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Abstract: Waste collection has become a major issue all over the world, especially when it is offered
as a service for businesses; unlike public waste collection where the parameters are relatively
homogeneous. This industry can greatly benefit from new sensing technologies and advances
in artificial intelligence that have been achieved over the last few years. However, in most situations
waste management systems are based on obsolete technologies, with a low level of interoperability
and thus offering static processes. The most advanced solutions are generally limited to statistical,
non-predictive approaches and have a limited view of reality, making them weakly effective in dealing
with day-to-day business issues (overflowing containers, poor quality of service, etc.). This paper
presents a case study currently being developed in Luxembourg with a company offering a business
waste collection service, which has a significant amount of constraints to consider. Our main
objective is to investigate the use of multiple waste data sources to derive useful indicators for
improving collection processes. We start with company-owned historical data and then investigate
GPS information from tracking devices positioned on collection trucks. Furthermore, we analyze
data collected from ultrasonic sensors deployed on almost 50 different containers to measure fill
levels. We describe the deployment steps and show that this approach, combined with anomaly
detection and prediction techniques, has the potential to change the way this business operates.
We also discuss the interest of the different datasets presented and multi-objective optimization issues.
To the best of our knowledge, this article is the first major work dedicated to the world of professional
waste collection.

Keywords: smart waste collection; waste monitoring; wireless sensor networks; LPWAN; data
analytics; machine learning; cluster analysis

1. Introduction

A smart city is a municipality that uses smart infrastructure (i.e., information and communication
technology) to improve the effectiveness of government and business services, and citizen welfare.
These services include, for example, intelligent transportation systems, smartphone detection, traffic
congestion, smart roads, and finally such as in our use case, waste management. Conventional waste
collections are complicated and costly (i.e., highly resource-intensive). A fleet of trucks drive along busy
streets on an arbitrary schedule using inefficient routes and may visit dumpsters that are completely
empty, or on the contrary over-filled. Conventional waste collections are based on a lot of speculation
where the filling level of bins could vary, ranging from overflowing, partially filled, to completely
empty. This would result in unnecessary consumption of city resources and fuel. The most recent
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study by Annenberg Learner Foundation [1] highlighted the annual growth of producing rubbish in
the USA, where each individual generated around 4.6 pounds each day (which is resulted in a total of
230 million tons per year). Such an increase in environmental issues (including problems with waste
collection, transport, processing, and disposal) have been considered to be a serious situation.

The rapid development of sensing technologies opened great opportunities for researchers and
waste management companies to design and develop various platforms to optimize the time and
resources allocated to waste management. Smart Waste Collection (SWC) is now attracting considerable
attention given its integral part of any smart city. It is expected that the revenue of SWC systems will
reach 600 million in 2020 (i.e., 9.2% of Compound Annual Growth Rate [2]). Such systems have several
advantages over the conventional waste collection—for example, minimizing the pickup point would
result in dispatching fewer vehicles (i.e., route optimization), reduction in cost, traffic, congestion and
CO2 emissions, and enhancing customer satisfaction.

Existing smart waste management platforms such as Sensoneo [3], CleanCUBE [4], and Bigbelly [5]
were introduced to improve the operational performance and reduce the cost expenses that are resulted
from the traditional trash collection processes. Nevertheless, the proposed solutions are limited to the
management of solid waste for public markets (e.g., for the city council and householder), and using
specialized and costly equipment (i.e., trash compactor). Therefore, it is essential to automatically
collect and process ambient waste data (e.g., fill level and weight of the containers, and truck route
coordinates) rather than using manual, limited, and inaccurate information collected by the driver.
To this end, this paper presents an intelligent platform called SWAM [6] (Smart WAste Collection
SysteMs) that aims to offer online dynamic scheduling and routing of the collection trucks (i.e.,
optimizing the route schedule, and frequency of trash collection for businesses). More information
about the platform can be found via [7], which presents a view of the different modules, while
a small-scale demonstration of the project is presented in [8].

The proposed platform was deployed in Luxembourg—a small and very dynamic country, where
the impact of a solution can be easily measured and subsequently reproduced on a larger scale.
More specifically, the work presented in this paper focuses on the SWAM Data Management System,
which aims to collect and process multiple data flows in collaboration with a local waste company in
Luxembourg, namely Polygone (PoL) and external services, including:

• Business data flows composed on the one hand of data imported from PoL’s Enterprise Resource
Planning (ERP, e.g., customer inventory) and on the other hand of needs and constraints reported
by PoL’s customers and defined according to their socio-professional categories.

• Waste bin filling levels, regularly transmitted by ultrasonic sensors to be deployed as part of the
SWAM project.

This paper presents a thorough analysis in the following manner:

• Collecting GPS information (trucks fleet) for real time monitoring.
• Deploying ultrasonic filling detection sensors in several bins to capture real life data.
• Proving a comprehensive analysis of the current state of the art in the area of SWC and

a technology evaluation to determine the basis for such an approach.
• Proposing and validating a data management system, collecting relevant SWC-related data

sources while ensuring privacy and security aspects. Such data are often unavailable.
The collaboration with PoL enabled the access to a large dataset with a high time resolution,
collected over several years in Luxembourg (2015–2019).

PoL is a waste collection company which collects waste of private clients (e.g., companies,
restaurants, schools). Table 1 shows the difference between public and commercial waste collection.
Please note that these differences were detected in Luxembourg and can differ in other countries. Still,
the differences of both collection services are significant and can be further clarified by their modeling
as operational research (OR) problems [9]. Public waste collection can be modeled as a variant of the



Sensors 2020, 20, 978 3 of 28

’chinese postman problem’, where the objective is to find the shortest path that visits every edge (street)
of an undirected graph. Commercial waste collection can be modeled as a variant of the ’traveling
salesman problem’, where the objective is to find the shortest path that visits every node (city, client) of
an undirected graph exactly once [10].

Table 1. Differences between Public and Commercial Waste Collection.

Property Public Waste Collection Commercial Waste Collection

Client scope Private households Companies, restaurants, schools
Client waste generation Homogeneous Heterogeneous (1000–10,000L per week)
Collection scope Communities Country-wide/regions
Distance between clients Short (neighbors) Significant, but can be diverse
Bin placement On the pavement Somewhere on the client site

The rest of the paper is organized as follows. Section 2 reviews the prior state of the art by
highlighting the existing solutions. Section 3 describes the case study that was used, the opportunities
in terms of business and environmental impact reduction, and a high-level architecture of the proposed
SWAM platform. The data collection methodology that involves different datasets and details of each
of them are presented in Section 4. Data analytics and discussions are highlighted in Sections 5 and 6
respectively. Finally, future research directions are presented in Section 7.

2. Related Work

Waste management systems (including waste transportation, disposal, and recycling) can be
categorized into three main types:

a. Sensor-based waste collection (e.g., dynamic adaptation of trucks routes, and optimal planning
and scheduling of waste collection trucks).

b. Waste transport-based location intelligence (e.g., route optimization based on the waste type).
c. Recycling solutions.

A large body of research on waste management have been proposed, and this section focuses
on the first type (i.e., sensor-based waste collection). The usage of sensors for SWC was introduced
several years ago using RFID chips [11]. Most recent studies used advanced IoT technologies such as
automatic fill level sensors, cameras or laser in order to detect the bin fill-level. However, it is already
highlighted that these technologies suffer from several issues (e.g., accuracy, sensor integration, and
battery lifetime). As a result, this study aims to remedy these limitations by using ultrasonic filling
detection sensors [12].

Table 2 displays a comprehensive analysis, conducted on the prior art on sensor-based waste
collection, which was discussed in this literature. The commentary that follows describes the key
achievements and milestones that have taken place.

The usage of weight and proximity sensors was introduced in [13] to continuously measuring the
filling level and the amount of dump in each bin. The aim of the study was to optimize the routing
operations. Nevertheless, the proposed study was based on simulation rather than real life tests.

A dynamic waste management model was proposed by [14]. The authors developed a platform,
called CloudSWAM, that aims to automatically store the waste filling level of different bins types
(i.e., organic, plastic and bottles, and metal) into the cloud and subsequently use this information to
effectively and dynamically optimize the truck route direction, transport the waste based on the type
and recycling.

Another study by [15] focused on identifying the best location for landfill based on GPS data, and
the genetic algorithm approach was applied for selecting the optimal area for disposal of domestic and
industrial waste.
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Table 2. A comprehensive analysis based on the prior art on SWC (Dynamic Scheduling DS, Dynamic
Routing DR).

Study Bin Location Waste Type Sensors GPS Implementation DS DR

[13] Outdoor
Glass; Plastic;
Paper; General Waste Weight & Capacity No Simulation No No

[14] Outdoor
Organic, Plastic/
Paper/Bottle, Metal Capacity No Simulation Yes Yes

[15] Outdoor General - Yes Simulation No No
[16] Outdoor General Capacity No Simulation Yes Yes
[17] Outdoor Plastic Weight & Capacity No Simulation No No
[18] Outdoor General Capacity Yes Real No No
[19] Outdoor General Capacity No Simulation Yes Yes
[20] Outdoor General Capacity Yes Simulation Yes Yes
[21] Outdoor General Capacity Yes Simulation No Yes
[22] Indoor General Capacity No Real Yes Yes
[23] Outdoor General Weight Yes Real No No

A solar powered compacting bin was used in [16] in order to predict the bin fill-level and offer
automatic compaction of waste, effectively increasing the bin capacity by up to 10 times. Data were
transmitted into a cloud server and were used to optimize the waste collection route and offer dynamic
scheduling plan.

The Smart Garbage Bin is a tool that was introduced by [17] in order to optimize plastic recycling
and to predict the amount of waste in bins for a better collection decision by the city council.
The authors used near-infrared reflectance spectroscopy in order to isolate the different types of
plastic as some of them are not degradable and could result in land pollution while the capacity sensor
was used to estimate the bin filling level. Nevertheless, the collected information was not effectively
used to provide Dynamic Routing and scheduling.

To optimize or provide an indication to the requested number of bins for each client, real life
evaluation was conducted in [18] to measure the bins filling level by using ultrasound sensors.
However, the case study evaluating the system efficiency was very limited. The IoT sensors were
deployed in 11 containers only.

Another study by [19] applied the genetic algorithm to analyze the collected bin information.
The goal was to offer optimized path for waste collection. The experimental setup involved the usage of
several technologies (i.e., ultrasonic sensor, Arduino micro-controller, GSM/GPRS shield, and buzzer)
to predict the amount of waste inside a bin, which is costly to implement in real life scenario. Once
data has been collected, a specified collection threshold value was set up. A notification containing
the bin ID and location is sent when the filling level percentage meets or exceeds the predefined
threshold value.

A dynamic routing algorithm was proposed in [20] to find the optimal path for two types of
trucks (i.e., high and low capacity). The bin filling level was measured by using the capacity sensor
while RFID was used to identify individual bin.

Another study was presented by [21] to minimize the waste collection cost and maximize the
customer satisfaction. To sense the bin filling level using the capacity sensor, different sampling rates
were tested (i.e., the fill level information was captured every one and two hours) and the automatic
collection would be granted once the filling threshold reaches 70% or more. Moreover, the proposed
solution recorded the significant changes during certain days to recommend the optimal day(/s) for
waste collection and to find out the optimized routes. Nevertheless, the geographical distribution of
the bins was rather limited and located in 10 regions only, which is limited when making an allegation
of robustness.

For effective handling of waste collection for indoor containers (i.e., shared bins by multiple
households), a case study by [22] was explored by using real life data obtained from the Twente Milieu,
which is a waste collection company in the Netherlands. Since the stakeholders already performed the
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dynamic waste collection task based on the fill level information (that was captured from the equipped
capacity sensor), the focus of the study was to define effective routes for each truck during collection
using the heuristic approach.

The creation of waste type profiles was introduced in [23] by using the combination of k-means
with the self-organizing map algorithms. The proposed approach used the container-level waste
weighting information, GPS information of bins, bin size, and waste type in order to understand
the relationship between consumer behavior and the produced waste. Extensive data collection was
conducted by involving information of more than 185000 pickup trips over two years in Helsinki,
Finland (2013–2015).

Table 2 shows that the majority of studies were usually designed for general public target markets
and based on simulation experiments (apart from [22,23] that used real life test). Moreover, current
solutions mostly rely on limited flow of information and thus result in limited decision-making. To this
end, the objectives of the proposed system (i.e., SWAM) are to explore, investigate, and analyze
multiple sources of information such as the bin filling level, truck GPS information and client profile
in order to enhance the decision-making process as well as to focus on business services (rather than
public waste management).

Our previous work [7] provides detailed information on the challenges and issues that must be
addressed to overcome the aforementioned issues, which results in the creation of three complementary
modules: data management, multi-objective optimization, decision-making component. The next
section describes the methodology of our research studies, and focuses on the data management
layer specifically.

3. Use-Case

3.1. Scenario

The authors of the present study are working together with PoL that offers a waste collection
service for professionals and large organizations. This service has been operating for several
years in Luxembourg, a small country but, nevertheless, an ideal place for testing and validating
research hypotheses. This country has a road infrastructure that is representative of other European
countries and its cross-border situation with France, Belgium and Germany generates an exceptionally
large amount of daily road traffic. In this context, the SWAM project was developed to set up
an advanced waste management platform composed of several modules. This paper focuses on the
data management module.

Figure 1 provides the spatial distribution of PoL’s clients, which covers the whole country. Poles
of activity such as Luxembourg-City or Esch-sur-Alzette, the two main cities, are naturally represented.
On the current system, customers are spatially clustered into two zones, i.e. the north and the south,
so that drivers can easily share the collection work.

This service offers waste collections with a fixed frequency, depending on the contracts and the
type of waste to be collected. The collection performance is thus entirely dependent on the driver
and the very low level of information available to him. Unlike public waste collection for private
individuals and municipalities, the visited companies do not have homogeneous behavior depending
on their socio-professional activity (i.e. NACE code, in Luxembourg) and their level of activity. This is
particularly visible in Figure 2. Depending on the type of contract, some customers can be collected
weekly, monthly, or sometimes on demand via direct phone calls, which naturally generates a waste of
time and does not optimize the use of PoL’s resources.

This study therefore considers this scenario, and looks at the different types of data that can
be used to improve the situation and ultimately optimize the company’s decision-making processes.
In particular, we deployed 47 sensors all around Luxembourg on domestic waste containers.
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Figure 1. Clients’ spatial distribution on the complete country (Luxembourg) [7].

Figure 2. Distribution of the number of visits by clients in Luxembourg, from February 2018 to
May 2019.

The following section highlights the expected impact of the SWAM solution.

3.2. Impacts

Through SWAM, three main categories of impact are foreseen and are summarized in Figure 3
below. These impacts have of course to be assessed over various periods of time. For example, it is
obvious that socio-environmental impacts can only be assessed over the long term, whereas scientific,
technical and business impacts can be assessed progressively once the technologies described in this
paper are in place. More details can be found in [7].
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Business
üClient satisfaction guaranteed
üCosts / tons of waste decreased
üNew business models, capacity to fine-tune contracts
üNew customers (+5-10%) and market perspectives
üAnnual human resources cost decreased (-5%)
üImprovement of usage of customers bins & PoL’s trucks (+25%)

Scientific / Technical
üNew filling level prediction algorithms
üNew activity profiling approaches
üIntegration of road traffic estimation
üMulti-objective routing optimization
üSensing technology (calibration, filtering)

Socio-environmental 
ü CO2 emissions / tons of waste decreased
ü Less stress for employees (less uncertainty)
ü Less road congestion

Figure 3. Impacts generated by SWAM.

The next section provides a view of the SWAM architecture.

3.3. Architecture and Parameters of the System

A high-level architecture of SWAM is presented in Figure 4. SWAMData Collection APIs Data managementserviceOperational dataSensors DataDriver’s personal app
Navigation

Mobile computing

Web interfaceMobile interfaceHistorical Data Secure access

SigFox/LPWAN
connectivity

Cellular connectivity

Figure 4. SWAM—High-level architecture.

The SWAM architecture consists of four main core components:

a. Data Collection: it includes different datasets that are captured from several resources.
This involves the historical data from the SWC company, namely ERP data while the sensor
data are collected with ultrasonic sensors deployed around Luxembourg. Finally, the vehicle
tracking information would be used to identify its location in nearly real-time. A relational
database is used to store all the collected data (SQL server). Details of each dataset are described
in Section 4.

b. Data management service: managing varying data resources becomes quickly complex. After
the completion of the collection phase, a filtering process would be conducted out to explore
the accuracy of the generated information. Predictive models will handle missing fill-level data.
Regression mechanisms will enable prediction of the filling level at least 48 hours in advance.

c. Optimization service: it is mainly divided into three parts:

• Customer selection: the relevant customers are selected for an inclusion into a waste
collection, by considering a set of objectives and constraints.

• Dynamic Scheduling: this module is designed to offer optimal planning and waste
collection scheduling (i.e., waste collection would be executed only if it is needed).
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• Dynamic Routing: the selected customers are integrated into a fleet management
optimization engine that generates a dynamic adaptation of trucks’ routes and selects
the optimal path.

d. Decision Support System: this interface involves three main modules:

• Dynamic Pickup Points: this module aims to generate automatic pickup points that should
be considered by the driver.

• Shortest Path: this module is responsible on recommending an optimal path based on the
current vehicle location and the ordered list of clients to be served.

• Activity Recognition: unlike most of the prior studies that have not considered the driver
behavior, the proposed system aims to use smartphones and use the embedded motion
sensor in order to capture the driver’s activities. Detecting what a driver is doing at a specific
point of time would enable the creation of dynamic profiling for each driver independently.
For instance, calculating the service time of each collection per site could give an indication
of the actual number of processed bins.

The datasets used in our research studies are presented in the following section.

4. Datasets

Many metrics are collected after the completion of a waste collection in each client site, i.e., site id,
client id, client NACE id (i.e., socio-professional category), collection date, collected weight for each
emptying bin within the truck which is equipped with a weight gauge, type of waste, etc. We present
in this section the available datasets that enter into consideration. Section 4.1 considers the information
extracted from PoL’s ERP. During its daily operations, PoL stores a lot of data that were not analyzed
until our research study. Our aim is to apply time series analysis on this unused knowledge in order to
profile the weight production of each PoL’s client. In Section 4.2, we present another dataset available
and extracted from GPS trackers mounted on each PoL’s truck. These data will be used to characterize
the service duration (waste collection) in each client’s site. Finally, Section 4.3 describes a new source
of information that will be generated after the deployment of ultrasonic sensors in PoL’s bins and that
enable a remote monitoring of their fill level. The goal is to be able to plan the right waste collection
timing based on real fill level information.

4.1. ERP: DIVALTO

DIVALTO [24] is a management software providing a complete ERP solution. Its databases enable
storing many parameters linked to daily waste activities. It is based on a SQL server. PoL provided
a complete export of its database. Here is a non-exhausted list of available features available for
each activity:

Client i. ClientName/ClientNameId refers to the client’s name in a human readable-format and
its unique identifier in the ERP database. Each client may have multiple sites where bins
are actually located.

ii. ClientAddress is composed by the street name, the city name and the zip code in a human
readable-format.

iii. ClientActivity/ClientActivityId corresponds to the client’s activity (Retail, Construction,
Housing, etc.) in a human readable-format and its unique identifier in respect with the
European regulation (NACE code) in the ERP database.

Site i. SiteName/SiteNameId refers to the site’s name in a human readable-format and its unique
identifier in the ERP database.

ii. SiteAddress is composed by the street name, the city name and the zip code in a human
readable-format.
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iii. SiteObservation/SitePreference provides any site information (key, phone number, etc.)
and service preference such as the preferred time window (starting/ending time in the
morning or in the afternoon, day or time-slot when collection is prohibited, etc.).

Activity i. Each activity (bin emptying, bin exchange from an initial volume to a new one, etc.) is
defined by a unique code in the ERP database, and that for each stage of the execution
(from the command, to the intervention on site and finally when the service is done).

ii. WasteType provides the type of waste in a human readable-format that is planned to be
collected. It enables filtering waste collection activities (e.g., domestic, glass or cardboard).

iii. WasteVolume refers to the bin volume (maximal capacity).
iv. WasteWeight provides the collected weight.
v. WasteTimestamps corresponds to the service date.

These parameters are updated into the ERP after each bin emptying. Thus a new entry is generated
into the database, with the associated weight recorded from the truck weight sensor. For instance,
if 4 bins are available on a site but if only 3 bins are full and finally processed, 3 new entries will be
added. The bins are rented by PoL and their quantity on each site are negotiated, based on the clients’
needs, i.e., estimated waste production, available waste fraction on site such as domestic waste or
glass, indoor/outdoor location, collection frequency (7 days, 14 days, 28 days, or on demand with
phone calls), etc.

Different volumes are proposed by PoL, ranging from 120 L to 7000 L. Figure 5 highlights the
variability of the containers for all processed bins related to domestic waste, paper-cardboard and
glass collected in 2018. In fact, each waste fraction is placed in a separated bin. Thus, PoL’s driver
collects a defined type of waste during his working day and then empties his truck in a sorting center.
As a matter of course, the content has to be homogeneous. If the content is mixed, PoL has to pay
extra-fees to the sorting center. As a consequence, each driver operates a unique fraction of waste (for
instance domestic waste) during his working day, and then empties the collected waste in the sorting
center. Finally, the truck is cleaned and is ready for the next collection.

1100L (47%)

1100L (1%)
Glass

120L (19%)

240L (17%)

2500L (4%)

5500L (3%)

7000L (5%)

770L (3%)

Figure 5. Bin volume distribution (domestic waste/paper-cardboard and glass) for waste collection
processed in 2018.

The truck location is monitored in respect with a tracking solution that is presented in the
next section.

4.2. WinFleet

WinFleet is a software solution for fleet management developed by SkyCom [25]. Companies
can use this software to monitor the current location of their vehicles, to analyze the paths traveled
by their vehicles and to generate summarizing reports. WinFleet is typically used via its graphical
web-interface; for further processing it is possible to export and download the data in CSV-format. This
dataset presents the following information for each entry:

Time The timestamp of the entry.
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Status Information on the individual truck’s state:

i. Is the motor running?
ii. Is the truck stopped or is it driving?

iii. How fast is the truck moving?

Position GPS-information where this entry was taken:

i. Latitude.
ii. Longitude.

iii. Street name in a human readable-format.

In our use-case, this dataset holds all information about the individual waste collection truck’s
position over time. With this data, it is possible to reconstruct the trucks’ collection path, and extract
new meaningful information. Possible examples for new information could be (a) the influence of
traffic density on travel duration or (b) the service duration at a client site depending on the time and
the weekday.

The extraction of new and meaningful information out of these data sets is not a trivial task. One
has to clearly identify and assign the different stops of a truck. Did the truck stop because of a traffic
light, the lunch break of the truck’s driver, or a waste collection at a client’s site? Furthermore, the
collection tours can present detours which can be difficult to identify and explain. Did the driver adapt
his path because of the traffic density, a road block or a car crash? The exploration and analysis of
WinFleet data can be found in Section 5.2.

The last data resource is generated by the sensors deployed in Luxembourg in order to retrieve
bin fill levels. It is described in the following section.

4.3. Sensors

The system we present in this study relies on ultrasonic sensors deployed into waste bins all
around Luxembourg. At the date of writing this paper, 47 sensors have already been deployed on
35 different sites. Figure 6 shows an example of sensor deployment. In 2020, it is planned to reach
200 units, and in the longer term to cover all the customers of PoL. This section describes the main
technologies that integrate this sensing component.

Figure 6. Deployment of one sensor into a container.

4.3.1. Ultrasonic Sensing

Brighterbins’ ultrasonic sensors [26] (illustrated in Figure 7 were selected among 41 potential
suppliers. This choice is based on many factors such as price per sensor unit, software/hardware
independence, communication technology, system lifetime, integration ease, waterproofing, robustness
and measurement accuracy. The full list is available in [7].
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Figure 7. Brighterbins ultrasonic sensor (L=130mm, W=70mm, H=53mm).

Figure 8 describes the distance measurement process. An ultrasonic sensor sends a sound wave
(in blue) at a defined frequency, and waits for the echo (in red) generated after its reflection on
an obstacle. The distance to the closest obstacle is determined by measuring the time laps between
the sent and received ultrasonic pulses. The time is then converted into distance in respect with the
speed of sound (340 m/s). F represents the fill level (distance between the bottom of the bin and the
average waste plan). By definition, F ≤ H where L, W and H are respectively the bin’s length, width
and height. The volume of garbage bags can vary from small (40 L) to extra large (240 L) and can be
partially filled with waste. As a consequence, the average fill level has to be estimated. Each bin is
assumed to be homogeneously filled. Thus, the sensor measurement is assigned to the average fill
level. The sensor integration is described in the next section.

Figure 8. Sensor integration under the hinge in a container.

4.3.2. Sensor Integration

Setting up a sensor into a container is not an easy task, since we need to consider the type and
size of container, the inclination angle, the communication technology constraints, and a few other
parameters in order to ensure the best possible quality of measurement. In addition, the use-case
considered in this study is very specific and consider professional containers, which are bigger than
the conventional public bins and with no or limited possibility to deploy the sensors under the lid (i.e.,
it is build with fragile material). The impacts between a sensor and waste bags during their emptying
within the truck should also be considered. Therefore, as shown in Figure 9, we deployed different
sensor models at different locations and measured their reliability.

Based on this initial deployment, the most appropriate location for the sensors was decided to
be just below the lid, under the hinge (see Figure 8). The network communication is presented in the
following section.
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Figure 9. Testing of 4 sensors deployed into a container.

4.3.3. Network Communication

We considered different communication technologies to retrieve measurements from the sensors.
Cellular technologies were first considered, since they are well deployed over the country and have
an excellent quality of service. However, a SIM card has to be inserted inside each sensor during the
network set up. This manual operation becomes unmanageable for a large deployment. Moreover,
energy consumption is too high compared to other technologies.

In the proposed scenario, SigFox is preferred and satisfies the technical requirements. Sigfox
belongs to the Low Power Wide Area Network (LPWAN) family, in the same way as LoRA or
NB-IoT [27]. It is already deployed and provides a full coverage of Luxembourg, with a good level of
redundancy (at least 2 or 3 antennas for most of the deployment sites).

Fill-level time series for the integration described in Figure 9 (4 sensors) are shown in Figure 10
for a duration of 6 weeks starting from 24 April 2019. This set up was designed in order to evaluate the
best sensor location enabling accurate measurements. S1 and S2 are sensors from Brigtherbins (Sigfox
class 0), S3 and S4 from Sensoneo (Sigfox class 2—made for outdoor environments, at that time).

D
is

ta
nc

e 
(c

m
)

Time (weeks)

50

100

150

200

1 33 51
T0 T1 T2 T3

Figure 10. Data collection of 4 sensors placed into a 1100 L test bin [7].

The time T0 indicates that the bin moved to the entrance of the client’s building. At T1, the bin
was placed in front of the technical room (indoor, see Figure 11). At T2, an activity is detected, i.e., the
fill level is quickly changing from an empty state (Distance = 135 cm) to almost a full configuration.
Finally, at T3, a waste collection occurred, and the fill-level comes back to its original value.
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Figure 11. Indoor technical room where Sigfox connectivity was tested.

S1 showed very unstable measurements during the first week, explained by multiple reflections
of the ultrasonic beam. This issue has to be handled during the data cleaning. However, Brighterbins’
sensors were overall more stable from a communication point of view.

The recorded metrics are presented in the following section.

4.3.4. Metrics

The sensors we installed are configured to send the following information a few times a day
(minimum twice).

Time The timestamp of the entry.
Distance The distance (in cm) from the sensor to the nearest obstacle. This makes it possible to deduce:

i. The filling level of the bin (depending on the dimension of bin).
ii. Alerts based on critical fill levels.

Temperature The temperature of the bin, in degrees Celsius, for:

i. Fire detection.
ii. Weather information retrieval.

Battery The power level of the sensor, which are designed with a 5-year, interchangeable battery
(according to the manufacturer’s information).

The next section focuses on analytics computed from these 3 datasets.

5. Data Analytics

We processed and extracted data analytics from each information source presented in the previous
sections, i.e., ERP (described in Section 4.1) in Section 5.1, Winfleet (highlighted in Section 4.2) in
Section 5.2, and finally ultrasonic sensors (presented in Section 4.3) in Section 5.3.

5.1. ERP: DIVALTO

PoL has updated its ERP in January 2019 to the DIVALTO solution (see Section 4.1). The previous
database has not been included into DIVALTO. In fact, many modifications were done to simplify
the previous system (new identifiers, codes, fields, etc.) and the inclusion of the previous dataset
into DIVALTO has become unmanageable. However, we decided to use the previous dataset (more
information on a larger time scale) in order to perform a deep analysis of clients’ waste production,
i.e., profiling. During data cleaning, we discovered some errors such as wrong weight insertion
(WasteWeight). As a reminder, the weight is measured during the bin emptying and printed into
a ticket by a device located into the truck cabin. When the waste collection is finished, all tickets
(40 served clients on average) are currently transmitted by the truck driver to the PoL’s dispatching
department which thereafter has to include them manually into the ERP. This encoding may add some
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errors. An automatic transmission is not available now, but may solve this encoding issue.We also
found in WasteType many names designing the same type of waste. Aggregation was done in order to
extract all related entries focusing on a defined fraction of waste (i.e., domestic waste) for all possible
contracts (7 days, 14 days, 28 days, and on demand).

The time series associated with a retail business is presented in Figure 12 after data cleaning.
We observe a high variability that can be explained by many reasons. The waste production of a client
may change according to new activities or events. A second explanation relies on synchronization
issues between the waste collection tour (PoL) for a fixed contract (e.g., one collection every Monday)
and the real waste production.

Figure 12. Example of the collected weight time-series extracted for a selected retail business.

To compare and analyze the impact of the business activity (i.e., retail business, construction,
housing activity and restaurant) on the weight production, we propose to compute on PoL’s domestic
waste datasets composed by 112 clients, the following set of features (29 variables), i.e., (minimum,
mean, median, standard deviation, maximum) weight, time-series length and duration in days for
normalization, (minimum, mean, median, standard deviation, maximum) bin volume (changes
can occur, i.g., exchange from 1100 L to 660 L), (minimum, mean, median, standard deviation,
maximum) density (weight collected/maximal capacity on site), weight integral on the complete
time-series, (minimum, mean, median, standard deviation, maximum) weight peak, number of peaks
and (minimum, mean, median, standard deviation, maximum) time interval between successive peaks.

As each PoL’s client belongs to one of the 4 distinct activities presented earlier, we propose
to apply the k-means algorithm in order to analyse the correlation between each activity and the
associated waste production. k-means is one of the most commonly used unsupervised machine
learning algorithm to separate a dataset composed by elements into k clusters represented by their
gravity center [28]. Hartigan and Wong defined the standard algorithm where the distance between
each component of a cluster and its center is minimized. Elements from the same cluster (respectively
different clusters) present a high (respectively low) similarity. In our scenario, k = 4. Unfortunately,
k-means is very sensitive to outliers. Partitioning Around Medoids (PAM) [29] is less sensitive to noise
and outliers than k-means. It is based on medoids. A medoid refers to an element of a cluster for
which average dissimilarity between it and all the other cluster’s components is minimal. In PAM,
medoids are used as cluster center instead of gravity center (means). The PAM algorithm is based on
the search for k medoids among the dataset’s observations.



Sensors 2020, 20, 978 15 of 28

A scatter plot based on 2 selected features can be used to visualize the correctness of each
presented clustering algorithm. We used on the one hand the weight median that is connected to
the production of waste and on the other hand the weight standard deviation that shows the weight
variability for all successive collections.

Figure 13 a shows the dispersion plot for the previous metrics. Each client is represented by
a circle whose color is related to the client’s activity. We displayed the confidence ellipse (80%) for each
activity group. We observe a high overlapping between all groups. Unfortunately, we can conclude
that the two selected metrics (weight median and weight standard deviation) are not sufficient to
classify each group member into a unique cluster. In fact, our goal is to be able to classify each client
waste profile in respect with its activity.
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Figure 13. (a) Dispersion plot: weight median vs weight standard deviation. (b) A clustering k-mean
algorithm was applied for k = 4. (c) A clustering PAM algorithm was applied for k = 4.

The application of the k-means clustering algorithm was applied and the result is shown in
Figure 13b. Each point represents a client and is displayed with a color associated with its cluster
assignment. We can see that the generated clusters are well separated according to metrics’ values
but there is no general correlation between the computed cluster id and the real activity. Table 3 gives
a summary of their correlation. It provides the correlation matrix between the k-means clustering and
the real activity of each client.

Table 3. Correlation matrix: Activity vs Cluster (k-mean).

Activity Cluster 1 Cluster 2 Cluster 3 Cluster 4

Retail Business 0.302 0.581 0.023 0.093
Construction 0.531 0.406 0.031 0.031

Housing Activity 0.400 0.300 0.200 0.100
Restaurant 0.185 0.481 0.074 0.259

Let’s consider the population of retail businesses R (black circle in Figure 13a). 30.2% of R are
classified into the cluster 1, 58.1% into the cluster 2, 2.3% into the cluster 3 and 9.3% into the cluster 4.
We observe that the four activities are mainly classified into the clusters 1 and 2. As a consequence,
a k-mean algorithm applied on weight median and weight standard deviation does not enable us to
separate each population from each others.

The application of the PAM clustering algorithm was applied and the result is shown in Figure 13c).
The generated clusters are also well disjoint but there is no general correlation between the computed
cluster id and the real activity. Table 4 presents the correlation matrix between the PAM clustering and
the real activity of each client.

To detect which features will enable a correct classification, we propose to apply Principal
Component Analysis (PCA) on our feature matrix (112 observations with 29 variables) and display
each observation according to its first two principal components. In fact, feature extraction is a key
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component to design an effective system [30], therefore, a comprehensive feature extraction process
was carried out. PCA were used in order to identify the most distinctive feature subset. The feature
selection step has become the focus of many research studies in order to reduce potentially large
dimensionality of input data and thus system performance could be enhanced by selecting the most
optimal and unique features [31,32].

Table 4. Correlation matrix: Activity vs Cluster (PAM).

Activity Cluster 1 Cluster 2 Cluster 3 Cluster 4

Retail Business 0.279 0.511 0.093 0.116
Construction 0.531 0.219 0.219 0.031

Housing Activity 0.400 0.000 0.300 0.300
Restaurant 0.185 0.222 0.296 0.296

PCA’s eigen values measure the quantity of variance explained by each principal component
(see Figure 14). Eigen values are large for the first components that provides the directions related to
the maximal dataset variation.

Figure 14. Variance related to eigen values.

The cumulative variance is 65% for the first 3 eigen values, respectively 73% for 4, 79% for 5,
84% for 6, 88% for 7, 91% for 8, 93% for 9). The first 7 components on the 29 provide almost 90%
of the information. Let’s visualize the correlation between each variable and principal component
(see Figures 15 and 16).

The variables positively correlated are grouped (see Figure 15) in the coordinate system based
on the first two principal components (55% of explained variance). For instance, the number of
weight peaks (NumberPeaks) and the time series size (TimeSeriesSize) present a high correlation.
The distance between variables and the origin provides the quality of the variable representation
(cos2). The contribution of each feature in a principal component is also computed and displayed in
Figure 16. For instance, the first principal component (Dim. 1) is mainly composed by 4 groups of
features, i.e., the first one is composed by WeightMean, WeightStd and WeightMedian, the second
one by VolTotalMean, VolTotalMax, VolTotalMedian, the third one by PeakMean, PeakMin, PeakMax,
PeakMedian, PeakStd, and the fourth by WeightIntegral. The second principal component is mainly
based on temporal data such as PeakInterTimeMean, PeakInterTimeMin, PeakInterTimeMax and
PeakInterTimeMedian. The third principal component relies mainly on MassVolMax. TimeSeriesSize,
MassVolMin, TimeSeriesDayDuration and NumberPeaks are contributing to Dim. 4. The fifth principal
component is made of WeightMin, TimeSeriesSize, MassVolMin and NumberPeaks.
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Figure 15. Correlation graph.
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Figure 16. Correlation plot between features and principal components (cos2 and contribution).

Figure 17 corresponds to a new visualization of the dispersion plot (see Figure 13) in the coordinate
system (Dim. 1, Dim. 2).
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Figure 17. Dispersion plot in the PCA’s coordinate system (Dim.1,Dim.2).

The clients’ classification based on their activity becomes easier because clusters are more disjoint
in the PCA first dimensions. The proposed feature selection approach successfully maximized the
classification accuracy with a reduction of nearly 75% of the whole features (i.e., only seven features
were selected).

The correlation between each client’s activity and its waste production is not trivial and needs
a deeper analysis. Additionnal factors may enter into consideration such as the company size,
its location, etc. Moreover, the time granularity of each time series is fixed by each client contract (7, 14,
28 days or on demand). Then no information is provided between successive collections on each site.
The use of sensors will fill this information gap (see Section 5.3).

The processing of Winfleet is presented in the following section.

5.2. Winfleet

We designed python scripts in order to clean data exported with Winfleet (see Section 4.2).
Figure 18 is the visualization of a waste collection tour done in the South of Luxembourg during
a complete working day.

We can observe that the truck starts and finished in the PoL’s site (depot represented with a blue
point). Each truck stop is displayed with a red marker. The driving path is displayed with colored
arrows (blue and red). Each driving hour is represented with a single color. The transition from each
1-h time slot to the next one is done according to a color modification i.e., Red to Blue and so on. When
the truck is full, it needs to empty itself in a sorting center represented with a green point in Figure 18.

Figure 19 shows the variability of the collection path for successive Monday in February 2019.
We can distinct some changes (addition or removal of clients).

All stops have to be filtered. In fact, we have to consider only stops related to a waste collection,
i.e., a site location. Thus, the truck location has to be close enough to at least one PoL’s client site whose
address is provided by DIVALTO (see Section 4.1). The address of all sites was translated into GPS
coordinate (Latitude, Longitude) in respect with geocoding tools such as geocoder graph hopper [33],
or Google Maps APIs or the Geocoder python library [34]. In fact, many stops are due to traffic lights
and road signs, traffic jams, working area, or drivers’ lunch break. We designed an automatic script to
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detect only stops related to a real service in any clients’ sites. The Euclidean distance between a stop
under consideration and the list of potential clients/sites has to be smaller than a defined threshold
(by default 20m). In fact, each bin can be placed outside the client’s building. So there can be a little
difference between the real GPS coordinate where a bin is located and the site’s address. Moreover
they are many configurations where the truck has to stop far from the client’s site, for instance just
behind a barrier outside a building. In that case, the driver has to bring the bins from their locations to
the truck in order to empty them. This action will add some service delays, especially if many bins
have to be emptied. Sometimes confusion can occur, for instance when a stop is approximately at the
same distance from two clients. These cases were rejected from our results.

Figure 18. Example of a waste collection tour of a complete working day.

Figure 19. Successive collection paths on Monday (February 2019) for north and south tours.
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Then we computed many additional metrics related to the client profiling, such as the service
duration D in second and the arrival time A of the truck on site. These new metrics were used
to generate service profile for each site (see Figure 20 for a shopping center and Figure 21 for
a retail business).
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Figure 20. Service time profile for a selected shopping center.
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Figure 21. Service time profile for a selected retail business.

We extracted values (A,T) for all detected client/site stops from February 2018 to November 2019.
For each 1-H time-slot, we first detected each waste collection (arrival and departure from the site
location) starting within this time slot, and we computed the associated service time. Then, the average
service time for all collections within each 1-H time slot was performed and displayed on a spider
graph for each working day (duration and number of visits). The maximal radius (100%) represents
the maximal service time and number of collections in any 1H-time slot. Other average service times
are displayed proportionally to their values. For instance, for the shopping center represented in
Figure 20, the waste collection on Monday has an average execution time of 27.5 min. This mean was
computed on a set of 61 services. If the truck arrives on the site between 14–15 h detection (respectively
08–09 h), an average service time of 29.8 min (respectively 22.7 min) is reached. This spider chart
enables finding the best time slot for an optimal waste collection on any clients’ site. The service time
depends of course on the number of bins on site that has to be collected but also on the client activities
and road congestion impacting the actual traveling time. For instance, for the shopping center, many
other trucks are also delivering goods. That means that if PoL’s truck arrives on the site, it needs to
wait that the delivery platform becomes free in order to empty the bins. This obviously adds delays on
the process.
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We also computed the total distance traveled during each complete tour for every working day
and the associated number of clients in Figures 22 and 23. We observe a high variability of the two
time series. We can easily distinguish working days and weekends.

Figure 22. Traveled distance for the south waste collection tour between January–September 2019
(Average: 220 km, standard deviation: 54 km).

Figure 23. Number of clients served for the south waste collection tour between January-September
2019 (Average: 34 clients, standard deviation: 7 clients)

Finally, we performed the average service time spent in each client site (in second), the total
traveled distance (m) and the number of served clients for each tour (North and South). The 3D
dispersion plot is shown in Figure 24.
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Figure 24. Dispersion plot (Distance, Client, Service time) for each tour (North and South).

The main goal of SWAM is to optimize the waste collection process by minimizing the total
traveled distance and the service time on site according to each client’s profile and also maximizing
the number of clients obtaining a service, and the collected weight.

The analysis of Winfleet data has enabled computing the average service time per site from GPS
information. This metric will be included into the SWAM optimization module in order to schedule
the best waste collection tour. We highlighted the variability of each tour for successive collections,
in terms of traveled distance, number of visited clients and average service time. The waste fill level
availability for each bin located in each site will help to prioritize clients that needs a waste collection
from others where service could be postponed.

In the next section, we present data processing related to deployed sensors.

5.3. Sensors

To measure the impact of SWAM on PoL’s daily operations, we deployed a set of sensors (see
Section 4.3) on clients that belong to a specific waste collection tour (i.e., Monday for the south tour,
see Figure 25).

One solution consists of a full deployment (one sensor per bin) but this would have definitively
a significant high cost for PoL. In our use-case, a client may have a maximum of six bins dedicated
to domestic waste. Waste production profiling from historical data will help to use less sensors (1 or
2 sensors per site with at least one sensor on the last bin based on the filling order, e.g., distance from
the door of the technical room where they are stored). Each client was asked to respect this order.
The sensor integration depends mainly on the bin maximum capacity (width W, length L and height H).
The volume linked to the fill level is assumed to be a parallelepiped (rectangular cuboid). The waste
volume is defined by V = W ∗ L ∗ F where F is the fill level (distance between the bottom of the bin
and the average waste plan). Figure 26 provides an example of a fully equipped site with six bins
(1100 L). In that configuration, the maximum F value reaches 88 cm.
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Figure 25. Physical deployment: 47 sensors were integrated in 35 distinct sites.

Time

Figure 26. Raw data on a site composed by 6 bins.

Each sensor was configured with a time period of 30min between measurements only for the
profiling phase (waste production for each activity). This period will be remotely updated after the
completion of this phase in order to optimize the sensors’ lifetime. The selected sensor has a blind zone
of 15cm. We can see in Figure 26 that each bin has its own waste production time evolution. A waste
collection is highlighted with a black arrow. In fact, each full bin (i.e., where F almost reaches the
maximum level) is emptied. Its filling level becomes insignificant (i.e., F = 0) for the next measurement.
We note that some sensors never provide a zero value even after the waste collection (see sensors S4
and S5). An additional calibration has to be applied in order to normalize the raw values to the global
range (0 to full level). Moreover, we observe many peaks that have already been filtered on Figure 26
due to multiple reflections (see Figure 10).

We presented the first results of the first phase of our sensor deployment in Luxembourg.
We showed an example of one client site where six bins were equipped with ultrasonic sensors.
The time series analysis of the measurements will help to profile the waste production and also to
trigger a waste collection when defined thresholds were reached.
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The next section provides discussions on our research studies.

6. Discussion

This paper is a preliminary study, which underlines a reality: in waste management but also
in other sectors, the information collected by companies is mostly extremely limited. Cleaning and
filtering efforts must be made in order to systematically remove anomalies. Going even further,
a significant impact can only be achieved by employing connected technologies, offering a real time
overview of the service to be provided. Other available metrics are, for the most part, uncorrelated.
This opens up two discussions.

6.1. Data Aggregation–Correlation

The main difficulty of this research study was to correlate multiple data resources coming from
non interoperable information systems. In fact, a waste collection on a single site consists of the
emptying of one or multiple bins within PoL’s truck. We detected the arrival on site and the departure
of the truck in respect with the GPS tracker installed on it and connected through the Winfleet API.
The service time on site was proposed to be used in the SWAM optimization module. Its actual value
depends on many factors, such as:

• The real number of processed bins. It can be retrieved with ultrasonic sensors prior to the waste
collection or at the end of the day when interventions are updated into the ERP database.

• The site configuration (indoor/outdoor, doors, access ramp, etc.). Unfortunately the distance and
the time needed to travel from the truck to the bin location (and vice versa) are not known.

The sensor integration has a significant impact on the fill level measurement. It should be the
same for each bin capacity. The selected sensors provide multiple configuration angles for side/lid
integration. However these angles can present minor differences from one sensor to another one,
generating errors on measurements. Moreover, errors are amplified when multiple reflections occur.
We assumed that the fill level is homogeneously distributed in a container. This is not true for large
containers. A calibration will be designed in order to adapt the fill level computation according to each
bin capacity and dimension, and also sensor integration. We observed that raw sensor data present
discrete peaks that have to be filtered out (see Figure 26).

The monitoring frequency was fixed to 30min between successive measurements during the
first deployment phase related to client’s profiling. It should be changed to 2 measurements per day
with an optimal time selection in order to guaranty an acceptable lifetime (almost 5 years). In case
of missing values (e.g., no measurement due to communication errors, or inconsistent data due to
multiple reflections), interpolation will be used to make data coherent and also enable prediction at
near future (24-48h) based on historical data.

Finally, many sites present several bins. We equipped them on a partial or total basis (for instance
6 bins on 6, or 2 bins on 6 with at least one sensor on the last bin). We will investigate the impact of
the number of sensors on each site when data will be available. When the cleaned ERP data will be
available, we will also analyze the correlation between weight data (truck), volume data (ultrasonic
sensor) and service time data (Winfleet).

6.2. Optimization

As explained in Section 3.1, the goal of the SWAM project is the development of a system to
optimize waste collection. To achieve this objective, we identified two main challenges: (1) selection
of clients which should be included in a collection tour, (2) computation of the best suited tour to
visit the selected clients. Traditionally the objective target of such systems is the minimization of the
travel distance or a cost value, while respecting the constraints of the waste collection company and
its clients [9]. To highlight the significance of client selection, it is important to know that the waste
collection truck encounters one of three scenarios at each client site:
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• Too early: the truck arrives too early and the bins are not filled to an appropriate level. This is not
desirable for the waste collection provider because the company invested its resources in a service
which could be performed at a later point in time.

• Too late: the truck arrives too late and the bins are filled to overflowing. This is not desirable for
for both the client and the waste collection provider. The waste collection provider now needs to
invest more service time to collect all the waste and the client is unsatisfied with the provided
service quality.

• Just in time: the truck arrives and the bins are filled to an appropriate level. This is the desired
scenario.

This suggests that the waste collection provider needs more detailed information about the filling
level of the clients’ bins. As described in Section 4.3 we deployed ultrasonic sensors to measure the
exact filling level of a subset of all the clients. The cost of these sensors are a considerable investment
for a waste collection provider. With this in mind, we need to justify that the sensors are providing
an additional value. To verify their value, we propose different incremental steps of optimization.
A higher level of optimization is using more advanced techniques and thus should result in a better
performance. We propose three steps of optimization:

a. Optimization based on static information (see Section 5.1) from client contracts (e.g., allocation
and clustering of clients by using their site’s location and their collection frequency).

• Expectation: This first optimization should significantly reduce the traveling distance to
complete waste collection tours. However this step should have no influence on reaching
the just in time scenario.

b. Optimization based on added historical data to form client profiles and predict their waste
generation (see Section 5.2).

• Expectation: With the use of historical data about the amount of waste collected at each client,
it should be possible to identify weekly and/or seasonal patterns for waste generation. The
accuracy of the resulting estimations needs to be examined, but overall this should lead to
a significant improvement compared to the first step.

c. Optimization based on added sensor measurement data (see Section 5.3).

• Expectation: Through the use of the near real-time measurements of the bins’ filling level,
the accuracy of waste generation prediction can be improved. This should lead to further
performance improvements compared to the second step.

By using an incremental approach to develop and implement an optimization system, we can
benchmark the performance of the individual steps. Furthermore, these measures can be used to
compare the performance of the different optimization steps. By adding information about the
implementation cost of the individual steps, we can compute which level provides the best return on
investment.

Overall, the collected data sets and the generated features open up multiple possibilities to
optimize the waste collection. As part of the SWAM project we are planning to follow the presented
increment approach to facilitate the comparison between solutions of different complexity.

7. Conclusions and Future Work

In this paper, we presented SWAM, a waste management platform for business, and SWAM-DMS
its data management system that relies on ultrasonic sensors deployed all around Luxembourg.
SWAM-DMS collects PoL’s data flows and is accessible via an interoperable API. It integrates an
analytics component to infer relationships between variables, filtering mechanisms to ensure the
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data’s consistency and reliability and prediction mechanisms to interpolate potential missing values or
extrapolate future trends.

We extracted many features from these data resources (ERP, fleet management, and the sensor
network) and analyzed them. We highlighted a few metrics from a PCA decomposition that enables
profiling the waste production of each client based on their activity. This information will help to
include a client into a waste collection tour, according to the SWAM optimization module. We presented
our algorithms that extract waste collection tour from GPS tracking datasets and perform service
time profiles for each client’s site. We showed that the current collection paths can be optimized by
minimizing the total traveled distance and the service time on site according to each client’s profile
and also maximizing the number of clients obtaining a service, and the collected weight. We finally
deployed 47 sensors on 35 distinct sites.

In future work, the generated filling level data will be analyzed and correlated with collected
weight and actual waste collection paths. We also intend to extend the analysis made in this paper by
implementing predictive mechanisms on sensor data, which would require a substantial amount of
historical data but has the possibility to understand the variability of seasonal activities. We also plan
to further work on route optimization for customer satisfaction. Finally, it is planned to deploy more
than 200 sensors all around Luxembourg by the end of 2020: this will lead to more in-depth studies.
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