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Abstract: In this paper, we report on the spectral detection of wustite, Fe(II) oxide (FeO), and
magnetite, Fe(II, III) oxide (Fe3O4), molecular emissions during the combustion of pyrite (FeS2), in a
laboratory-scale furnace operating at high temperatures. These species are typically generated by
reactions occurring during the combustion (oxidation) of this iron sulfide mineral. Two detection
schemes are addressed: the first consisting of measurements with a built-in developed spectrometer
with a high sensitivity and a high spectral resolution. The second one consisting of spectra measured
with a low spectral resolution and a low sensitivity commercial spectrometer, but enhanced and
analyzed with post signal processing and multivariate data analysis such as principal component
analysis (PCA) and a multivariate curve resolution—the alternating least squares method (MCR-ALS).
A non-linear model is also proposed to reconstruct spectral signals measured during pyrite combustion.
Different combustion conditions were studied to evaluate the capacity of the detection schemes to
follow the spectral emissions of iron oxides. The results show a direct correlation between FeO and
Fe3O4 spectral features intensity, and non-linear relations with key combustion variables such as
flame temperature, and the combusted sulfide mineral particle size.

Keywords: optical sensors; combustion; spectral measurements; signal detection; signal
reconstruction; signal processing; principal component analysis; multivariate data analysis

1. Introduction

The copper pyrometallurgy industry is facing many challenges regarding the increase of production
and more strict demands on environmental compliance regulations. In this context, the need for
developing online sensing technologies aimed at monitoring the temperature and the chemical
composition of the molten phases during the slag and copper tapping period and during the
copper concentrate feeding is crucial to enhance the energy and production efficiency, gas emission
control and general optimization of the copper making processes [1,2]. Thus, active and passive
spectroscopy techniques have been tested to determine on-line relevant process information to achieve
the combustion goals.
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The most important smelting technology for copper concentrates is the flash smelting process
where solid and fine particles of copper concentrate, composed mainly of chalcopyrite (CuFeS2),
pyrite (FeS2) and bornite (Cu5FeS4), are fed to the smelter with oxygen-enriched air that promotes
the combustion (oxidation). The combustion inside the reactor form two molten phases in the settler
located at the bottom, namely, the matte that contains most of the copper fed as sulfide, and the
slag having most of the iron fed as oxide. Since its implementation in the last century this has been
continuously investigated in order to elucidate phenomena occurring in the reaction shaft that are not
yet well understood.

Upon the ignition, the copper concentrate particles are instantaneously oxidized and a reacting
flame is formed, which is promoted by the heat released by the exothermic oxidation reactions and
the high temperature of the reaction shaft. The oxidation process of the concentrate particles should
be conducted under conditions that further the formation of wustite (FeO) and prevent the excessive
production of magnetite (Fe3O4) and cuprite (Cu2O). For the industrial method this can be related
to a favorable distribution of oxygen in the reaction shaft and therefore a good performance of the
smelting process is achieved. When the flash smelting reactor is operated under these conditions,
the slag cleaning process is improved by handling low-magnetite and fluid slags, and consequently,
decreasing copper losses [3]. It should be noted that with a FeO and Fe3O4 detection system it will be
possible to prevent the over-oxidation of iron by adjusting the oxygen supply and other operational
parameters based on the flame monitoring information.

As reported in the literature [2,4–6], spectroscopy and optical techniques are suitable,
nondestructive and contactless sensing alternatives to characterize combustion processes. In particular,
some authors have reported the FeO spectral emission pattern in the visible (VIS) spectral range as
reported by West and Broida in their work [7]. They reported this emission as a continuum spectrum
from 500–700 nm containing three main spectral features around 570 nm, 590 nm (which may interfere
with sodium emission) and 620 nm. Furthermore, some authors reported FeO emission in meteoric
ablation measurements and a terrestrial night airglow spectrum [8,9] as well as in experiments with
induced emission on steel surfaces [10]. On the other hand, other authors reported spectral features at
605 nm and 615 nm as copper oxide (CuO) [11,12], and recently, Knapp et al. [13] proposed a model of
this diatomic molecule. We were unable to find reports related with Fe3O4 spectral emissions in the
VIS-NIR spectral regions for combustion processes.

To the best of our knowledge, there are no reported online industrial monitoring systems aimed
at the detection of the presence of iron oxides or any other species in the copper flash smelting process.
Only results obtained during laboratory scale experiments and exploratory industrial measurements
have been reported to date in this field. Arias et al. [2] reported some spectral features found in
radiation emitted from copper concentrate flash smelting and applied optical pyrometry techniques
for temperature estimation. Diaz et al. [6] applied multivariate data analysis methods to describe
and to classify spectral information from the combustion of pure copper and iron sulfide minerals.
The present work aims to provide new insights on the spectral characterization of such processes, and
it is specifically focused on the detection of weak FeO and Fe3O4 spectral emission signals.

The main goal of this manuscript is to apply spectral measurement techniques and mathematical
methods to analyze the combusted iron sulfide pyrite spectral information to detect molecular
emission intensities. The first procedure involves measurements with a high spectral resolution
custom-made spectrometer (0.03 nm) and signal conditioning methods. The second procedure involves
calibrated measurements with a commercial medium spectral resolution (0.12 nm) spectrometer, signal
processing techniques and multivariate methods such as the principal component analysis (PCA) [14],
for an exploratory analysis. The multivariate curve resolution—alternating least squares (MCR-ALS)
algorithm is employed to separate the spectral signals into pure components and relative concentration
profiles [15]. This method has been mainly applied in the research field of chemometrics, to analyze,
for example, hyperspectral images [16]. Finally, a non-linear model based on physical laws and the
estimated spectral features with the MCR-ALS method is proposed to reconstruct the spectral signal
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produced during pyrite combustion. The paper is organized as follows: in Section 2, the test bench,
and the experimental methodologies, as well as practical issues regarding the spectral measurements,
are fully depicted. In addition, some radiometric issues regarding the process of interest are also
discussed, and some theoretical aspects concerning the signal processing techniques applied to the
measured spectra are reviewed. In Section 3, the main results of this research, and a discussion related
to develop real time FeO and Fe3O4 monitoring systems, are presented. Finally, some concluding
remarks and future work are outlined.

2. Materials and Methods

The experimental setup, the combustion tests carried out to detect the iron and copper oxides
spectral features of interest, and our built-in high spectral resolution spectrometer are described in
this section. First, note that whenever a spectrum from a flame is measured, its spectral behavior can
be modeled as I(λ,T) = Ic(λ,T) + Id(λ,T) + Imol(λ,T) + e + d, where λ is the sampling wavelength in
nm, T is the temperature associated to the emission spectra, Ic is a continuous component or baseline
spectrum, Id and Imol are excited elemental/discontinuous and molecular emissions respectively, e is a
normal distributed electronic noise and d is an offset associated to spectrometer dark current noise [17].
The number of sampling wavelengths and spectral range are limited by the spectrometer detector itself.
The implemented methods are described below.

2.1. Experimental Setup and Samples Preparation

The pyrite combustion experiments are performed in a drop-tube arrangement, consisting of a
cylindrical stainless-steel reaction zone, heated by a controlled electrical furnace. The laboratory scale
combustion setup highlighting the main components can be seen in Figure 1. The furnace operating
temperature is set to 1273 K for all tests. Combustion of sulfide particles was promoted with oxygen
enriched mixtures containing N2. Oxygen and nitrogen flow rates were adjusted to have a laminar
flow regimen inside the reaction zone.
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Figure 1. Experimental setup [6].

In this study high-grade pyrite samples, provided by Ward’s Science (Rochester, NY, USA), were
used as raw materials during the combustion experiments. The pyrite was dry-sieved and separated
into six target size fractions: <37 µm, 37 to 44 µm, 44 to 53 µm, 53 to 74 µm, 74 to 105 µm and 105 to
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149 µm. Prior to the experiments, all the sieved fractions were dried in a laboratory oven at 378 K for
24 hours [18]. The dried samples were further labeled and stored in sealed plastic bags. The particle
size distribution of all the raw materials and the oxidation products was determined by means of a
Sympatec Helos-SucellTM particle size analyzer (Sympatec GmbH, Clausthal-Zellerfeld, Germany)
based on a laser diffraction technique. Automated mineralogical characterization of minerals and the
combustion products was determined using a Quantitative Evaluation of Minerals by SCANnig electron
microscopy (QEMSCAN®) system, produced by the Fei Company (Hillsboro, OR, USA). The amount
of magnetite in the oxidized products was determined by means of a Satmagan balance and used to
quantify the magnetite to hematite ratio from the results obtained by means of QEMSCAN® analysis.

2.2. Spectral Acquisition System

The optical sensing system consisted of a specially designed multicore VIS-NIR optical fiber
(O.F.) (Avantes Ltd., Apeldoorn, The Netherlands) of ~2 m, with its own cooling system to perform
measurements in high temperature environments. Special care was taken to avoid any dust deposit
in the optical fiber tip, to achieve this: we ensured a laminar flow regimen inside the drop-tube; we
used the same cooling nitrogen flowing through the optical fiber tip, at a flow rate of ~2 L/min, as a
dust blower system and; we ensured a negative pressure through the exhaust gas system with an
extractor fan.

The O.F. cable, composed by an arrangement of seven individual O.Fs, was used just as a light
guide in this work. The O.Fs. transmit the combustion radiation to a USB4000 spectrometer, operating
in the spectral range from 344.26 nm to 1034.34 nm. Calibration is performed with a HL-2000-CAL
lamp to measure the combustion intensity radiation in absolute irradiance units of µW/[nm·cm2] (both
manufactured by Ocean Optics Inc., Dunedin, FL, USA). In this work, the effective transduced spectral
range is trimmed to 400–900 nm due to silicon detector signal to noise ratio issues, leading to n =

2576 spectral samples. Concerning the O.F.-spectrophotometer system a calibration procedure and
two references were needed: (i) a dark noise reference d, measured by blocking the optical fiber tip,
and (ii) a standard calibration source reference with a broad band radiance signature. Then, since
the true calibration lamp radiance signature is provided by the manufacturer and the system transfer
function H(λ) in units of µJ/counts was estimated, a calibration for a new raw measurement Iraw can be
performed, which can be obtained by a calibrated spectrum, Ical as follows:

Ical(λi) =
(Iraw(λi) − di)[counts] ·H(λi)[µJ/counts]

tint[seg] ·Ac[cm2] · ∆λi[nm]
(1)

where di is the dark reference at pixel i, i = 1, . . . , n, tint is the integration time, Ac is the system
collection area, assumed as a single O.F. cross section connected to the spectrometer and equal to
π·(0.5·DOF)2, with DOF as its core diameter, which is 400 µm for our system. In addition, ∆λi indicates
the band of nanometers represented by each pixel i inside the spectrometer linear CCD array, which
can be estimated as ∆λi ≈ (λi+1 − λi−1)/2 ≈ (λi+1 − λi). Although this is a straightforward approach,
numerical errors can appear caused by the discrete differences. Therefore, it is recommended to model
the provided wavelength vector as a second order polynomial λi = p(i) first and then to calculate the
analytical derivative dλi in order to estimate ∆λi for (1).

To measure the combustion flame radiation is a complex task, involving the following chemical and
physical processes: radiation emissions from gas-solid-liquid phases, radiation coming after the process
of absorption, scattering and; surrounding drop-tube wall emissions, absorptions, and reflections.
A scheme showing the involved radiative process is depicted in Figure 2a.
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particle radiative emission with its surroundings; (b) sensing scheme depicting the different particle
states during their passing through the reaction zone.

In Figure 2b, we illustrate a simple combustion scheme for sulfide particles covering some physical
phase changes that a particle can experience inside the reaction zone. For a detailed discussion
regarding these reactions please refer to [18]. In this figure, the O.F. field of view (F.O.V.) was assessed
by connecting the O.F. to a standard halogen lamp and then by measuring the illuminated circular
surface produced at a fixed distance, leading to a value of ≈26◦. Although, the reported F.O.V. is wide
enough to capture radiation from the flame and from the drop-tube wall, we neglected the last source
since it could be visually confirmed that the main contribution is caused by the combustion flame
radiation. We include in the results section an analysis of background radiation to discard any parasite
molecular or atomic emission that could reach the O.F. tip. In order to simplify the spectral analysis,
three main assumptions were considered in this work:

(i) The gases surrounding the combustion flame are mainly SO2, N2 and O2. They, at experimental
temperatures ≈ 1000 K to 2500 K have a transmittance τg(λ) = 100% in the 400 nm to 900 nm
spectral band.

(ii) It is assumed that combustion flame emits as a gray body, i.e., it presents a constant spectral
emissivity behavior. A discussion is given at the end of this work regarding this assumption.

(iii) The main contribution to detected radiation is due to molten, in-ignition and heated particles
during the combustion experiments. Drop-tube wall emissions and wall reflected radiation are
neglected in this work.

Spectral signal acquisition and spectrometer configurations were performed with an on purpose
virtual instrument developed in LabViewTM software (National Instruments Corporation, Austin, TX,
USA), and all computations and multivariate data analysis were performed with MatlabTM software
(The Mathworks, Inc., Natick, MA, USA).

2.3. Experimental Design

In this work, 6 sets of combustion experiments were conducted to sense the iron oxide spectral
features. They consisted of combustion experiments of a high-grade pyrite samples with 6 different
particle sizes. These sets are: 105 to 149, 74 to 105, 53 to 74, 44 to 53, 37 to 44 and <37 µm. From now
on the samples are labeled as PyA, PyB, PyC, PyD, PyE and PyF respectively to the previous order.
The particle size distribution was assessed with laser diffraction techniques. The gas supplied in each
experiment consisted of an oxygen/nitrogen mixture, in which the oxygen concentration was set to
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80 percent by volume. In addition, the oxygen concentration in the mixture was set to supply three
times the stoichiometric amount to completely oxidize the sulfide species in the samples to form SO2

and Fe3O4, according to the reaction: FeS2(s) + 8/3O2(g)→ 1/3Fe3O4(s) + 2SO2(g).

2.4. High Spectral Resolution Spectrometer Development

In order to measure the FeO spectral emitted signature from the pyrite experiments and to
resolve a particular atomic emission around 589 nm that was reported in [2], a high spectral resolution
spectrometer was designed and developed. This particular atomic emission is known for showing
up in spectral combustion measurements, and it is roughly assumed to behave as sodium (Na).
The developed device operates with the well-known Ebert Fastie optical configuration with a 200 mm
focal length at F/8 aperture, with a diffraction grating of 1200 lines/mm. Two spectral ranges were set,
a VIS range and a NIR range. In its current stage of development, it presents low rate acquisition times
when adjusted to detect weak emission signals. In Table 1 the main characteristics of the developed
spectrometer are summarized.

Table 1. Developed spectrometer main characteristics.

Characteristic Value

Spectral range 1: VIS [532.99–640.48] nm
Spectral range 2: NIR [727.45–827.07] nm
Spectral resolution (Full Width at Half Maximum, FWHM) 0.12 nm
Sampling density 0.03 nm/pixel
Diffraction grating 1200 l/mm @500 nm, holographic
Detector Toshiba TCD1304AP
Number of pixels 3648
Pixel size 8 × 200 µm (29.184 × 0.2 mm)
Slit width 20 µm × 5 µm
Operating temperature 20 ◦C

2.5. Flame Spectral Data Signal Processing

In this work, signal processing techniques and multivariate data analysis were applied to analyze,
and to extract meaningful features from collected spectra. Among them: (i) PCA for an exploratory
analysis, (ii) MCR-ALS to disintegrate original spectra into reliable pure spectral components and,
(iii) a non-linear least squares curve fitting procedure method, based on Planck’s radiation law, to
estimate the combustion temperature.

PCA is used as a first approximation to discover weak spectral emission patterns hidden by noise.
This multivariate analysis technique is mainly used for dimensionality reduction of multivariable
data sets. Consider a set of m measured spectra composed, each sampled at n wavelengths and then
spectra can be organized in a data matrix Xm×n with each spectrum given by xs = (xs1 . . . xsn), s = 1,
. . . , m. By means of PCA, k principal directions vk, orthonormal axes, can be extracted, in which the
retained data variance is maximal [14]. In this work, these principal directions vk were calculated with
the singular value decomposition algorithm over the centered data matrix, where each variable, xsi,
i = 1, . . . , n, is centered by subtracting the respective column mean xi according to xsi − xi, as shown in
Figure 1a.

Each of the principal directions, named as loadings or principal vectors (PV) as well, allows weak
spectral patterns to emerge from electronic noise and the continuum high intensity spectral radiation.
Although the amplitude of a PV does not have physical or chemical quantitative meaning, the structure
of such signals uncovers molecular and elemental emissions encrypted in the original data.
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To perform a reliable separation of the pure spectral signals composing a spectrum, the MCR-ALS
algorithm was applied over the spectral data with highest emission profiles. This method assumes
that an experimental data matrix D can be modeled as D = CST + E, where C and ST contain pure
profiles related to relative concentrations and spectra respectively [15] and E is the matrix of residuals
not explained by the resolved components. The MCR-ALS algorithm was implemented with a
MatlabTM graphical user interface (GUI) provided by Tauler and collaborators. Their GUI, code and
tutorials are available at the website: http://www.mcrals.info. Let us recall that one of the aims is to
determine the main k molecular and line emission spectral components present in the measured data.
Then, the obtained spectra are used in a curve fitting procedure to analyze each spectrum separately.
To perform a complete estimation of the k + 3 involved parameters: the combustion temperature, Ts,
the relative concentrations of pure spectral features, Ik, composing a measured spectrum Is, and a bias
coefficient, θs, accounting for non-corrected offsets during the calibration process. Thus, the proposed
measuring model is described by the following equation:

Is([θ Ts]) = Ic(θ0, Ts) +
k∑

j=1

θ j · Ik + es + θs · 1 (2)

where θ are the k + 1 linear combination coefficients for each pure spectrum and the bias coefficient to
be estimated during the regression process. Ic is the continuous spectral component, modeled with
Planck’s radiation law and physical and radiometric constants so that the radiation is in absolute units
of µW/[nm·cm2]. In this work, the model assumes that the continuous spectral component behaves
as a gray body. Thus, a single parameter, θ0, represents the emissivity component, ε ≈ constant,
as described by the following equation:

Ic(λ, [θ0 Ts]) = θ0 ·
c1 · (π ·N.A.2) · 10−7

λ5 ·
[
exp

( c2
λ·Ts

)
− 1

] (
µW

cm2nm

)
(3)

where λ is the wavelength in meters, θ0 is the relative gray body emissivity parameter and Ts is
the flame temperature in kelvin, to be estimated. The N.A. = 0.22 is the optical fiber numerical
aperture and, c1 = 1.176·10−16 (Wm2/sr) and c2 = 1.438786·10−2 (m·K) are the first and second Planck’s
constants respectively. A scaling factor of 10−7 is included to ensure consistency of units with the
measured spectra.

Although the aforementioned methods can be applied to the calibrated spectral data, pre-processing
techniques were implemented to enhance specific spectral patterns. The airPLS (adaptative iteratively
reweighted penalized least squares) baseline correction method [19] was implemented to separate
the continuous spectrum from the discontinuous and band emissions. Other state-of-art algorithms
were tested for such a purpose, however airPLS has shown the best results for the spectral features
depicted in this work. Moreover, it was also verified that the convergence of optimization-based
methods, e.g., MCR-ALS, was promoted by implementing noise reduction techniques in the data.
In this work, the Savitzky-Goaly (SG) algorithm was implemented [20]. Figure 3 summarizes the
different methodologies applied in this work.

http://www.mcrals.info


Sensors 2020, 20, 1284 8 of 15

Sensors 2020, 20, x FOR PEER REVIEW 7 of 15 

 

spectrum Is, and a bias coefficient, θs, accounting for non-corrected offsets during the calibration 

process. Thus, the proposed measuring model is described by the following equation: 

=

= +  + + I θ I I 1
0

1

([ ]) ( , )
k

s s c s j k s s
j

T θ T θ θe   (2) 

where θ are the k + 1 linear combination coefficients for each pure spectrum and the bias coefficient 

to be estimated during the regression process. Ic is the continuous spectral component, modeled with 

Planck’s radiation law and physical and radiometric constants so that the radiation is in absolute 

units of µW/[nm∙cm2]. In this work, the model assumes that the continuous spectral component 

behaves as a gray body. Thus, a single parameter, θ0, represents the emissivity component,   

constant, as described by the following equation:  

θ T

−    
=   

    
 −  

   

2 7

1
0 s 0 2

5 2

( N.A. ) 10 W
( ,[ ])

m m
exp 1

c

s

c π μ
I λ θ

c nc
λ

λ T

  
(3) 

where λ is the wavelength in meters, θ0 is the relative gray body emissivity parameter and Ts is the 

flame temperature in kelvin, to be estimated. The N.A. = 0.22 is the optical fiber numerical aperture 

and, c1 = 1.176∙10-16 (Wm2/sr) and c2 = 1.438786∙10-2 (m∙K) are the first and second Planck’s constants 

respectively. A scaling factor of 10-7 is included to ensure consistency of units with the measured 

spectra.       

 

Figure 3. Data processing and analysis schemes implemented in this work: (a) Spectral signals 

acquisition and pre-processing, (b) PCA decomposition, (c) MCR-ALS implementation, (d) 

temperature estimation. 

Although the aforementioned methods can be applied to the calibrated spectral data, pre-

processing techniques were implemented to enhance specific spectral patterns. The airPLS 

(adaptative iteratively reweighted penalized least squares) baseline correction method [19] was 

implemented to separate the continuous spectrum from the discontinuous and band emissions. Other 

state-of-art algorithms were tested for such a purpose, however airPLS has shown the best results for 

the spectral features depicted in this work. Moreover, it was also verified that the convergence of 

optimization-based methods, e.g. MCR-ALS, was promoted by implementing noise reduction 

Figure 3. Data processing and analysis schemes implemented in this work: (a) Spectral
signals acquisition and pre-processing, (b) PCA decomposition, (c) MCR-ALS implementation,
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3. Results and Discussion

Spectral signals from the foregoing experiments are analyzed in this section. The first step
consisted on applying the airPLS baseline extraction algorithm to separately analyze both patterns.
This algorithm was implemented with default parameter values, MatlabTM, and other platform
implementations can be found in [21]. With the continuous features, a first approximation of the
combustion temperature was obtained by fitting each spectrum in the spectral range to the model in (3).
During the combustion experiments, irradiance intensity varied during the time scale. In this work, this
issue is not addressed since the main goal was to detect spectral features to characterize the samples.
In future work, the dynamical behavior of such patterns will be analyzed. Median temperature values
for each test are reported in Figure 4. The average low-resolution spectra from the pyrite combustion
experiments are displayed together with the corresponding median estimated temperature for each
test. It is important to note that the spectral irradiance amplitude varied during the acquisition.

Note that some discontinuous sections with fundamentals and overtones can be seen in the
average spectra, particularly, for particle sizes of PyD and PyE, it is possible to observe, molecular
emission without the need of extra signal processing. Spectral line emissions corresponding to
sodium (Na) around 589 nm and potassium (K) around 767 nm are normally reported in combustion
experiment (considered as spectral interferences in this work and literature [22]). However, one of
the hypotheses of the present work is the possibility of using these interferences as a trace for weak
spectral features masked by noise and as a trace for the combustion flame presence in the FOV of the
optical system. Furthermore, in the spectral range near potassium emission, only 2-line emissions
appeared at 779.1 nm and 793.9 nm. The same is observed in Figure 4 for the PyE sample, from the
U.S. Department of Commerce National Institute of Standards and Technology (NIST) Atomic Spectra
Database website [23], which can be related to iron. Finally, the line emission at 670.1 nm can be also
associated with Fe according to the NIST database.
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Figure 4. Average spectral emission from pyrite minerals in combustion experiments by considering
different particle sizes.

In general, the estimated temperature of the combustion flame increased as the particle size
fraction fed into the reactor was decreased. This could be explained in terms of the oxidation degree of
the samples during the combustion given the exothermic nature of the oxidation reactions which were
more extensive for the smaller particle size fractions, as reported in [18].

Figure 5 depicts our high spectral resolution measurement of the possible FeO spectral emission.
This signal clearly shows the sodium doublet profile at 589.0 nm and 589.6 nm, which was not
recognizable in the lower spectral resolution measurements. Also, a laboratory measured FeO
spectrum from West and Broida [7] is displayed together with our measurement. One can conclude
that FeO emissions plus other chemical combustion components are recorded in our measurements.
This figure also depicts a broad spectral emission around 603.0 nm, which will be analyzed later.
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Figure 5. Spectral FeO emission measurements and reference spectral features.

Analyzing the set of pyrite combustion experiments, an exploratory examination with PCA was
applied to each baseline corrected-off measured data set. Therefore, it was possible to focus on the
spectral features at Na and K fundamental emissions. In Figure 6, the results for the spectral range
around the Na fundamental feature are shown. Note that large intensity variations are observed
for different combusted particle sizes. Some spectral features are extremely enhanced, e.g., bands
at ~553.0 nm, 565.0 nm, 590.0 nm and 620.0 nm. Some of these spectral features are related to FeO
emission [7], as seen in Figure 5, and some others new appear, e.g., molecular bands ~ 603.0 nm.
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Figure 6. Extraction of spectral features with PCA from pyrite combustion for different particle sizes,
P.V. 1 (loadings vectors) are depicted.

Then, the MCR-ALS method was applied to the combustion experiment spectrum with the highest,
in intensity, emission profile. In this case, spectra from the sample PyE were selected. The main settings
selected for the MCR-ALS GUI were: the number of components to estimate, assessed with the SVD
algorithm according to estimated eigenvalues, was 8. From an exploratory analysis, with an initial
estimate of the concentration matrix with the “Pure” (purest variable detection method [24]) option,
best spectral separation results were achieved. Non-negativity constraints were implemented over
the spectra and concentration profiles. This was carried out with the fast-non-negative least squares
algorithm (fnnls) [25]. With these settings, a 99.881% of the data variance and a fitting error (PCA) [15]
of 1.2843% were achieved with 92 iterations. A total of 4 pure spectral components were selected
as chemically meaningful based on their relative concentrations and their non overlapping spectral
behavior, which are depicted in Figure 7. It can be seen that the FeO emission and sodium doublet are
resolved from the decomposition and that an extra spectral feature, I1, is to be analyzed.
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Figure 7. Extraction of spectral features with MCR-ALS from PyE pyrite sample combustion, each
spectrum is normalized to its maximum: (a,b) are associated to a sodium doublet, named as I1 and I2

for subsequent analysis, (c) is associated with FeO emission, I3 and (d) emission of other iron oxides
emission, I4. Obs. Spectral features are normalized to their maximum and offsets to each spectrum are
included for comparison purposes.
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Now, the challenge is to correlate the spectral bands identified in the foregoing analysis to different
iron oxides produced during pyrite combustion. To answer this question, let us note first that iron
oxides such us wustite (FeO), magnetite (Fe3O4) and hematite (Fe2O3) contain different oxidation
states of Fe: FeO, which contains only Fe(II) (nomenclature for Fe2+ ion), Fe2O3 contains only Fe(III)
type of Fe and Fe3O4 contains both oxidation states, which is also referred as Fe(II,III). From a spectral
standpoint, Table 2 summarizes the relevant emission bands and lines identified from NIST spectral
line database and literature [23,26] that can be correlated to the signals found in Figure 7 signals.
In particular, some of the emissions of Fe(III) are found in Figure 7d.

Table 2. Spectral emission lines and bands emission identification (*).

Molecule/Element or Ion Emission Center Wavelength, nm

Fe I 565.9, 602.4, 619.2

Fe II 531.6, 566.0, 623.8

Fe III 531.1, 535.4, 583.4, 600.0, 603.3

FeO [6–9,21] 564.7, 579.0, 586.8, 590.3, 597.5, 609.7, 611.0, 618.0, 621.8

* Emission bands for magnetite and hematite at the reported temperatures were not found in the literature.

Secondly, the oxidation products collected in the receptacle located at the bottom of the reactor,
were characterized in terms of their mineralogical composition by means of X-ray Diffraction (XRD)
and QEMSCAN®. In all oxidized samples, the main mineralogical species identified were magnetite,
hematite and in a smaller proportion, wustite and other substances. The mass contribution of Fe3O4

and Fe2O3 represented more than 92% of the overall weight in each sample.
As previously discussed, some of the emission signals shown in Figures 5–7, were related to the

FeO generation, while some others remained unknown. Based on the information of the composition
of the oxidation products, the unknown signals may be associated to the formation of Fe3O4 and/or
Fe2O3 during the ignition of the pyrite particle cloud.

The coexistence of magnetite and hematite in the products could be explained from the analysis
of the well-known phase diagram of the Fe-O system [27]. For the average estimated temperatures of
the combustion flames (>1724 K) and the samples oxygen content (28.5 to 30 pct. by weight), an ionic
and homogeneous liquid composed of Fe(II), Fe(III) and oxygen, was formed as a result of the particle
cloud ignition. As the molten particles were cooled, the precipitation of magnetite, as the first solid
iron oxide, had occurred. Then, as the particles temperature of the particles continued to decrease
(until they reached the receptacle), the formation of two solid phases, occurred. The solid phases were
magnetite and hematite, and they represent the state of the samples at the moment of their collection
and further characterization.

Additionally, in Figure 8, a predominance diagram for the Fe-O system, is presented. According to
this diagram, at high temperatures (>1700 K), under the highly oxidant conditions (oxygen potential,
log PO2, close to zero), the only stable species in the combustion flame were magnetite (Fe3O4) and
wustite (indicated in Figure 8 as Fe0.947O and Fe0.945O). Therefore, the formation of hematite (Fe2O3)
must have occurred during the cooling stage of the oxidation products, since this iron oxide can exist
only at low temperatures (<1500 K).

Thus, we claim that the foregoing oxidation process discussion, provides sufficient thermodynamic
analysis to relate the unknown spectral emission signal in Figure 7d to the formation of magnetite.
On the other hand, the aforementioned results can be employed to initially address the issue of on-line
copper combustion process monitoring. In order to do this, the model proposed in Equation (2) can be
applied to generate, for example, an alert that the combustion is running in an overoxidation state. Here,
to estimate the proposed model parameters, including the four estimated pure components depicted
in Figure 7, a non-linear fitting procedure such as ‖Is(λ, [θ Ts]) − Im‖

2
2 is minimized. The selected

optimization algorithm was the trust-region-reflective, which can be implemented with built-in
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MatlabTM optimization toolbox functions. Positive constraints were included, since the relative
concentrations, the gray body emissivity, the flame temperature and the signal offset are all positive for
each spectrum. The non-zero selected initial conditions were an emissivity of 0.5, and a temperature of
1500 K. A fitting result for the sample PyE combustion spectrum can be seen in Figure 9. Note that
the model accounts for most of the signal structure. As depicted in the residual plot (down-left of
inside Figure 9), there is still information non modeled by (2) and (3) that can be explained by errors
introduced by the gray body assumption, and by the lack of fitting from the signal separation procedure.
Furthermore, note that by following the proposed method, the model in (2) can be extended to include
other spectral features in the analyzed spectral range, such as the emission of CuxO molecules that are
expected to appear in practical industrial flames. The foregoing will be investigated in future work.
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Figure 9. Non-linear curve fitting results for a spectrum from combustion of PyE sample, RMSE (root
mean square error) = 0.4393, θ0 = 0.0249, Ts = 2220.3 K, θ1 (related to I1 or Na) = 3.4583, θ2 (related
to I2 or Na) = 15.7373, θ3 (related to I3 or FeO) = 6.2484, θ4 (related to I4 or Fe3O4) = 7.3093 and θ5

(related to an offset) = 9.6 × 10−8.

Then, the regression model was applied to the other data sets and the results for FeO and Fe3O4

are summarized in Figure 10, where the relative concentrations of the four pure spectrum depicted in
Figure 7 are normalized as θj = θj/Σ(θj), j = 1:4, and expressed as a percentage for each spectral sample.
Median values are displayed since the experimental results presented skewed distributions.
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Figure 10. Relative concentrations (median values for each data set) of FeO and Fe3O4 band emissions
estimated from spectra of pyrite combustion. Obs. Sample particle sizes decrease from left to right.

From Figure 10, the relative concentrations for the two molecular emissions are highly correlated,
with a correlation coefficient of 0.9134, no correlation was found with the sodium doublet or estimated
temperature. A nonlinear relation between the estimated concentrations and particle size was observed,
as well as the estimated temperature. On the other hand, by following the aforementioned procedures,
drop-tube wall spectral emission was analyzed. It was verified that the background radiation is only
characterized by a continuous spectral component. Thus, spurious radiation that could affect the
molecular or the emission lines from the process are discarded. Moreover, since the emitted radiation
at the reported experimental temperatures reaches its maximum in the infrared spectral range (e.g.,
by Wien’s Displacement law, the radiation from a black body at 1800 K reaches its spectral peak at
≈1.6 µm), it could contain important process information that was not depicted in the visible region.
This hypothesis will be explored in future work.

Finally, it should be noted that the practical application of the proposed approach is aimed
to develop tools to monitor and characterize the oxidation state of copper concentrates during
their combustion in flash furnaces, allowing operators to have online feedback from the process.
Furthermore, note that the reported approach, summarized as: (i) the acquisition of spectral signals;
(ii) the pre-processing and calibration of such signals; (iii) the extraction of meaningful features/patterns
from measured spectra with a multivariate curve resolution method and; (iv) the application of a
non-linear regression method with the models in (2) and (3) to estimate the combustion temperature,
relative emissivity and relative concentrations of spectral patterns contained in each measured spectrum,
can be extrapolated to other combustion processes, with the constraint that different fuels will generate
different spectral features during their combustion, so an understanding about the involved chemical
reactions and physical transformations is needed.

4. Conclusions

In this work, an experimental study aimed at identifying and characterizing the spectral features
emitted during the combustion of iron sulfide pyrite was performed. Spectral signals and bands
were related to the formation of wustite and magnetite based on the composition of the reacted
products, a comparison with spectra reported in the literature, and a thermodynamic discussion that
provided information of the oxidation process. Moreover, a high spectral resolution spectrometer was
developed to resolve the Na emission doublet, and to validate a technique based on spectra acquired
by the low-resolution spectrometer plus signal processing methods. With the resolved pure spectral
signals by means of the MCR-ALS method and a proposed model describing the spectral emission
of these minerals during combustion, relative concentrations of spectral features and combustion
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temperature were estimated with a non-linear least square fitting procedure for each acquired spectrum.
The proposed methodology demonstrated to be effective for signal reconstruction and, in future work,
it will be applied for the analysis of industrial spectral data. The proposed model will be refined to
include spectral emissivity assumptions based on physical laws. Furthermore, we conclude that the
proposed techniques are a feasible alternative to monitor and to control the flash smelting process and
to characterize materials under oxidation conditions, particularly, the ones containing pyrite, such as
copper concentrates. Finally, we claim that this is the first reported Fe3O4 visible spectral emission
measurement achieved during its formation in iron sulfide pyrite combustion.
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