median filter to smooth the CSI waveform and
eliminate outliers. The weighted moving average filter utilizes the scheme that the values closer to
the processed point should occupy a higher weight. HuAc [75] smooths and reduces the serrates
of CSI waveform by using the weighted moving average filter. Single-Sideband Gaussian (SSG)
applies a convolution to smooth the raw signal, which is used to preprocess the CSI waveform in [76].
The Savitzky—Golay filter computes the local polynomial least square fitting in the time domain to
filter out noise while ensuring that the shape and width of the signal are unchanged. Zhang et al. [108]
use the Savitzky—Golay filter on CSI signals to fit a continuous subset of adjacent data points so that
the CSI signal is denoised without distorting the signal waveform.

Some outliers may not be filtered and will affect the subsequent processing. Local outlier factor
(LOF) is employed to find anomalous points by measuring the local density of the collected signals.
For example, WiSome [59] uses LOF to find and remove outliers on CSI streams. The Hampel filter
computes the median mi and standard deviation o; of adjacent data points. If [xi — mi |/o; is larger than
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a predefined threshold, the current point xi is viewed as an outlier and replaced with the median m;.
EI [77] uses the Hampel filter to remove outliers.

Frequency domain filtering: The frequency caused by human motion is usually much lower than
the frequency of impulses and burst noises. In order to choose signals for a specific frequency band,
some filters of frequency domain analysis are applied. Butterworth low-pass filters and Passband
filters are widely used to remove high-frequency noises. WiChase [40] uses a Butterworth filter with a
relative flat magnitude response on CSI signals so that the phase information can keep unchanged.
Wavelet filter removes noises from the signals without losing high-frequency components, especially
when activity details are required. WiSome [59] considers that the frequency of CSI signals is generally
high, and the Doppler frequency shift caused by human movement is relatively low. It applies the
Wavelet filter to extract the information from the low-frequency layer. Birge-Massart filter estimates
the adaptive density of non-parameters after wavelet transformation to obtain a threshold. WiG [78]
uses Birge-Massart filter to smooth the signal sequence and simultaneously capture the time and
frequency domain information. Kalman filter can achieve the estimate of the motion signal, even the
frequency band of motion and noise are somehow mixed. WiDeo [41] uses the Kalman filter to improve
the localization accuracy during tracking.

4.2. Calibration

Due to the inconsistency among filtered signals, calibration is the second step of signal preprocessing.

Interpolation: The receivers may obtain non-uniform sequences due to weak signals through-wall
or from non-LoS paths, which have packet loss and transmission delays. For a relatively stable
sampling frequency, the received signal sequence often needs to be interpolated. RT-Fall [37] uses
interpolation to eliminate the discontinuity in CSI values caused by the uneven arrival interval of data
packets, thereby obtaining uniformly sampled sequences.

Normalization: The imbalance of signal distribution comes from the different ranges on the
various dimension. Normalization unified the value scale by normalizing from 0 to 1 proportionally.
Motion-Fi [79] uses the normalization of the raw signals before performing signal processing.

Phase calibration: The filtered phase is folded due to the nature of the inherent phase periodicity,
which needs to transform the raw phase into the real value. Figure 15 shows the raw phases of CSI for
the three antennas at the receiver. It shows that the raw phase sequences of the three antennas are folded,
in the phase range [-7 7t]. SignFi [21] obtains the linear transformation of CSI phases from different
subcarriers of different antennas by using a linearly unwinding method. Different phase patterns
over time can be calculated by applying a linear unwinding method, shown in Figure 15. Besides,
the absolute phases differ because each radio chain connects to different RF oscillators. Phaser [117]
proposes a phase autocalibration algorithm that corrects the phase offsets between the different radio
oscillators at an AP.
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Figure 15. Raw vs. pre-processed CSI phase (a) CSI phase vs. subcarrier index (b) CSI phase vs.
sampling time.
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4.3. Redundant Removal

After the above pre-processing, the signal sequence still contains some redundant information
that is not related to human activity. The removal of such unnecessary details will reduce computation
complexity and sift out the signal segment tightly associated with human activities.

PCA-based subcarrier selection: The CSI measurements are highly correlated among subcarriers,
and different subcarriers have different sensitivity for a given activity [42]. Thus, the most common
method for redundant removal is to apply principal component analysis (PCA) on the CSI measurements
to extract principal components. The principal components will capture the dominant variation caused
by human activities.

Existing researches hold different views on principal component (PC) selection. Some solutions
select the first PC, which contains the highest eigenvalue among all the PCs and may correspond to the
features caused by human motions [42,58]. On the contrary, some researches choose to discard the first
PC and preserve the second PC [36,80]. They assume that noises are primarily captured in the first PC.
Moreover, some studies choose the third PC because it may have the highest motion-related signal to
noise ratio [69]. Fang et al. [43] select the first two PCs because they empirically find these two PCs
contain the majority of the total variance and thus preserve most information of the targeted activities.
Melgarejo et al. [39] make use of the top-five PCs to provide distinguishable metrics.

Static environment partial removal: The static signal propagation paths are often treated as
a constant in a short period, which is not affected by human activity. Thus, the static component
inside the received signals is often removed by subtracting the constant value measured in the static
environment without human actions [15,22,65].

Multipath mitigation: If the surrounding environment changes, such as moving a chair to another
place or a person is moving around, the received signals will be different due to the various multipath
effect for signal propagation, resulting in the signal pattern distortion for a given activity. WiFinger [20]
finds that the signal reflection path usually has a longer propagation delay than the LoS path. Thus,
to keep robust to the environment changes, WiFinger removes the signal components that have a
longer delay with Inverse Fast Fourier Transform (IFFT).

5. Signal Segmentation

After pre-processing, the remained signals comprise motion segments and non-motion intervals.
The non-motion interval inhibits from discovering the characteristics of signals affected by human
movement. Figure 16 shows an example of the received signal sequence while a volunteer performs
five squats. The start and end timestamps are labeled with red lines in Figure 16, which are captured
by video analysis. Figure 16 shows that there is a long rest interval between the second and third
squats, which may affect the accuracy of action detection and recognition. The segmentation target
is to accurately find out the start and end timestamp for each human action inside the received
signal sequence.
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Figure 16. Segmentation example of the received amplitude sequence during five squats. Green check
labels each squat segment. The red vertical lines label the start and end timestamp of each squat.
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Precise segmentation for every single action from the signal sequence is the premise of accurate
feature extraction and activity recognition. Because human action may induce high fluctuations
in the received signals, the action segmentation is mainly based on thresholds. Hence, the action
segmentation methods can be classified into two categories, time-domain based and frequency
domain-based methods. Table 6 provides a summary of the signal segmentation methods.

Table 6. Summary of signal segmentation.

Category Type Pros and Cons Examples
Phase Pros: high sensitivity; Cons: phase difference [23,26,37,71]
poor robustness
amplitude [19,20,82-84,86],
Amplitude Pros: ea:?y to ac'ce.ss; Cons: amphtud? dlfferen'ce [14,44],
noise variation amplitude variance
[23,24,40,85,97,108]
) . cumulative moving variance
Time-domain [75,76,81], average RSS [39],
threshold Statistics Pros: accurate; Cons: movement indicator threshold
complex computation [36,46,87], CV threshold [45], SVR
and LVR [38], LOF anomaly
detection [73,76,78]
Pros: easy to access; Cons:
Energy susceptible to noise energy [45,89]
R Pros: suitable for repetitive autocorrelation [82]’ optimize
Similarity . template and cutting segments
motion; Cons: poor tolerance
alternately [79]
Peak Pros: directly available; spectrum [25,26,28,29,69], Doppler
Cons: susceptible to noise shift [55-58]
Frequency-domain gy Pros: easy to collect; Cons: energy [88,89,98,99,105,113]
threshold susceptible to noise
Pros: suitable for cutting . .
Similarity repetitive motion; Cons: Kullback-Leibler divergence [10],

poor tolerance

impulse [56]

5.1. Time-Domain Threshold

According to the metrics, time-domain thresholds use thresholds on phase difference, amplitude,
statistic features, energy, and similarity comparison.

Phase difference threshold: Phase difference threshold implicitly makes use of the spatial
information between the antenna pairs at the receiver [37]. MoSense [71] calculates the mean of the
Euclidean distances among all subcarrier pairs using Equation (25).

- Y
d= w71 (25)
T=axd (26)

di means the Euclidean distance of the k" and the (k+1)" subcarrier. The threshold T is chosen as
Equation (26) where a is an empirical parameter.

In general, threshold cutting based on phase difference is used to cut walking and non-walking
(such as sitting and standing) activities [81]. However, it is only suitable for signals propagation with
high robustness to environmental changes.

Amplitude threshold: Amplitude thresholds are widely used in action segmentation with the
advantage of low computation. WIAG [82] calculates the threshold through Equation (27).
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T = (us +uc)/2 (27)

us means the average of absolute amplitudes of peaks when the person is stationary. pg is the
average of absolute amplitudes of peaks when the person is moving. Amplitude thresholds can cut
out the start and end of the simple human gestures (brush, phone, shake, push, pull, circle, etc.) or
in-air finger gestures (circle left, right-left, up-down, infinity, open-close, etc.) contained in signal
sequences [14,19,20,23,24,40,44,82-86,108].

In order to reduce the impact of environmental changes, the cutting modules extract features
from the amplitude stream [44]. The threshold calculation on the amplitude difference is shown in
Equation (28).

Hegapte + 20k apte T 3ebiape < T (28)

stable s

Hétable’ O_itable’ and eétubl@ means the mean, standard deviation, and median absolute of it gestures,
respectively. Zhang et al. [108] set the threshold as the maximum variance when no activity exists
to detect human motion. The amplitude variance threshold is generally used to cut the rest interval
between fitness actions (push-up, sit-up, etc.).

Statistics threshold: For avoiding misjudgments affected by outliers, statistics thresholds are used
in activity segmentation. The significant variation in one sliding window indicates the presence of
human activity. The statistical thresholds include variance, variation coefficient, correlation, and outlier.

Because the in-place action is of less physical movement than walking, resulting in different

variances [81]. Cumulative moving variance among K subcarriers is defined as Equation (29).

K
v= Z v(k) (29)

k=1

v(k) is the moving amplitude variance on K subcarriers for each sliding window. It is a robust feature to
detect the state transition between actions, which means dynamic gestures lead to noticeable fluctuation
in amplitude variance among sliding windows [81]. Cumulative moving variance threshold can
generally cut out in-place actions and walking activities [76,81].

The coefficient of variation (CV) threshold relies on the fact that CV can balance the difference
caused by the environmental changes, defined as Equation (30). ¢ is the standard deviation, and p is
the mean. The CV threshold can be used in breath monitoring and motion detection [45].

cv="2 (30)
u

Because the variance ratio is relatively stable to environmental conditions, Gong et al. [38] apply a
threshold on the combination of short-term variance ratio (SVR) and long-term variance ratio (LVR).
SVR is defined in Equation (31), which detects the transient state of abnormal situations, i.e., whether
human actions occur. LVR is defined in Equation (32), which monitors continuous abnormal conditions.
ALT and AT represent long and short intervals, respectively. The method based on the combination of

SVR and LVR cuts the interval between human action through the empirical thresholds.

K

1 CUsr
SVR == Z ~ (31)

i=1 AT-1

K i

1 CUAT
LVR = = Z = (32)

i=1 ALT

The correlations between subcarriers are also used as thresholds to detect the motion segment.
The eigenvectors among subcarriers change randomly in the absence of human movement. On the
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contrary, when human actions exist, nearby subcarriers become similar and correlated. Wang et al. [36]
further calculate the variance on the selected principal component as a threshold to detect human
motions with Equation (33).

E{3}/54, (33)

E{hg} and 0y, represent the variance and the mean derivation on the second principal component
after applying PCA on the CSI streams of all subcarriers. Thresholds are then determined empirically.
This kind of threshold can detect the start or end of activities, including walking steps, finger gestures,
and activities (walking and running, squat, sit down) [36,46,87].

Local outlier factor (LOF) is defined as Equation (34). p is the current data point, and o is a point
near the p. k(p) represents the set of k-nearest neighbors of p. Ird (p) is the local density of p. The high
LOF indicates abnormal sequence caused by human movements. LOF threshold can cut out the start
and end of human actions, finger gestures (right, left, push, pull), and fall state [73,76,78].

% Zoek(p) lrd(o)
Ird(p)

Similarity threshold: Fitness workouts usually consist of a group of periodic actions. In order
to segment repetitive motions from the signal sequence, it is common to compare the similarity of
signal sequences. Autocorrelation can be used to describe the degree of correlation. Guo et al. [88]

LOF(p) = (34)

adopt the autocorrelation to separate non-workout from a group of workout activities (biceps curl,
leg stretch, leg press) through empirical thresholds. Meanwhile, Motion-Fi [79] exploits dynamic time
wrapping (DTW) in the time domain to cut out action segments and update templates alternatively.
Motion-Fi [79] optimizes the matching template and the cutting segments alternately, and finally sets
the empirical threshold to cut the repetitive periodic fitness actions. These periodic actions include
squat, push-ups, sit-ups, leg-raise, etc.

Energy threshold: The signal energy in the presence of human action is often larger than the one
without human actions. The power in each action segment will first increase and then decrease due to
human action. The energy threshold adopts the empirical mode decomposition (EMD) and the Hilbert
Huang Transform (HHT) to calculates the ratio of real-time energy to the energy sum of each window.
It identifies the start and end of the driver motions (include nod, yawn, bend over, and make a call) to
check if the driver is fatigued [45].

5.2. Frequency-Domain Threshold

According to the Doppler model, there is a clear frequency shift when human motion appears.
Hence, it is feasible to cut the action segment with the frequency threshold. Such methods need the
assistance of time-frequency domain analysis, which can be further divided into three categories,
including peak-based, energy-based, and spectrum-based.

Peak threshold: WiDance [57] computes the average sum of absolute Doppler frequency shifts
of the two links and detects the prominent peaks. The user action causes a pair of peaks or valleys
in Doppler frequency shifts with significantly different amplitudes. The two adjacent peaks are
grouped as one complete action. This method can detect eight basic human movement directions (up,
down, left, right, top left, top right, bottom right, bottom left). WIMU [69] uses STFT to analyze the
frequency spectrum and counts the number of the frequency with magnitude larger than the threshold.
An increase and decrease in the frequency number correspond to the beginning and end of the action,
respectively. WIMU sets the threshold using the three-sigma rule as Equation (35). This cutting method
is used for numeric gestures from one to six [69].

T=pu+30 (35)
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Energy threshold: Guo et al. [88] apply the power spectral density (PSD) in the frequency domain
and calculate the normalized short-time energy (STE) to segment the signals. STE can be derived
through Equation (36), where V (i) represents cumulative PSD, and W () is the windowing function.
Each peak on STE represents a fitness repetition. These actions include biceps curl, leg stretch,
leg press, etc.

Esqr = Z‘ [V(i)W(i’l - i)]z (36)
j=—00

Similarity threshold: WiFit [56] uses the Doppler displacement derived from the Doppler frequency
shift for an impulse-based cutting. It uses DTW to calculate the similarity of each impulse. The impulse
which meets the similarity threshold is considered as a repetitive action. This method can cut out three
fitness exercises, including squats, sit-ups, and push-ups.

Kullback-Leibler (KL) divergence leverages the fact that the distribution of amplitudes within
each window should be similar when there are no human actions. Conversely, the amplitudes change
rapidly and show a completely different distribution with human motions. KL divergence is defined
in Equation (37), which represents the loss of information when fitting the real probability distribution
P using the theoretical distribution Q. KL divergence threshold can cut out fitness activities and rest
intervals. These fitness exercises contain concentration standing bicep curl, seated triceps press, and flat
bench bicep curl, which includes a unique arm pattern in each action [10].

P(i)

Dy (PIQ) = Z P()-Ingys (37)

6. Feature Extraction

Feature extraction is the core step in motion recognition, which directly affects the recognition
robustness and accuracy. Because human action is often buried inside the received signals, as discussed
in Section 3, it is necessary to extract the features representing the action from the signal sequence.
The extracted features can be classified into the time domain, frequency domain, time-frequency
domain, and spatial domain features, which are summarized and compared in Table 7.

Table 7. Summary of features.

Category Pros and Cons Features

maximum, minimum, mean, standard deviation,
kurtosis, skewness, variance, median and median
Pros: relatively simple calculation; absolute deviation, percentiles, root sum square,
Time-domain Cons: vulnerable to interquartile range [13,18,37,40,42,43,46,48-50,62,72,73,
environmental changes and noise 75,76,78-80,83-85,88-90,97,108,127,130], time lag [37],
power decline ratio [37], amplitude sequence
[20,54,74,91], phase sequence [39,51,107], CV [38]

FFT coefficient [12,83], dominant frequency [43], power
spectrum density [88], spectral entropy

Pros: capture the periodical [43,57,70,72,73,80,90,92], fractal dimension [92],
Frequency-domain characteristics of human motion;  frequency domain energy [85], Doppler velocity intensity
Cons: large amount of calculation [56], frequency sequence

[10,26,28,29,49,55,60,95,98,104,113,114,124],
spectrograms [19,47]

Time-Frequency Pros: reflects both time and DWT coefficient

domain frequency domain information; 5 50 4> 5 93 97,99 103,123,125,126,131], HHT [45,30]
Cons: heavy calculation

Pros: suitable for localization and
Spatial domain tracking; Cons: often need specific
equipment

AoA [15,22,25,41,65,66,112-115], distance
[15,26,100,105,106,110], ToF [41,64,66,68,113,132]
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Time-domain features: Most time-domain features directly apply statistics. Calculating time-
domain features usually takes the input of amplitude, phase, or phase difference whose computation
costs are small. The statistics feature often characterize the shape of the received waveform in the
time domain. There are a large amount of studies [13,37,40,42,43,70,72,73,76,79,80,83,85,88-90,108]
that extract time-domain statistical features (maximum, minimum, mean, standard deviation, kurtosis,
skewness, variance, median and median absolute deviation, percentiles, root sum square, interquartile
range) from amplitude or phase streams. In particular, WIG [78] extracts the above time-domain
features from anomaly data series obtained by the LOF-based segmentation method. RT-Fall [37]
adds two extra features of the time lag and power decline ratio to the basic statistical features in
phase difference streams. These above features are usually used by machine learning classifiers (SVM,
HMM, random forest, etc.). Besides, many studies [10,19,20,39,55,74,81,89,91] with template matching
classification often use the entire time-domain waveform (amplitude-waveform, phase-waveform, etc.)
as a feature. For example, SEARE [74] uses the amplitude-waveform in the template matching.

Frequency-domain features: The frequency domain analysis may extract the signal characteristics
from a deeper level than the time domain. Compared to time-domain methods, frequency-domain
analysis usually requires a large amount of computation. Typically, the signal is transformed in the
frequency domain, and then some useful parameters are extracted as the features to the frequency
domain. Frequency domain features describe the magnitudes of various frequency components
contained in the mixed signal.

HeadScan [43] extracts dominant frequency as the features. FallDeFi [92] proposes a frequency-
domain feature called fractal dimension, which is robust to environment changes. Zeng et al. [85]
calculate the frequency domain energy as a feature. Humantenna [83] and Sekine et al. [12] apply all
the low FFT coefficients as features. WiFit [56] puts forward two useful features—Doppler velocity
intensity and normalized Doppler velocity range. WiSee [55] and FEMO [10] use the Doppler shifts in
the classification of template matching. Many studies [43,70,72,73,80,90,92] extract spectral entropy
from frequency streams as the classification features.

Time-frequency domain features: Time-frequency domain analysis describes the proportion
of specific frequency components that the signals contain at different times. Discrete wavelet
transformation (DWT) is a representative of time-frequency domain analysis. DWT has good trade-off
on time and frequency resolution, so both high-speed and low-speed motion can be captured.
WiMotion [42] performs DWT on the amplitude sequence based on the first-order Daubechies wavelet.
It takes the approximation coefficients of the third layer as the feature. WIAG [82] uses Daubechies
wavelet on PCA components to extract three layers of detail coefficients as features. WiHear [93]
firstly uses a four-order Symlet wavelet, then apply a feature selection scheme to extract the most
representative features from wavelets. CARM [36] utilizes DWT to decompose the PCA components
into 12 levels that span the frequency range from 0.15Hz to 300Hz. CARM extracts the energy of
each layer as the features to imply the speed of path length changes caused by human movement.
WiGest [19] extracts the spectrogram pattern for the template matching method. DELAR [47] proposes
a deep learning framework of image processing on spectrograms to classify actions.

Another analysis method in the time-frequency domain is a combination of empirical mode
decomposition (EMD) and Hilbert-Huang Transform (HHT). EMD is a self-adaptive signal processing
method that decomposes data into intrinsic mode functions (IMF), which are symmetric concerning the
local zero mean, and have the same numbers of zero crossings and extremums. Each IMF represents
the type of oscillation pattern embedded in the signal. By applying HHT to each IMF, the instantaneous
frequency can be acquired. Mohammed et al. [80] extract six features (mean, maximum, standard
deviation, percentiles, median absolute deviation, and entropy) for both the amplitude and phase
subsequence after HHT decomposition. WiFind [45] extracts eight features, including max total
frequency energy, mean of total frequency energy, standard deviation of total frequency energy, median
absolute deviation of total frequency energy, length of the breath patterns extracted from principal
component, and mean, STD, MAD of the breath pattern to detect car driver fatigue.
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Spatial domain features: For the application of human localization and tracking, it is essential
to capture the spatial information such as the direction and distance of the human body at a certain
moment. AoA and ToF are two typical spatial features. By exploiting the antenna array, AoA can be
derived from the phase difference of the arriving signals between multiple antennas, refer to Section 3.3.
Because the signal is approximately the speed of light, ToF is usually tiny and challenging to measure
directly. FMCW chirp measures the frequency difference between two consecutive triangular waves,
which help to estimate ToF, as discussed in Section 3.1. For localizing a human in three-dimensional
space, WiTrack [66] leverages the T shape directional antenna array to estimate the AoA and ToF of
FMCW signals. Chronos [132] achieves decimeter-level human localization with a single Wi-Fi AP to
estimate ToFs from multiple frequency bands. WiDeo [41] calculates the ToF, amplitude, and AoA of
the signals reflected from the human body by using the backscatter sensor.

7. Activity Classification

The features extracted from action segments will be further applied in classifier to recognize
human activities. This section focuses on techniques for activity classification, including template
matching, machine learning, and deep learning. In terms of training options, these classification
methods can be divided into training-free, training-once, and multiple times of training [133]. Template
matching recognition is often training-free [10,19,20,39,55,74,91,93,94]. Training-once classification
requires the valid features robust to the variations in the surrounding environment [12,13,32,37,40,42,
44,45,47-49,56,59,60,70,72,73,75,76,78,79,83,84,89,90,92,127,130]. Deep learning automatically extracts
features, which often requires only one time of training [16,17,21,48,59,67,77,88,95,96,108]. For features
that change dramatically with the environment, multiple times of training should be performed
when there is some change in the environments. Wi-Multi [97] propose a three-phase system using
CSI according to the size of available training samples. Table 8 describes a summary of the activity
classification techniques.

Table 8. Summary of the activity classification.

Category Pros and Cons Examples
Pros: no training needed; Cons: Euclidean distance [19,94], DTW
Template Matching accuracy depending on the [10,20,39,42,55,74,91,93,97], EMD
specific template [54,70,81,89], Jaccard coefficients [69]

KNN [18,40,46,48,51,52,59,82,99,124], SVM
[12,13,32,37,40,42,44,45,47-49,56,59,60,70,
72,73,75,76,78,79,83,84,89,90,92,97,127,130],
decision tree [10,57,85], K-means [76,81],
Naive Bayes [85], HMM [36], sparse
representation via £1 minimization [43]

Pros: high efficiency and
Machine Learning robustness; Cons: a lot of training
data required

Pros: strong learning ability and CNN [16,17,21,48,67,77,108,126], DNN
Deep Learning portability; Cons: large amount of [59,88], SOM [96], sparse autoencoder
training data required network [95], LSTM [97]

7.1. Templated Matching

Since template matching is a real-time training-free method, its input should be sufficient
pre-processed and segmented out signal sequence. The template matching method has to pre-store
the templates, which are not suitable for a large number of templates. So template matching is
more applicable for recognizing action with fewer categories and of short time series per template.
Because human gestures have short durations, the template matching has been widely used in gesture
recognition and simple motion recognition.

These methods calculate the distance between the action sequence and the known template and
measure it based on the similarity thresholds. If the distance is less than the threshold, the action
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sequence is classified into some known type. According to whether the time series are of fixed length,
these methods can be further divided into fixed and different length template matching methods.

Fixed length: The difference among fixed template matching is using different distance calculation.
Euclidean distance is the simplest distance evaluation. For example, WiGest [19] firstly encode the
rising edges to positive signs, falling edges to negative signs, then apply Euclidean distance for gesture
matching. WiGest can recognize four gestures (right-left, up-down, infinity, open-close) performed
by fingers.

Compared to European distance, Earth mover’s distance (EMD) can measure the similarity
between two probability distributions. It calculates the minimal cost to transform one distribution into
the other [70,81,89]. Thus, lower EMD means that the two distributions are more highly correlated,
indicating that the activity to be identified belongs more likely to the template activity. For example,
E-eyes [81] employs the EMD to quantify the similarity of testing CSI measurements and the known
in-place activity profiles for in-place human daily activities (cooking, eating, washing dishes, studying,
brushing, bathing, etc.) classification.

Jaccard coefficient between the two matrices is the ratio of the number of sample intersections and
the number of sample syntheses, which compares similarities between limited sample sets. The higher
the Jaccard coefficient value, the higher the sample similarity. WIMU [69] measures the Jaccard
similarity coefficient of every two samples and calculate the average of all Jaccard coefficients to
distinguish six digital finger gestures (from one to six).

Different length: The length of two signal sequences for the same action is often different due to the
differences in duration, direction, and speed. The typical template matching method for different-length
series is dynamic time wrapping (DTW) [10,20,39,42,55,74,91,93].

DTW solves the length problem by optimally calculate the distance between two series by
stretching and alignment. For finger gesture classification, Mudra [91] classify nine finger gestures
(shoot, pick, come, tap, double-pick, double-tap, circle, twist, go) through DTW. Melgarejo et al. [39]
classify four-finger gestures (down, continue, browser, next) by DTW. WiFinger [20] achieves the
eight finger gestures (zoom out, zoom in, circle left, circle right, etc.) recognition with DTW. Besides,
WiMotion [42] classifies six daily human activities (bend, hand clap, walk, phone call, sit down,
squat) with DTW. WiSee [55] realizes nine human gestures (push, dodge, strike, pull, drag, kick. etc.)
recognition through DTW. For fitness activity classification, SEARE [74] recognizes four activities
(dumbbell lift, squat, kick, boxing) through DTW. FEMO [10] applies DTW to 10 dumbbell exercises
(concentration bicep curl, seated triceps press, flat bench bicep curl, etc.). In particular, WiHear [93]
adopts DTW to achieve lip and tongue movement recognition.

7.2. Machine Learning

The classification based on machine learning needs signal preprocessing and feature extraction
as its basis. Since the classification method of machine learning requires training the model, its time
complexity is higher than that of template-based methods. Besides, it requires a large training set to
train the model. Machine learning methods are suitable for solving multi-classification problems with
training samples of corresponding ground-truth labels.

SVM is widely used in various human activity detection and classification systems [12,13,32,37,40,
42,44,45,47-49,56,59,60,70,72,73,75,76,78,79,83,84,89,90,92,127,130]. SVM classifier are used to classify
10 digital finger gestures [78], eight human movement directions [59], fall detection [37,92], walking
direction detection [70], fitness activity classification [56,79], human daily activities [13,40,42,72,75,76,
84,90], and human gestures [12,32,73,75,83,89]. Among them, fitness activity mainly contains freehand
exercise [56,79] (such as squat, put-up, sit-up, leg-raise, crush, step, etc.). Daily human activities mainly
include still, moving, stationary, stand up, sit down, lie down. Human gestures contain rotate, pinch,
shake, kick, etc.

The decision tree (DT) can output a simple if-else classification model. With the advantage of less
computational cost, it is suitable to solve real-time activity recognition [10,57,85]. The disadvantage
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is that the correlation between features is ignored, which leads to overfitting. When the number of
samples is inconsistent, the decision tree tends to favor the categories with a larger size. APSense [85]
uses DT to classify four types of hand motions, which achieves the classification accuracy as high as
90% with 3000 training samples. WiDance [57] yields an overall accuracy of 92% with over 10,000
actions for classifying eight human dance direction through DT.

K-nearest neighbor (KNN) classified by measuring the distance between feature vectors.
The disadvantage is that K needs to be artificially pre-set. The recognition accuracy may be reduced due
to incorrect parameter K settings. Besides, the algorithm is of low sensitivity to outliers. WiSome [59]
adopts KNN to classify eight movement directions (front, back, left, right, left-front, right-front,
right-back, left-back), which validate an overall recognition accuracy of 95.4% with 5000 records in total.
WiFinger [46] applies KNN for nine digital finger gestures (from one to nine) classification. WiFinger
acquires 3465 instances and achieves up to 90.4% average classification accuracy. WiChase [40] achieves
recognition of three daily activities (running, walking, hand moving) by using KNN. Its classification
accuracy is higher than 97% on 720 samples. WiAG [82] recognizes six human gestures (push, pull,
flick, circle, throw, dodge) through KNN, which obtains classification accuracy of 91.4% by using 1427
samples from 10 volunteers as a training set.

K-means is an unsupervised learning algorithm without ground truth labels. K-means put similar
objects into the same cluster automatically and make messy data becomes organized after K clustering.
For example, E-eyes [81] applies K-Means clustering to classify different activities based on the EMD
value between CSI samples. The experimental results of clustering achieve over 96% average true
positive and less than 1% average false positive for eight activities, which involves 400 CSI sample sets
with each set containing 40 CSI samples.

Naive Bayes (NB) requires a few parameters, which are not sensitive to the missing data
problem [85]. NB has better precision for the small-scale sample set. The disadvantage is that it can only
classify on the assumption that the target characteristics are independent of each other. For example,
ApSense [85] uses NB to classify four types of hand motions.

The hidden Markov model (HMM) estimates the joint probability distribution and calculates the
posterior probability, which statistically represents the relationship between features and states [36].
It has the advantages of flexibility for dynamic time series. For example, CARM [36] system utilizes
the characteristics of the different speeds of the human body in a movement to construct an HMM for
each activity with multiple motion states. CARM can classify eight daily human activities (running,
walking, sitting down, falling, boxing, brushing teeth, etc.) through HMM. CARM achieves an average
accuracy of greater than 96% with 1,400 training samples.

The sparse matrix representation indicates that almost all raw signals can be represented by a
linear combination of fewer basic signals. These basic signals, called atoms, are selected from an
over-completed dictionary. The elements with the non-zero coefficient in the sparse matrix reveal
the main characteristics and intrinsic structure of the signal. The closer the value of the non-zero
factor to 1, the higher the signal similarity. The sparse matrix representation can be applied to motion
recognition. For example, HeadScan [43] achieves the classification of five daily human activities
(coughing, drinking, eating, speaking, and idle) by constructing a sparse matrix via {1 minimization.
HeadScan achieves the activity classification accuracy of 86.3% by training through six datasets (2520
training samples).

7.3. Deep Learning

Deep learning combines feature extraction and classification to achieve multi-classification of
actions. Compared to the machine learning-based method, deep learning requires more training data
to determine a large number of parameters. Deep learning does not need feature extraction phases.
Guo et al. [88] use DNN to classify ten fitness actions with 3013 training samples, including standing
biceps curl, lateral raise, dumbbell curl, leg stretch, pile squat, raise and squat, Tai Chi, dumbbell
triceps extension, leg press, and body extension, which achieves an accuracy of 93%.
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Convolutional neural network (CNN) is a typical kind of DNN, whose neurons in the neighbor
layers are connected through the convolution kernel as an intermediary. CNN has the characteristic of
limiting the number of parameters and minimum local structures. Zhang et al. [108] apply CNN to
differentiate sit-up, push-up, and walk-out easily. It uses 1980 activities in training and achieves an
accuracy of 82%. Sign-Fi [21] adopts nine-layer CNN for 150 gestures of sign language classification.
The average recognition accuracy of SignFi is 86.66% for 7,500 instances of 150 sign gestures performed
by five volunteers. In order to achieve the environment-independent human motion recognition,
EI [77] collects the activities set of 40 subject-room pairs (about 1,200 in total) to train a CNN classifier
for six human daily activities sensing (wiping the whiteboard, walking, moving a suitcase, rotating the
chair, sitting, standing up and sitting down). Its classification accuracy is between 61-75%.

RNN (recurrent neural network) addresses the limitation of time series on CNN that cannot be
modeled. LSTM (long short-term memory) is a typical kind of RNN, which solves the long-term
dependency problem. Wi-Multi [97] proposes a deep learning network structure based on LSTM with
936 CSI samples as training data, which achieves a classification accuracy of 96.1%.

Moreover, DFL [95] adopts a sparse autoencoder network with three layers and SoftMax regression
to learn features and classify bow, stand, walk, swing, hand clap, etc. DFL achieves 85% accuracy by
recording six training sets (1,162 samples) for each activity that performs at 11 locations. Wang et al. [96]
develop the self-organizing map network to classify eight fitness activities, including standstill, bow,
swing arms, walk, arm up and down, arm left/right, and hand clap. Their system achieves an accuracy
of more than 85% by adopting 14 training sets (about 1,680 samples) for training.

8. Applications of Wireless Sensing

This survey divides human motion sensing into four types of applications, including detection,
recognition, estimation, and tracking.

8.1. Detection Applications

The human motion detection can be further divided into fall detection [37,50,73,92], walking
step detection [87], intrusion detection [48,49,54,98], and human activity detection [38,72,90,134].
For fall detection, it distinguishes between fall and non-fall activities. Step detection only needs to
identify steps and non-steps. For intrusion detection, it discovers a human motion from the received
signals. For human activity detection, it is only necessary to distinguish whether human activity
happens, instead of distinguishing the types of these activities. Therefore, detection applications are
coarse-grained human activity recognitions. Table 9 shows a summary of detection applications based
on wireless sensing.

Table 9. Summary of wireless sensing applications: detection

Application Reference Signal Model Signal Processing Classification
. WiFall [73], - amplitude moving average time domain feature +
fall detection 2014 WIFL(CSD) imation filter SVM
. amplitude ) . .
. Anti-fall - low-pass filter, time domain feature +
fall detection [50], 2015 Wi-Fi (CSI) anq ph.ase normalization SVM
estimation
. . passband filter, . .
fall detection RT-fall [37], Wi-Fi (CSI) am'phtgde interpolation + time domain feature +
2017 estimation . SVM
phase difference
. FallDefi - amplitude wavelet filter, frequency domain
fall detection [92], 2018 Wi-Fi (CSD) estimation interpolation feature + SVM
. . . Zieger [98], . amplitude .
intrusion detection 2009 acoustic estimation frequency quantity /
amplitude . .
. . . DeMan [49], - Hampel filter, time and frequency
intrusion detection 2015 Wi-Fi (CST) anFl phése linear fitting domain feature + SVM
estimation
. . FRID [38], - phase SVR and LVR
motion detection 2015 Wi-Fi (CSI) estimation threshold /
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Application Reference Signal Model Signal Processing Classification
. . Liu et al. - amplitude segmentation by time and frequency
motion detection [72], 2017 Wi-Fi (CST) estimation skewness domain feature + SVM
passband filter
. . . . wavelet filter,
walking step detection,  WiStep [87], Wi-Fi (CSI) amphtqde weighted moving /
counting 2018 estimation .
average, multipath
mitigation
walking direction Zhang et al Fresnel zone multiple carrier
detection, respiration rate [107], 2017 Wi-Fi (CSI) model frequencies /

detection

8.2. Recognition Applications

Human activity recognitions, can be further divided into hand/finger gesture recognition [14,19,
20,39,44,46,47,61,63,69,75,78,85,111,135], limb gesture recognition [16,55,62,64,75,80,82], daily activity
recognition [12,13,36,42,43,47,75-77,81,84,91,95-97,99,123,128], fitness activity recognition [10,56,74,79,
84,88], human movement direction recognition [57,59], mouth movement recognition [93], driving
gestures [51,109], and fatigue driving posture recognition [45]. Moreover, some research achieves
multi-user motion recognition [69,88,97,123]. Table 10 provides the summary of wireless sensing for

recognition applications.

Table 10. Summary of wireless sensing applications: recognition.

Application Reference Signal Model Signal Processing Classification
) .. Kalman filter + frequency sequence
flfcr}ess activity . FEMO [10], RFID Doppler Kullback-Leibler feature + decision tree,
recognition and counting 2017 effect model .
divergence DTW
fitness activity low-order
recognition, user Guo etal. Wi-Fi (CSI) am.phtgde polynomial fitting DNN
. e [88], 2018 estimation + subtract mean
identification
value
fitness activity WiFit [56], o Doppler Dopple'r frequency frequency-domain
L . Wi-Fi (CSI) shift peak
recognition, counting 2018 effect model feature + SVM
threshold
normalization +
fitness activity Motion-Fi REID amplitude optimize template,  time domain feature +
recognition, counting [79], 2018 estimation cut segments SVM
alternately
fitness activity Zhang et al. - Fresnel zone .SaV1tzky—G.01ay time domain feature +
. . Wi-Fi (CSI) filter + amplitude
recognition, counting [108], 2019 model . CNN
variance threshold
fitness activity SEARE [74], o amplitude Butterwo'rth time domain feature +
o Wi-Fi (CSI) S low-pass filter,
recognition 2019 estimation g DTW
median filter
noise threshold
. - -, Kim et al. Doppler Doppler filtering based on frequency domain
daily activity recognition [60], 2009 radar effect model Gaussian feature + SVM/DT
distribution
. . -, Sekine et al. Doppler Doppler Butterworth frequency domain
daily activity recognition [12], 2012 sensor effect model low-pass filter feature + SVM
. - . Sigg et al. RF signal | RS normalized time-frequency
daily activity recognition [99], 2013 (RSST) fingerprints tral domain feature +
/ model spectral energy template matching
. .. o Sigg et al. - amplitude time domain feature
daily activity recognition [15], 2013 Wi-Fi (CSI) estimation / + KNN
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Application Reference Signal Model Signal Processing Classification
Butterworth
. .. - E-eyes [81], - amplitude low-pass filter + time domain feature +
daily activity recognition 2014 Wi-Fi (CSD estimation cumulative moving EMD/ K-means
variance threshold
daily activity recognition [IB]S, ezr(l)sle5 RFID esglk;aas’t?on 2-s sliding window time dorrsllilllr\l/[feature *
single-sideband
. .. -, Wang et al. - amplitude Gaussian filter+ time domain feature +
daily activity recognition [76], 2015 Wi-Fi (CSI) estimation LOF Anomaly SVM
Detection
first PC discard +
daily activity recognition CAI;(I]\;[ 5[36]’ Wi-Fi (CSI) CSI;Il—Sgele d movement DWT feature + HMM
ode indicator threshold
. Butterworth time an.d frequency
. . - Headscan - amplitude . ) domain feature +
daily activity recognition Wi-Fi (CSI) S low-pass filter, first .
[43], 2016 estimation . sparse representation
two PC selection . P
via {1 minimization
daily activity recognition Mugé? 6[91]’ Wi-Fi (CSI) Z?ﬁﬂzzgﬁ finite impulse tlme—don]:l)zfl};lvfeature *
. first PC selection + . .
daily activity recognition ]?; -Syg(():éllg Wi-Fi (CSI) g?ﬁﬂgzgﬁ amplitude time don;i]lil/[feature *
! threshold
daily activity recognition DFZI(“)l[ES]’ Zigbee RSS :;?I)Ill I;ESE wavelet filter sparsi:tt‘it/ (;iECOder
. .. .. PeriFi [90], g amplitude . . time and frequency
daily activity recognition 2017 Wi-Fi (CSI) estimation phase calibration domain feature + SYM
amplitude Butterworth
. . o WiChase o low-pass filter + time domain feature +
daily activity recognition [40], 2017 Wi-Fi (CSI) an(':l phfflse amplitude variance KNN, SVM
estimation
threshold
. .. - Wi-Fi, amplitude Hampel filter,
daily activity recognition  EI [77], 2018 ultrasound estimation normalization CNN
daily activity recognition V[\gzring)tlzl. Wi-Fi (CSI) :;ntilr)rll 1;2251 median filter, linear SOM
Butterworth filter,
. . -, HuAc [75], - amplitude weighted moving  time domain feature +
daily activity recognition 2018 Wi-Fi (CS1) estimation average + moving SVM
variance threshold
. weighted moving
dailv activity recognition WiMotion Wi-Fi (CSI) :nmé)h;:;csig average, phase time domain feature +
y y recog [42], 2019 L phe calibration, first PC DTW, SVYM
estimation .
selection
. .. . Wi-Multi - amplitude PCA, DWT + time and frequency
daily activity recognition [97], 2019 Wi-Fi (CST) estimation amplitude variance domain + LSTM
. .. . MultiTrack g amplitude DWT + moving time and frequency
daily activity recognition [123], 2019 Wi-Fi (CSD) estimation average filter domain+ DTW
first PC selection +
moving direction WiDance Wi-Fi (CSI) Doppler peak threshold of frequency domain
recognition [57], 2017 effect model ~ Doppler frequency feature + DTW
shift
moving direction WiSome Wi-Fi (CSI) Doppler local outlier factor, frequency domain
recognition [59], 2017 effect model wavelet filter feature + DNN, SVM
sign languagg gesture SignFi [21], Wi-Fi (CSI) b has? phase calibration CNN
recognition 2018 estimation
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Table 10. Cont.
Application Reference Signal Model Signal Processing Classification
Butterworth
limb gestur niti Humanten-na irel amplitude low-pass filter + time and frequency
1mb gesture recognition [83], 2012 wireless estimation amplitude domain feature + SVM
threshold
. . WiSee [55], - Doppler Doppler frequency frequency domain
limb gesture recognition 2013 Wi-Fi (CS1) effect model shift threshold feature + DTW
soli processing time-frequency
. o Soli [62], Doppler pipeline + high domain feature +
limb gesture recognition 2016 FMCW effect model temporal random forest,
resolution Bayesian network
. Butterworth filter +
limb gesture recognition WIAG [82], Wi-Fi (CSI) amplltgde amplitude DWT feature + KNN
2017 estimation
threshold
Mohamm-ed . . . .
limb gesture recognition etal. [80], Wi-Fi (CSI) amplltqde Butterwgrth, first time domain feature +
2019 estimation PC discard random forest
S RF-Pose FMCW chirp
coarse gesture estimation [16], 2018 FMCW model spectrogram CNN
finger/hand Kalgaonkar . Doppler downsampling + Gaussian mixture
L. etal. [63], ultrasonic .
~gesture recognition 2009 effect model PCA model + Bayesian
Butterworth
finger/hand Melgarejo directional phase low-pass ﬁlt.e LS time domain feature +
L. etal. [39], . X top subcarriers
~gesture recognition antenna estimation . DTW
2014 selection + average
RSS threshold
time and frequency
finger/hand Apsense Wi-Fi (CSI) amplitude amplitude variance domain feature +
gesture recognition [85], 2014 estimation threshold decision tree, naive
Bayes
moving average
finger/hand AllSee [14], REID amplitude filter + amplitude  time domain feature +
gesture recognition 2014 estimation difference template matching
threshold
. Molchanov . frequency domain
finger/h anc} . etal. [61], FMCW Doppler static background feature + template
gesture recognition effect model subtraction .
2015 matching
Butterworth
finger/hand WiGest [19], R amplitude low—pass‘fllter, time domain feature +
L Wi-Fi (CSI) . wavelet filter + .
gesture recognition 2015 estimation - template matching
amplitude
threshold
finger/hand WiG [78], - amplitude Birge-Massart filter time domain feature +
L Wi-Fi (CSI) s + LOF Anomaly
gesture recognition 2015 estimation D . SVM
etection
passband filter,
finger/hand Demum Wi-Fi (CSI) phase phase calibration +  time domain feature +
gesture recognition [44], 2016 estimation amplitude SVM
difference
multipath
finger/hand Tan et al. Wi-Fi (CSI) phase mitigation + time domain feature +
gesture recognition [20], 2016 estimation amplitude DTW
threshold
Butterworth filter,
. . ) amplitude weighted moving . .
finger/hand Lietal. [46], - time domain feature +
L Wi-Fi (CSI) and phase average +
gesture recognition 2016 S KNN
estimation movement

indicator threshold
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Table 10. Cont.

Application Reference Signal Model Signal Processing Classification
. amplitude phase and
finger/h anc.l . DELAR Wi-Fi (CSI) and phase amplitude heat map + DNN
gesture recognition [47], 2017 estimation threshold
finger/hand WIMU [69], o CSl-Speed third PC selectlor} + frequency domain
L Wi-Fi (CSI) frequency quantity feature + Jaccard
gesture recognition 2018 model threshold coefficients
finger/hand WiCatch Wi-Fi (CSI) A?ﬁ mtodel multipath spectrum feature +
gesture recognition [111],2018 . wi a:;;nna mitigation SVM
moving average
fatigue dr1v1r.18 posture  WiFind [45], Wi-Fi (CSI) phasg filter, f1r§t PC HHT feature + SVM
recognition 2018 estimation selection
+ CV threshold
driving WiTraffic Wi-Fi (CSI) amplitude loljvlftti;vf(i)lrttell + time domain feature +
gestures recognition [89], 2017 estimation energ};/ threshold SVM/EMD
Butterworth
low-pass filter,
. . interpolation, . .
driving - WiBot [51], Wi-Fi (CSI) Phasg phase calibration, time domain feature +
gestures recognition 2018 estimation second PC KNN
selection + impulse
window detection
driving WiDriver — Fresnel zone . . finite automata model
Gestures recognition [109], 2018 Wi-Fi (CSI) model subcarrier selection + BP
passband filter,
mouth movement WiHear Wi-Fi (CSI) amplitude wavelet filter, DWT feature
recognition [93], 2014 estimation multipath + DTW
mitigation

Finger gesture recognition is a fine-grained recognition, which requires capturing tiny finger
movement variation and accurately distinguish these different subtle change patterns. Finger gesture
mainly contain digital finger gesture [44,46,69], directional finger/hand gesture [19,20,39,47,75,78,85]
and sign language gesture [21]. Among them, digital gesture recognition usually contains numbers
from 1-10. Directional gesture recognition mainly includes simple directional gestures (left, right,
push, pull, open, close, up, down, etc.) [19,39,47,75,78,85] and complex directional gestures [20,39,75]
(zoom out, zoom in, circle left, circle right, swipe left, swipe right, flip-up, flip-down). Limb gestures
mainly include push, dodge, strike, pull, drag, kick, circle, punch twice, and bowl.

The daily human activity contains actions that usually have running, walking, hand moving, bend,
phone call, drinking, eating, typing, sit down, and so on. Human movement directions mainly contain
left, right, front, back, left-back, left-front, right-back, and right-front. Fitness actions recognition can be
further divided into dumbbell exercises [10,74,88] (dumbbell curl, dumbbell triceps extension, dumbbell
lift, etc.) and freehand exercises [56,74,79,88,108] (squat, sit-up, push-up, leg-raise, stoop-down, kick,
etc.). Compared to finger gesture recognition, fitness action, human gesture, and daily human activity
have a larger variation in motion.

8.3. Estimation Applications

Estimation application refers to a system that can count the number of actions/steps after
activity recognition or activity detection. Estimation applications can be divided into walking step
counting [87], fitness motion counting [10,56,79,88,108], and running step counting [86]. Furthermore,
it also includes human counting [52,94,125-127,130], which contributes to public space management,
safety management, energy management, etc. Counting the number of walking is important to ensure
and motivate people to exercise every day. Because the purpose of fitness is to strengthen the body; it is
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essential to ensure a sufficient amount of exercise, so motion counting is required for fitness tracking
systems. Fitness activity counting includes a count on the number of fitness action groups and a count
on each group of repetitive actions. These fitness exercises can be divided into dumbbell exercises
and freehand exercises. Dumbbell movements [10,88] mainly include dumbbell curl, dumbbell triceps
extension, dumbbell lift, etc. Dumbbell fitness can install tags on dumbbells to achieve counting
of movements [10]. Freehand fitness exercises [56,79,88,108] mainly include squat, sit-up, push-up,
leg-raise, leg-press, triceps press, front raise, bent-over row, bicep curl, stoop-down, kick, etc. Table 11
gives a summary of estimation applications based on wireless sensing.

Table 11. Summary of wireless sensing applications: estimation.

Application Reference Signal Model Signal Processing Classification
fitness activity Kalman filter + frequency domain
recognition, FEI\QISEO]' RFID Dopflls(;(:}lffect Kullback-Leibler feature + DTW, decision
counting divergence tree
fitness activity . .
. S - Doppler effect  Doppler frequency shift frequency domain
recognition, WiFit [56], 2018 Wi-Fi (CSI) prIr)\o del pl;eak thcjeshol}(]i fgaturey+ SVM
counting
fitness ActVIty  p fotion-Fi [79], amplitude pormahzatlon * time domain feature +
recognition, 2018 RFID estimation optimize template, cut SVM
counting segments alternately
fitness activity
recognition, Guo et al. [88], g amplitude low-order polynomial
counting, user 2018 Wi-Fi (CSD) estimation fitting + subtract DNN
identification
fitness a.ctt.wlty Zhang et al. Wi-Fi (CSI) Fresnel zone Sav1tzi<.if—§olay .fllter * time domain feature +
recognition, [108], 2019 i-Fi model amplitude variance CNN
counting threshold
walking ste passband filter +
de tectgion P WiStep [87], Wi-Fi (CSI) amplitude wavelet filter + weighted /
countin ! 2018 estimation moving average +
uniing multipath mitigation
running step Wi-Run [86], - amplitude Sav1tzky—Go.1 ay filter, time domain feature+
> Wi-Fi (CSI) R Hampel filter + .
counting 2018 estimation . Frechet distance
amplitude threshold
human - Grey Verhulst percentage of zero time domain feature +
counting FCC [94], 2014 Wi-Fi (CSI) model elements SVM
time domain feature+
human Domenico et al. - amplitude L Euclidean distance,
counting [52], 2016 WI-Fi (CST) estimation normalization linear discriminant
classifier
amplitude and . . .
human MALIS [130], Wi-Fi (CSI) hase low pass filter, phase time domain feature +
counting 2017 estl:i)ma tion calibration KNN
human FreeCount — phase . time domain feature +
counting [127], 2017 Wi-Fi (CSD) estimation wavelet-based filter SVM
human Wi-Count [125], Wi-Fi (CSI) phase Savitzky-Golay filter, hg;enil;i g;?s::iy
counting 2018 estimation amplitude threshold Kemeans
human Door-Monitor Wi-Fi (CSI) amphﬂ.ﬁs and Savitzky-Golay filter, time domain feature +
counting [126], 2019 estri)mation phase calibration CNN

8.4. Tracking Applications

For tracking applications, this survey mainly includes human motion tracking [41,71,129],
human tracking [15,17,22,24,26,28,29,48,53,58,64—67,70,100,103,105,110,112,113,128,129,136], in-air
finger tracking [11,115], and walking direction tracking [106], and human indoor localization [25,101-
104,114,124,128,132,137,138]. The difference between tracking application and the above three types of
applications is that they calculate spatial information, such as direction, speed, or distance estimation.
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Moreover, it tracks the human for a longer period than the other categories of applications. RE-HMS,
an RFID-based human motion-sensing technology, is presented to track device-free human motion
through walls [139]. It constructs transfer functions of multipath channel based on phase and RSSI
measurements to eliminate device noise and reflections off static objects like walls and furniture without
learning the environment of the empty room before. Bekkali et al. [137] introduce a new positioning
algorithm for RFID tags using two mobile RFID readers and landmarks, which are passive or active
tags with known locations and distributed randomly. This algorithm is based on RSS measurement to
calculate the reader-tags distance and target-landmarks distance to estimate the target location.

Pinlt [140] is a fine-grained RFID positioning system that works in the absence of a line-of-sight
path and the presence of rich multipath. Pinlt exploits a tag’s multipath profile to locate it. In particular,
signals of nearby tags propagate along closer paths when being reflected off each surface. Pinlt obtains
a description of all the paths along which a tag’s signal propagates, so its neighboring tags can be
identified. The summary of wireless tracking applications is presented in Table 12.

Table 12. Summary of wireless sensing applications: tracking.

S . . . Localization
Application Reference Signal Model Signal Processing Feature
. Youssef et al. - R moving average filter + .
human tracking [100], 2007 Wi-Fi (RSSI) RSSI estimation RSSI threshold distance feature
FMCW chirp
. Feger et al. [65], model + AoA static environment Ao0A in spatial
human tracking 2009 FMCW with antenna partial removal domain feature
array
. . . RSSI maps
humap mgloor SPKS [103], . amplitude Kalman f.ﬂter + weighted incorporated into a
localization, Wi-Fi (RSSI) o moving average .
. 2009 estimation Bayesian
tracking threshold
framework
Wilson et al radio normalization, weighted  spatial covariance
human tracking [128], 2010 RF signal (RSSI) torpogrz.iph—lc threshold feature
imaging
human tracking G}Zr;]l cgoeltlal, FMCW FM;\(/)deklurp spectrogram CNN
. VRTI [129], . radio Kalman filter, radio tomographic
human tracking 2011 RE signal (RSSI) tomograph-y normalization imaging feature
human tracking FIL;%O][;lO], Wi-Fi (CSI) Frersl?s(lizf ne multipath mitigation distance feature
. WiVi [112], A AoA with . . Ao0A in spatial
human tracking 2013 Wi-Fi antenna array initial nulling domain feature
human tracking WiTrack [66], FMCW FMCW chirp Kalman f11t.er + ToF, AoA feature
2013 model interpolation
amplitude and moving average filter time and frequency
human tracking  Pilot [53], 2013 Wi-Fi (CSI) phase & & domain feature +
L RSSI threshold . .
estimation fingerprinting

Zhou et al. [54],

amplitude and

low-pass filter, moving

time domain

human tracking 2013 Wi-Fi (RSSD) est}zr};Zi?on average filter feature+ EMD
. multipath mitigation +
human tracking p]g?]g Ze(;f ; Zigbee RSS :?tilrﬁ :Ejrel frequency-domain distance feature
! threshold
human tracking ~ WIZ [64], 2014 FMCW FMCW chirp map them into 2D ToF feature
model heatmaps
FMCW chirp . .
human trackin RE-Capture FMCW model + AoA static environment AOAt’ic?Ztagfei;n
uman tracking [15], 2015 with antenna partial removal spatial doma

array

feature
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o . . . Localization
Application Reference Signal Model Signal Processing Feature
. . Kalman filter +
human tracking LiSense [24], VLC amp h“fde amplitude variance + human skeleton
2015 estimation . feature
frequency shift
. WiTrack2.0 [68], FMCW chirp multipath mitigation,
human tracking 2015 FMCW model phase calibration ToF feature
. IndoTrack [22], R Doppler effect static environment AoA in spatial
human tracking 2017 Wi-Fi (CSD) model partial removal domain feature
passband filter + first PC  frequency domain
. Widar [58], . Doppler effect selection + peak feature+ searching
human tracking 2017 WI-Fi (CSD) model threshold + Doppler with least fitting
frequency shift error
. . . time and frequency
human tracking Guo 35?17 (701, Wi-Fi (CSI) 251,1;113111 :Ecoiﬁ movglfttae\;itszhﬁlter, domain feature +
EMD, SVM
. Backscatt-er reconfigurable .
human tracking [28], 2017 LoRa antenna model Doppler frequency shift /
amplitude and .
. Strata et al. . frequency quantity, .
human tracking [26], 2017 acoustic Phasg phase difference distance feature
estimation
time domain
. PhaseMo-de - phase median filter + phase feature + SVM,
human tracking [48], 2018 Wi-Fi (CSD) estimation threshold random forest,
KNN
Karanam et al AoA model
human tracking [113], 2019 ’ Wi-Fi (CSI) with antenna multipath mitigation AoA, ToF
o array
. Chan et al. [17], FMCW chirp
human tracking 2019 FMCW model spectrogram CNN
. WideSee [29], reconfigurable . direction-related
human tracking 2019 LoRa antenna model Doppler frequency shift feature
human indoor = RADAR [102], . amplitude . e frequency-domain
localization 2000 RF signal estimation multipath mitigation feature + K-means
time domain
human indoor amplitude feature +
. EZ [104], 2010 Wi-Fi (RSSI) ) . / resolution
localization estimation .
generation
algorithm
human indoor PinLoc [101], - amplitude . frequency-domain
localization 2012 WI-Fi (CSD) estimation divergence feature + K-means
human indoor CUPID [114], p— AoA with . e
localization 2013 Wi-Fi (CSI) antenna array multipath mitigation AoA feature
. . . Kalman filter +
humap m(.:loor Epsilon [25], VLC amp h“?de frequency quantity AOA feature
localization 2014 estimation
threshold
human indoor TCPF [124], Wi-Fi (RSSI) amplitude Kalman filter, weighted =~ Frequency-domain
localization 2015 estimation moving average feature + KNN
. packet detection delay
hu.m an Chronos [132], Wi-Fi (CSI) amp htgde removal, multi-path ToF feature
localization 2016 estimation .
separation
human ‘?‘0“0“ WiDeo [41], Wi-Fi (CSI) I.Dhas? Kalman filter AoA, ToF feature
tracking 2015 estimation
. . Butterworth low-pass time domain
human motion MoSense [71], . amplitude . . .
tracking 2017 RF signal estimation filter + phase difference feature + binary

threshold

classification




Sensors 2020, 20, 1210 36 of 45

Table 12. Cont.

S . . . Localization
Application Reference Signal Model Signal Processing Feature
in-air hand RF-IDraw [10], AoA with multl—.r e.sol.utlon
. RFID / positioning
tracking 2014 antenna array -
algorithm
n-air k}and WiDraw [115], Wi-Fi (CSI) AoA with low pass filter AoA feature
tracking 2015 antenna array
. cross-correlation
walking . . . . .
N WiDir [106], - Fresnel zone denoising, polynomial spatial and time
direction Wi-Fi (CSI) . : .
. 2016 mode smoothing filter + angle domain feature
tracking
threshold
/ Minh [23], 2009 VLC amplitude phase difference + /

estimation amplitude variance

9. Challenges and Future Trends of Wireless Sensing

This section presents the challenges and future trends for both current and future human activity
sensing solutions with wireless signals.

9.1. Wireless Sensing Challenges

From the discussion on the theoretical model and signal processing process, the existing research
shares the following common challenges.

Robustness: All the theoretical models are based on the multipath analysis to sift out the motion
impact on the received signals. Most research add limitations to the experimental environment to
analyze the motion impact through multipath analysis. First, there should not be other persons or
moving objects around. Other people or moving object’s actions are also captured by the received
signals, which makes it hard to sift the target person’s action effect. Second, the action performer is often
needed to be on a fixed position from the sender and receiver of the signal in advance for learning-based
methods. Otherwise, the learning model would fail to detect or recognize activities. Third, there are
often some specific areas for activity recognition. For the Fresnel Zone model, most research takes
place at the boundary on the first 8-12 FFZs in deployment. However, it is ridiculous for users to
calculate this specific place in reality. When targeting the real scenarios of wireless motion sensing,
all the above limitations should be eliminated. It may require some new theoretical models to construct
relations between human motion and wireless signals or some novel signal processing methods.

Non-coexistence of sensing and communications: Wireless infrastructures are designed for
signal communications, not for sensing applications. The existing approaches require deploying and
controlling both the sender and receiver of the wireless infrastructure. Some sensing applications even
require a high frequency of continuous sinusoid signals to achieve high performance. This adds the
burden to the scarce bandwidth resources and results in reduced communication performance and
efficiency. Moreover, sending the continuous sinusoid signals also affect the communications between
nearby wireless devices.

Potential privacy threat: Wireless activity sensing takes advantage of non-intrusive and
non-obtrusive. However, it still introduces some privacy concerns. As shown in Section 8, existing
researches have been able to sense and estimate some daily activities and fitness activity by indoor
wireless infrastructure. Such information can be leaked to malicious attackers when the victim
may be unaware of the existence of wireless sensing. This imposes a conflict with the robustness
issue, which targets on improve sensing under various scenarios. So new techniques or algorithms
are needed to ensure users’ right to know and control the wireless sensing systems, especially the
receivers beforehand.

Multiple user activity sensing: Wireless signals are sensitive to any movements in the sensing area,
because any motions may change the multipath propagation of the wireless signals. When multiple
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persons are sharing the same physical space, the received signals will contain all the impacts by all
the persons’ motions. Existing FMCW and antenna array-based solutions like [17] can track the hand
gestures of multiple people simultaneously, leveraging a directional antenna array. For other wireless
signals, a promising way to isolate concurrent activities of different people is to separate sensing space
with a complex web of wireless links in the area. Nevertheless, it is still challenging to address the
effect of multiple users and recognize different actions conducted by different users with a limited
number of wireless links.

Limited sensing range: Although multiple types of wireless signals can be used in human activity
sensing, the sensing range is still limited. For example, acoustic-based sensing has a sensing range
of 1-2 m, while RFID and WiFi have a sensing range of 2-8 m. The sensing range of VLC is 3-7 m.
While LoRa signals have a communication range of 10 km, the current sensing range is below 100 m.
Moreover, the applicable sensing systems are still lacking for outdoor environments due to the limited
sensing range.

Complex deep learning: Some CSI-based activity recognition applications exploit deep learning
approaches, for they can automatically extract high-level features from CSI streams for classification.
The deep learning approaches, however, require not only an extensive training set to train the
underlying parameters of the learning network and but also a comparable computation and storage
capacity to perform training. Therefore, it adds to the burden on the users to collect training samples
and maybe not computable on resources limited devices such as wearable and edge devices.

Lack of standard datasets: Currently, most wireless activity sensing studies evaluate their
performance using their dataset. Researchers have to recruit some volunteers to conduct many types of
actions to collect wireless signal streams. Moreover, the experimental environments are often chosen
according to the particular targets of the applications. Consequently, the system performance often
depends on the deployment and the collection process, which makes it difficult for comparison among
different studies.

9.2. Feature Trends in Wireless Sensing

This section presents future trends in addressing the above challenges and issues.

New theoretical models: The existing model concentrates on the reflection of the human body to
the signal propagation, which is captured through the multipath effect. The signal reflection from the
human body to the receiver often requires specific positions and angles. It imposes the limitation on
the application environment. For example, if the action is extracted from the received signals through
the signal diffraction model, the restriction of the specific position may be eliminated. As long as the
human performs activities close to the receiver, it will create the diffraction effect with similar patterns
inside the received signals. The diffraction model may solve the robust challenge as the diffraction
effect depends little on the objects at a certain distance away. If every user has her/his wireless signal
receiver, the diffraction effect will naturally separate the sensing space for each user, which also solves
the challenge of multiple users. Moreover, a new theoretical model will guide the activity classification
process, which may eliminate or reduce the complexity of applying deep learning.

Coexistence of sensing and communications: The major obstacle for the coexistence of sensing
and communication is that current solutions need to control the sender of wireless infrastructure and
require specific continuous signals for sensing. If the wireless signals already in space can be directly
for sensing, the sensing system may only focus on listening and does not need to control the sender
of infrastructure. Then the coexistence of sensing and communications can be realized. Moreover,
a wireless sensing solution with only receivers may apply the mobile signal infrastructure, which has
the advantage of ubiquitous coverage and tackles the sensing range limit.

Awareness of sensing on receivers: The privacy concerns come from that specific systems may
make use of some indicators of the received signals for sensing purposes. The tools to control and report
on the usage of received signals except communication are of importance. Moreover, more research
efforts should be concentrating on the signal receiver of smartphones. The reason is two-fold. Firstly,
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smartphones are ubiquitous receivers as people carry them all the time. Secondly, users are familiar
with the privacy control procedure with smartphones [141], so the signal usage tool to control privacy
can be quickly adopted by the users.

Constructing open datasets: It is still an open question to construct the standard datasets for
wireless sensing research. When constructing open datasets, many factors have to be carefully chosen,
including test environments, deployment of wireless transceivers, types of wireless signals, number of
volunteers, differences among volunteers, action types, and size of samples. An open standard dataset
will help accelerate the wireless sensing study and improve performance evaluation and comparison.

According to the directions mentioned above, more research efforts should be put on the wireless
sensing solution with just a smartphone as the receiver, which directly makes use of ubiquitous
mobile signals for sensing under the guidance of a new theoretical model between human motion and
wireless signals.

10. Conclusions

This survey gives a comprehensive review of the background of wireless signals, the theoretical
models from wireless signals to human actions, signal pre-processing techniques, signal segmentation
techniques, feature extraction, activity recognition, and applications of wireless sensing. The article
highlights seven wireless sensing challenges on human activities: robustness, non-coexistence of
sensing and communications, potential privacy threat, multiple user activity sensing, limited sensing
range, complex deep learning, and lack of standard datasets. Finally, the survey points out four
future research trends: new theoretical models, the coexistence of sensing and communications,
and awareness of sensing on receivers, and constructing open datasets.
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