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Abstract: In this paper, a comparative study of the effectiveness of deep neural networks (DNNs)
in the classification of pure and impure purees is conducted. Three different types of deep neural
networks (DNNs)—the Gated Recurrent Unit (GRU), the Long Short Term Memory (LSTM), and the
temporal convolutional network (TCN)—are employed for the detection of adulteration of strawberry
purees. The Strawberry dataset, a time series spectroscopy dataset from the UCR time series
classification repository, is utilized to evaluate the performance of different DNNs. Experimental
results demonstrate that the TCN is able to obtain a higher classification accuracy than the GRU and
LSTM. Moreover, the TCN achieves a new state-of-the-art classification accuracy on the Strawberry
dataset. These results indicates the great potential of using the TCN for the detection of adulteration
of fruit purees in the future.
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1. Introduction

The adulteration of fruit purees or juices has long been a serious problem that needs to be
carefully considered by manufacturers. This problem arises frequently out of two main reasons.
On one hand, the adulteration of fruit purees or juices is profitable since certain fruits command
premium prices. For instance, a variety of fruits, such as apple, raspberry, blackcurrant, blackberry,
plum, cherry, apricot and grape, are usually used to adulterate strawberry purees. These fruit purees
are always cheaper than strawberry purees and could be mixed with strawberry purees to make
impure strawberry purees. Impure strawberry purees are then sold as pure strawberry purees for
higher profits. On the other hand, the direct detection of the adulteration is quite difficult because
of the nuance of flavor and color of pure and impure strawberry purees [1]. To deal with the
problem of adulteration detection, a number of quality control methods have been employed, such as
high-performance liquid chromatography (HPLC), thin layer chromatography (TLC) enzymatic tests
(e.g., sorbitol), and physical tests (e.g., pH) [2]. However, these extensive chemical analyses are always
time-consuming and expensive [1], which motivates the adoption of spectroscopic techniques for
detecting the adulteration. [3–5] have successfully utilized the Fourier transform infrared (FT-IR)
spectroscopy to screen a number of adulterants in a range of food products. Specifically, the mid-infrared
spectrum is commonly used for the adulteration detection of fruit purees [6].

The adulteration detection of fruit purees based on spectroscopy is a time series classification
(TSC) problem of two classes: the authentic fruit and the adulterated fruit. Based on spectroscopy,
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various conventional algorithms have been employed for the adulteration detection of fruit purees.
These methods include partial least square regression (PLS) [1], dynamic time warping (DTW) [7],
random forest (RF) [8], rotation forest (RotF) [9], etc. Reference [10] compared dozens of conventional
algorithms for the adulteration detection of strawberry purees and found that the RotF achieved
the best classification accuracy. However, one impediment of conventional methods is they always
require manually designed feature extractors, which are usually labor consuming and require specific
domain knowledge.

During the last few decades, deep neural networks (DNNs) have recently achieved great success
in a number of time series modeling tasks [11–14] and motivate the recent utilization of deep learning
models for TSC [15]. Contrary to conventional methods, the biggest advantage of DNNs is the feature
extraction could be conducted by the neural network automatically. Two major neural network
architectures, Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs), are
commonly adopted for time series analysis. For the RNNs, a number of advanced variants, such as the
Long Short Term Memory (LSTM) [16] and the Gated Recurrent Unit (GRU) [17], have been proposed
to mitigate the vanishing gradient problem of RNNs due to training on long time series. Among
different convolutional architectures, the temporal convolutional network (TCN) has been shown
to achieve a comparable performance than RNNs in a number of sequential modeling tasks [18–21].
TCN is a convolutional network specially designed for sequence modeling tasks. The authors
of references [19,20] proposed the basic TCN and the advanced TCN, TrellisNet, which achieved
state-of-the-art classification accuracy on the Sequential MNIST, Permuted MNIST and Sequential
CIFAR-10 datasets. The authors of references [18,21] developed two different variants of the TCN,
the stochastic TCN and Wavenet, for the sequence generation.

Motivated by the great success of DNNs, this paper first employs DNNs for the adulteration
detection of fruit purees and provides a performance comparison of different DNNs. Three types
of DNNs—GRU, LSTM, and TCN—are tested on the Strawberry dataset from the UCR time series
classification repository [22]. Experimental results demonstrate that TCN performs best among
different DNNs in terms of the classification accuracy on the test dataset. Also, TCN achieves the new
state-of-the-art classification accuracy on the Strawberry dataset. This result demonstrates the great
potential of using TCN for the adulteration detection of fruit purees.

2. Materials and Methods

In this section, the publicly accessible dataset, Strawberry dataset, from the UCR time series
classification repository is first introduced. The training criterions, evaluation metrics, as well as the
training descriptions of three deep neural networks for TSC are then described in detail. Next, the
network structures of the GRU, the LSTM and the TCN for TSC are introduced in detail, respectively.

2.1. The Strawberry Dataset

The Strawberry dataset contains the mid-infrared spectra of 983 fruit purees, including strawberry
purees and non-strawberry purees, such as apple purees and plum purees. This dataset is a time series
classification dataset of two classes—strawberry samples and non-strawberry samples. This dataset has
been obtained using Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance
(ATR) sampling. Each sample in the Strawberry dataset is a one-dimensional time series of length 235.
For all the DNNs, each time series sample of length 235 is fed into the model as a two-dimensional
input of size 1 × 235. The statistics of the Strawberry dataset are shown in Table 1.

Table 1. Statistics of the Strawberry dataset.

Dataset Number of Samples

Training dataset 613
Test dataset 370
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2.2. Training Criterions and Evaluation Metrics

Given the true label p ∈ {0, 1}C and classification Bernoulli vector q ∈ [0, 1]C, the cross entropy loss
used to train the DNNs for TSC is shown in Equation (1):

LH = −
C∑

c=1

[pclogqc + (1− pc)log(1− qc)], (1)

where C = 2 denotes the total number of classes in the classification problem.
The classification accuracy on the test dataset is used to evaluate the model performance.

The formal definition of classification accuracy is shown in Equation (2),

classi f ication accracy =
Nr

N
× 100%, (2)

where Nr and N denote the number of correctly classified samples and the total number of samples in
the dataset.

2.3. Training Descriptions

The TCN in the experiment consists of six residual blocks. The dilation factors, d, and the filter size,
k, of the dilated causal convolution are d = 2i for layer i and k = 6 for all layers in TCN. The dropout
rate used in the TCN is set to 0. Both the GRU and the LSTM are made up of three recurrent layers.
To keep approximately the similar size of GRU, LSTM, and TCN, the number of hidden units for the
GRU and the LSTM are set to 64 and 56, respectively. In this way, the number of parameters of all
DNN models is set to approximately 60,000 to ensure a comparable model complexity. The number of
channels of each dilated causal convolution in the TCN is set to 32. All three models are trained by the
Adam optimizer with the initial learning rate 0.0001, via minimizing the cross entropy loss between the
true label and the predicted classification vector. A grid search is conducted to obtain the best output
dropout rate. The total number of training epochs of all models is set to 1000.

In addition, the five-fold cross validation is conducted to find the optimal hyperparameters of
all DNNs. Specifically, the output dropout rate varies in the set {0.0, 0.1, 0.2}. The optimal output
dropout rate is selected based on the average classification accuracy on the five validation sub datasets.
After the five-fold cross validation, the whole training dataset is used to train the DNNs with the best
hyperparameters and the classification accuracies of all models are reported on the test dataset.

2.4. GRU and LSTM for TSC

Both GRU and LSTM are two popular variants of basic RNNs that incorporate gate units into the
basic RNN cell to capture the long time dependency in the time series. In the GRU, two gate units,
a reset gate rt and an update gate zt, are introduced to control the transformation of hidden state ht at
each time t. The control process of hidden states in the GRU is described in Equations (3)–(6):

rt = σ(Wrxt + Urht−1 + br), (3)

zt = σ(Wzxt + Uzht−1 + bz), (4)

h̃t = tan h
(
Wxt + U

(
rt

⊙
ht−1

)
+ b

)
, (5)

ht = (1− zt)
⊙

ht−1 + zt

⊙
h̃t. (6)
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As another variant of the RNN, LSTM adopts three gate units, the forget gate ft, the input gate it and
the output gate ot, to control the cell state ct and hidden state ht at each time t. The updating of hidden
states in LSTM is presented in Equations (7)–(11):

ft = σ
(
W f xt + U f ht−1 + b f

)
, (7)

it = σ(Wixt + Uiht−1 + bi), (8)

ot = σ(Woxt + Uoht−1 + bo), (9)

ct = ft
⊙

ct−1 + it
⊙

tan h(Wcxt + Ucht−1 + bc), (10)

ht = ot

⊙
tan h(ct). (11)

For the TSC problem, the predicted classification vector q ∈ RC, where C denotes the total number of
classes, is computed by adding a fully connected layer (FC) on top of the hidden state hT at the last
time step T:

q = WqhT + bq. (12)

In Equations (3)–(12), matrices, W, U, Wr, Ur, Wz, Uz, W f , U f , Wi, Ui, Wo, Uo, Wc, Uc, and Wq as
well as vectors, b, br, bz, b f , bi, bo, bc, and bq, are parameters which need to be optimized. The σ and⊙

are utilized to denote and element-wise sigmoid function and the element-wise multiplication,
respectively. The tan h represents the hyperbolic tangent function which serves as the activation
function. The schematics of GRU and LSTM for TSC are shown in Figures 1 and 2, respectively.
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Figure 1. The schematic of the Gated Recurrent Unit (GRU) for time series classification (TSC). Figure 1. The schematic of the Gated Recurrent Unit (GRU) for time series classification (TSC).
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Figure 2. The schematic of the Long Short Term Memory (LSTM) for TSC. 
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2.5. TCN for TSC

TCN is a specially designed convolutional network for sequence modeling. Formally, given an
input sequence x = (x1, x2, . . . , xT), the output sequence h = (h1, h2, . . . , hT) is of the same length as
the input sequence. Specifically, the TCN ensures that at each time step t, the output ht depends only
on those inputs from the past: x1, x2, . . . , xt. In other words, there is no information leakage from the
future at any time. For the purpose of equivalent input and output length, the TCN adopts the 1D fully
convolutional network (FCN) architecture [23]. In the FCN, each hidden layer has the same length as
the input layer, and the zero padding of length (kernel size −1) is added to keep subsequent layers with
the same length as previous ones. In order to prevent information leakage from the future, the TCN
employs causal convolutions [19], rather than the normal convolutions. In the causal convolution,
an output at time t is convolved only with elements from time t and earlier in the previous layer.
In addition, the TCN adopts dilated convolutions [21] to enable an exponentially large receptive field.
Different from normal convolutions, dilated convolutions introduce a fixed step between every two
adjacent filter taps. Formally, given a 1-D sequence input x ∈ Rn and a filter f : {0, . . . k− 1} → R ,
the dilated causal convolution operation F on the element s of a sequence x is defined as

F(xs) = (x∗d f )(s) =
k−1∑
i=0

f (i)·xs−d·i, x≤00 (13)

h1, h2, . . . , hT = F(x1), F(x2), . . . , F(xT), (14)

where d is the dilation factor, k is the filter size, s− d·i counts the number of directions from previous
nodes to the current node, and h is the output sequence. Furthermore, TCN also employs the residual
block [24], which has repeatedly been utilized to facilitate the construction of very deep networks.
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As shown in Figure 3, TCN is constructed by stacking multiple residual blocks. Each residual
block consists of two dilated causal convolutions. A fully connected layer is added on top of the last
layer at the last time step to output the predicted classification vector.
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3. Results and Discussion

The training losses of the GRU, LSTM, TCN, and Multilayer Perceptron (MLP) are illustrated in
Figure 4. The comparison of classification accuracy of these three DNNs on the test dataset is then
provided in Table 2. Table 3 shows the comparison of the training time of these four DNNs.
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From Figure 4, it is observable that the TCN converges to lower classification loss than the GRU,
LSTM and MLP.

Table 2 shows that the classification accuracy of the GRU and the LSTM is lower than the RotF
by [10] as well as the TCN and MLP. This might result from the gradient vanishing problem of the
recurrent architectures. On the other hand, the TCN obtains the highest classification accuracy among
all the models. The TCN obtains the state-of-the-art classification accuracy of 98.65% on the Strawberry
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dataset. This result indicates the great potential of using the TCN for the detection of the adulteration
of fruit purees.

Table 2. Classification accuracy (%) of different models on the test dataset.

Model Classification Accuracy

RotF [2] 97.30
MLP 96.76
GRU 90.54
LSTM 87.84
TCN 98.65

Table 3 shows the comparison of the training time of different DNNs. It is observable that the
training of MLP is much faster than the GRU, LSTM and TCN. Furthermore, the training of TCN is
much faster than the GRU and LSTM.

Table 3. Training time (in seconds) of different models.

Model Training Time

MLP 41.44
GRU 253.03
LSTM 250.81
TCN 131.58

4. Conclusions

In this paper, a comparative study of DNNs for the classification of pure and impure strawberry
purees was provided. Specifically, three different types of DNNs—GRU, LSTM, and TCN—were
implemented for the detection of the adulteration of strawberry purees. These three models were
tested on the Strawberry dataset from the UCR time series classification repository. Computational
experiments indicated that the TCN obtained a higher classification accuracy than GRU, LSTM, and
MLP. Also, in comparison to the best accuracy, 97.30%, obtained by the conventional algorithm
RotF [10], the TCN achieved a new state-of-the-art classification accuracy of 98.65% on the Strawberry
dataset. These results indicate that it is promising to use the TCN for the detection of the adulteration
of fruit purees in the future.
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