
sensors

Article

The Comparison of Different Types of Heat
Accumulators and Benefits of Their Use
in Horticulture

Sławomir Kurpaska 1, Jarosław Knaga 1, Hubert Latała 1 , Michał Cupiał 1,* ,
Paweł Konopacki 2 and Ryszard Hołownicki 2

1 Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, ul. Balicka 116B,
30-149 Kraków, Poland; rtkurpas@cyf-kr.edu.pl (S.K.); jaroslaw.knaga@ur.krakow.pl (J.K.);
hubert.latala@urk.edu.pl (H.L.)

2 Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland;
Pawel.Konopacki@inhort.pl (P.K.); ryszard.holownicki@inhort.pl (R.H.)

* Correspondence: michal.cupial@ur.krakow.pl; Tel.: +48-12-662-46-23

Received: 22 January 2020; Accepted: 3 March 2020; Published: 5 March 2020
����������
�������

Abstract: This paper presents the results of the analysis of thermal issues and energy efficiency of
three types of accumulators; namely stone-bed; water and phase change. Research experiments
were carried out during April–October 2013 in a standard commercial semi-cylindrical high plastic
tunnel with tomato cultivation of 150 m2. A stone-bed accumulator; with an area of almost 75 m2

was installed in the tunnel below ground level; while a water accumulator with a volume of 4 m3

was installed outside the tunnel. A phase change material (PCM) accumulator, with a volume of
1 m3 containing paraffin, was located inside the tunnel. The heat storage capacity of the tested
accumulators and the energy efficiency of the process were determined based on the analyses of
the 392 stone-bed charging and discharging cycles, the 62 water accumulator charging cycles and
close to 40 PCM accumulator charging and discharging cycles. Dependencies in the form of easily
measurable parameters; have been established to determine the amount of stored heat; as well as the
conditions for which the effectiveness of these processes reaches the highest value. The presented
analysis falls under the pro-ecological scope of replacing fossil fuels with renewable energy. As a
result of the analysis; it was found that; in the case of a stone-bed; such an accumulator shows higher
efficiency at lower parameters; that is, temperature difference and solar radiation intensity. In turn;
a higher temperature difference and a higher value of solar radiation intensity are required for the
water accumulator. The energy storage efficiency of the PCM accumulator is emphatically smaller
and not comparable with either the stone-bed or the water accumulator.

Keywords: accumulators; plastic tunnel; energy; efficiency; sensor

1. Introduction

Currently, the overwhelming majority of the world’s energy comes from non-renewable sources,
such as oil, coal, natural gas and uranium, which causes greenhouse gas emissions, global warming and
related climate change. Counteracting these adverse phenomena is a huge challenge for modern science
and the economy, resulting in the need to conduct research into the possibility of using renewable
energy sources as alternatives [1–3], with solar energy and methods of its acquisition, processing and
storage being the most promising [4]. The high potential for the use of heat obtained from solar energy
results from the high efficiency of storage and conversion of this energy [5]. The basic elements used in
this field are solar collectors and heat storage systems. Scientific research, conducted for many years,
has been aimed at developing appropriate accumulators that will allow energy storage and will be
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characterized by high efficiency [6–8]. Depending on the requirements of the recipient, energy obtained
from renewable sources can be converted into various energy types [9]. On the other hand, heat storage
is very important in the case of households and farm heating [10], with preparation of domestic hot
water for households and farms and food processing being important factors.

1.1. Methods of Heat Storage

Among the various methods of storing heat from solar energy, we can distinguish the accumulation
of sensible heat [11], latent heat [12] and thermochemical energy [13]. The efficiency of thermal energy
storage (TES) systems depends on the properties of selected heat storage materials, the conditions in
which these devices are used and the purpose for which they are used [14].

In the case of materials for storing thermal energy in the form of sensible heat, there is no phase
change during the process of absorbing thermal energy and the temperature of the medium filling
the accumulator increases [15]. The amount of heat stored is proportional to the density, volume,
specific heat and temperature changes of the stored material [16]. Heat storage media can be various
substances, such as liquids (water, mineral oils, salt solutions, liquid metals and alloys) or solids
(stones, concrete, sand, bricks) [17–19].

Materials for latent heat storage are phase change materials (PCMs). During the process of
absorbing thermal energy, a phase change occurs, and temperature fluctuations are relatively small [20].
These materials use a solid-liquid phase change process. Although the phase transition from liquid
to gas is characterized by higher latent heat, large changes in the volume of gases associated with
evaporation mean that storage is rarely used in heat accumulators [21]. Materials that use solid-liquid
transformation do not have this disadvantage. Such materials should have high latent heat and high
thermal conductivity, with a melting point close to the required range of system operating temperatures,
should be chemically stable, cheap, non-toxic and non-aggressive [22]. Among the materials using
phase change, organic materials (paraffin, fatty acids, esters, alcohols, glycol), inorganic substances (salt
solutions, metals and metal alloys, multi-component materials), composite materials and other [14]
can be distinguished. PCMs are widely used in heat accumulators [23] and are considered one of the
most effective thermal energy storage systems [24,25].

1.2. Heat Storage in Protected Crop Cultivation

Protected crop cultivation has been using solar energy for many years. A greenhouse or a plastic
tunnel is a closed structure that captures solar radiation and stores heat to create a microclimate that is
favorable for plants [26]. The conditions necessary for production of the indoor microclimate depend
on the type of crop but as a rule, to maintain the required cultivation temperature, it is necessary to
provide additional energy during certain periods [27]. To ensure suitable conditions for growing plants
in season as well as out of season, it is very important to store heat in greenhouse production, when the
daytime temperature often rises above what is desired and at night may fall below an acceptable
temperature [28–30]. The systems used in greenhouses should therefore store excess heat accumulated
during the day and warm the air inside the facility at night [31]. The strategy for improving the thermal
environment in greenhouses must first of all take into account the use of an appropriate energy storage
method [32,33].

1.3. The Importance of Heat Storage Research

Appropriate energy management is not limited to effective ways of obtaining it. The occurrence
of large fluctuations in energy demand in various branches of the economy makes it very important
to develop consistently better energy storage methods [34,35]. This topic is very important for both
developed and developing countries. Efficient storage of energy obtained from renewable sources has
a positive impact on the natural environment and is an important element of sustainable development.
The implementation of appropriate technical and technological solutions in this area should be included
in the energy policy of individual countries. Research has shown that governments of countries with a
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higher share of renewable energy invest more in energy storage technologies [36]. Rational economic
energy policy is not only effective processing of renewable energy but also its efficient storage.

The subject of the presented research concerns current issues of energy policy related to food
production [37–39]. Conventional agricultural production technologies, including protected cultivation,
based on non-renewable energy sources, consume around 50 kg of coal per 1 m2 of each facility per
year in central Europe. As a consequence, the use of outdated, non-ecological technologies can have
a very negative impact on energy consumption, as well as on the natural environment [40,41]. The
conducted research regarding various methods of heat storage will contribute to the development of
optimal solutions dedicated to horticultural production, taking into account the specificity in which
heat accumulators are used. The implementation of heat collection and storage technology appropriate
in the given conditions is very important both in the context of energy management of individual
countries [42], as well as for food production and preservation of natural resources [43]. As thermal
issues of heat accumulators are the main problem analyzed in this paper, its main purpose is to review
the efficiency of low-temperature heat storage in accumulators that can be used in an engineering
practice. As a measure of storage efficiency, the relation between the heat obtained and the electricity
used to drive the necessary devices that are an integral part of the analyzed heat storage systems
was adopted.

2. Materials and Methods

The aim of the study was to analyze thermal issues and compare the efficiency of different types
of heat accumulators. The research involved three short-term energy storage systems—a stone-bed
accumulator, a water accumulator and a PCM (paraffinic) accumulator. The tests were conducted in
real conditions at the Faculty of Production Engineering and Energetics in Krakow (19◦57’E; 50◦03’N)
over a 7-month period (April-October). The diagram (Figure 1) presents the idea of a stone-bed and
water accumulator during charge and discharge cycles.
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Figure 1. Schematic diagram of the analyzed stone-bed and water accumulator system during the
charging (a) and discharging cycle (b).

The charging and discharging processes of both accumulators were carried out in accordance with
predefined algorithms. The algorithm diagram for the charging process is shown in Figure 2.
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Figure 2. The algorithm diagram for the charging process of the stone-bed and water accumulators.

When charging a stone-bed accumulator, it is necessary to provide information about the
temperature differences between the temperature above the shading screen and the temperature in the
accumulator (∆T1), the temperature at the air outlet of the accumulator and the temperature inside the
building (∆T2), as well as the difference between the temperature of the stone-bed accumulator and
the temperature of the water accumulator (∆T3). In turn, when charging a water accumulator, it is
necessary to know the difference between the air temperature above the shading screen and the initial
temperature of the liquid stored in the water accumulator (∆T4) and the water temperature at the end
of the charging process (∆T5), therefore tests were carried out with the following predefined threshold
values of the differences of the following parameters—∆T1 = ∆T4 = ∆T5 = 4 K; ∆T2 = ∆T3 = 2 K. The
discharge process of the stone-bed accumulator was carried out using a similar algorithm in which
it was assumed that the air flow was forced through the stone-bed when the temperature difference
between the temperature of the air flowing out of the accumulator and the temperature inside the
building was at least 2 K.

2.1. The Stone-Bed Accumulator

The diagram (Figure 3) presents the heat storage system in the stone-bed accumulator, while the
diagrams (Figures 4 and 5) present the heat storage system in the other analyzed accumulators.
Tomatoes (with a density of 2.1 plants/m2) were grown during the experiment.
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Figure 3. A diagram of an experimental direct contact ground-air heat exchanger located below a
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The stone-bed accumulator comprised two independent sections with dimensions (length ×
width)—11 × 1.7 m and 11 × 3.4 m, respectively. Each section has a deposit height of 0.7 m and
was separated from the other by means of an insulation layer. The stone-bed accumulator deposit
was porphyry particles (fraction 30–60 mm). The porphyry used was characterized by the following
parameters—thermal conductivity coefficient 1.67 W/(m·K); bulk density 2550 kg/m3 and in the further
analysis the equivalent particle diameter was assumed to be 0.045 m. Perforated pipes supplying
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air were located in the lower part of each section, while the perforated pipes removing the air were
located in the upper part of each section. The air was forced from the ducts into the tunnel. The
system employed a fan powered by an electric engine with a power rating of 1.8 kW. The motor was
connected directly to a variable frequency controller, matched to the engine power, which allowed
modulation of the speed of air flowing through the accumulator. The experiments were carried out for
various accumulator surfaces ranging from 18.7 m2 to 74.8 m2, while in order to unify the obtained
results, all analyses were carried out for the unit area and the unit time of the experiment. A total of
392 cycles were analyzed, split equally between charging and discharging. During the experiments,
the following parameters were measured—air flow velocity (Va) measured in a measuring section
with a diameter of 300 mm—using an air flow meter MiniAir64, air temperature—using a PT 1000
resistance sensor and relative humidity—using a HD4917T meter. The measurement accuracies were
for temperatures from ±0.35 to ±0.55 K and for humidity and air flow ±1.5%. Whereas the total solar
radiation intensity Rout to the horizontal surface and the matching one from the tunnel was measured
with a CM3 pyranometer. All measurements were monitored and archived using the author’s own
measuring system with a sampling time of 120 s.

2.2. The Water Accumulator

The system built for testing was equipped with an air-water heat exchanger with a power rating of
12 kW. The heat exchanger system used a fan powered by an electric engine with a power rating of 3 kW.
The engine was connected directly to a variable frequency controller, matched to the engine power,
which allowed modulation of the speed of air flowing through the exchanger. The entire air-to-water
heat exchanger system was connected by a hydraulic system with a water heat accumulator of 4 m3

volume. The experimental water heat storage tank was made on the basis of a tank with a total capacity
of 5 m3 in the shape of a cylinder with a diameter of 1.6 m and a length of 2.5 m. The exterior layer
of the tank consisted of thermal insulation, in the form of 10 cm thick extruded polystyrene foam,
with any gaps between the polystyrene foam plates filled with polyurethane foam. As a circulating
pump, a submersible pump was used, in order to facilitate venting the system without any problems,
the construction of which is based on the principle of a hydraulic jack. The circulation force of the
pump was 300 W. The design of the heat storage system is shown in the diagram (Figure 4).

In order to measure the energy and power of the heat source, resistive Pt 100 sensors were used
and for measuring temperature at other points Pt 100 and Pt 1000 sensors were employed. The flow
rate of the fluid (water) was measured using a water meter equipped with a pulse transmitter GMDX-R.
The volume per each pulse in said flow meter was 10 dm3. Electricity consumption was measured
with an LE-03 active power meter in the first accuracy class. The measuring instruments used met the
quality requirements of laboratory tests. The operating parameters of the system were recorded at a
predefined time interval of 120 s and at each additional event.

2.3. The Phase Change (PCM) Accumulator

The phase change (PCM) accumulator was filled with 1 m3 of R58 paraffin. The accumulator’s
construction was a rectangular heat exchanger, which contained a pipe with a diameter of 100 mm,
through which warm or cool air flowed. Heat transfer or collection from air took place through the
walls of the exchanger pipes to the paraffin. Accumulation of solar radiation energy in this accumulator
was analyzed in cycles. They included variable time of energy supply to the accumulator, stagnation
period and variable discharge time. The supply of energy for accumulation took place in the process of
solar radiation conversion in a photovoltaic power plant. This energy was then converted into heat
employing a set of heaters with 3, 6 and 9 kW, respectively and was supplied as a stream of warm air
to the accumulator. The work of individual heaters depended on the available instantaneous power of
the solar power plant. The assumption of the experiment was to use the potential of available solar
energy and its utilization through the charging process. That is, on the one hand, how much heat can
be supplied to the accumulator and on the other hand, how much heat can be absorbed by the material
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filling the accumulator. After the charging period, the accumulator stagnated until the discharge cycle
started. In the discharge process, useful heat was transferred directly with a stream of air returned to
the tunnel. During the experiment, the following parameters were measured:

(1) at the input—working time, heating energy for the heaters and the fan, paraffin temperature,
temperature and relative humidity of the air entering the battery.

(2) at the output—working time, fan power energy, paraffin temperature, temperature and relative
humidity of the air inlet and outlet from the battery.

The diagram (Figure 5) shows the process of charging the PCM accumulator. Heaters supplying
heat to the accumulator were switched on sequentially depending on the available power of a
photovoltaic power plant, while a 0.5 kW axial fan was responsible for the distribution of the heat flux
in the air.

The process of discharging the PCM accumulator (Figure 6) consisted of receiving heat accumulated
in the paraffin by means of an air stream flowing through the bed. For this purpose, the fan used
earlier in the accumulator charging process was employed. The useful heat in this process was the
difference between the air enthalpy at the output and the input of the PCM accumulator.
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2.4. Methods

Comparison of individual systems for heat collection and short-term storage allows the
determination of preferences in the application of the selected solution for individual conditions in
which agricultural production is carried out. This choice has a significant impact on energy policy with
regard to the replacement of conventional energy sources in horticultural production with renewable
energy. Storage efficiency, calculated as the energy effect obtained in relation to the expenditure
incurred, was adopted as an indicator of the usefulness of the analyzed accumulators.

2.4.1. Stone-Bed Accumulator

The intensity of heat and mass exchange processes in the accumulator depends on variations
in temperature (TIN) and humidity (RHIN) and the flux of injected air (Qair), as well as temperature
(TACC) and humidity inside the accumulator (RHACC). The diagram (Figure 7) presents input and
output parameters that allow full analysis of the processes taking place in the accumulator bed.
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The process presented in Figure 7 covers two issues (interconnected), namely heat exchange
(between flowing air and bed particles) and mass exchange (as a result of evaporation/condensation
processes). The general equation of mass energy balance for air contained in the accumulator bed was
formulated as an equation with concentrated parameters, taking into account streams inflowing or
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out-flowing from the analyzed space. Hence, taking into account the heat and mass balance equations,
in differential time dτ, one can arrive at the following conclusions:

for heat:

dQACC = Va·F·ρa

∫ τ1+τ

τ1

(HIN −HOUT)dτ, (1)

where QACC—heat in the accumulator (kWh); Va—air velocity in the measuring section (m/s);
F—cross-sectional area of the section in which the velocity was measured (m2); ρa—air density
(kg/m3); mACC—change in the water mass in the accumulator (kg); HIN, HOUT—enthalpy of air forced
in (HIN) and flowing out of the accumulator (HOUT), kWh/kg.

and for mass:

dmACC = Va

∫ τ1+τ

τ1

(CIN −COUT)dτ, (2)

where mACC—change in the water mass in the accumulator (kg); CIN, COUT—absolute humidity in the
air forced in (CIN) and flowing out of the accumulator (COUT) (kg/m3).

When considering heat and mass issues, all parameters were monitored and archived by a
computer measuring system with a recording frequency every 120 s. To generalize the results obtained,
the average values of the measured air parameters (Wavg) determining the changes in heat and
mass of water in the accumulator bed were calculated during subsequent work cycles (charging and
discharging). These quantities were calculated on the basis of their instantaneous values according to
the relationship:

Wavg =
1
τ

∫ τ1+τ

τ1

w(τ)dτ. (3)

Storage efficiency (Coefficient of Performance) was determined for three cases, namely the
charging process, the discharging process and as a summary effect of the charging and discharging
processes together. It can therefore be formally recorded that the efficiency for the loading process
(COPacc_ch) was:

COPacc_ch =

∑τ = τ1
τ = 0 (QOUT −QIN)

Pe_ch·τ1_ch
, (4)

where QOUT, QIN—heat inflow (QIN) and outflow (QOUT) from the accumulator (kWh); Pe_ch,—power
of the fan engine in the process (kW), τ1_ch—accumulator charging time (hr).

In turn, for the discharge process, process efficiency (COPacc_disch) was calculated as:

COPacc_disch =

∑τ = τ1
τ = 0 (QIN −QOUT)

Pe_disch·τ1_disch
, (5)

where Pe_disch,—power of the fan engine in the process (kW), τ1_disch—accumulator discharging time (hr).
Finally, the efficiency of the entire process (COPtot) was described using the formula:

COPacc_tot =

∑τ = τ1
τ = 0 (QIN −QOUT)

Pe_ch·τ1_ch + Pe_disch·τ1_disch
. (6)

Other parameters necessary to determine these relationships for each cycle (enthalpy—H; absolute
air humidity—C) were calculated using psychrometric relationships. In order to compare the observed
changes in environmental conditions inside the tunnels studied, the water vapor pressure deficit (vpd)
was also calculated for the air in tunnels with and without a accumulator (control tunnel). In both
tunnels, the same density of plants was used during the experiments and the construction of tunnels
and control of the position of roof vents were identical.
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2.4.2. Water Accumulator

For a 2-min interval, the amount of heat stored in the water accumulator was determined in
accordance with the relationship (7):

Q =
1

3.6

∫ Vi+1

Vi

ρ·cw·(Tout_w − Tin_w)dV, (7)

where Q—heat (kWh); dV—change in the volume of flowing working medium (dm3); ρ—working
medium (water) density (kg/dm3); cw—specific heat of the working medium (kWh/(kg·K));
Tin_w—system inlet temperature (◦C); Tout_w—system outlet temperature (◦C).

However, when operating in a steady-state, the inlet temperature from the exchanger changes
towards the temperature at the bottom of the accumulator Tin_w→Tb_w and the temperature of the
upper zone of the tank changes towards the temperature at the outlet of the exchanger Tt_w→Tout_w.
The average temperature in the water heat accumulator TB will be calculated as the average value
from the temperatures of the upper Tt_w zone and the lower Tb_w zone of the battery.

Based on the relationship (7), the instantaneous power of the heat stream forced into the
accumulator was determined in accordance with the relationship (8):

.
Q =

dQ
dτ

, (8)

where dQ—heat (kWh); dτ—time when the heat was accumulated dQ (hrs).
For the needs of system dynamics analysis, the instantaneous heat storage efficiency was

determined in accordance with the relationship (9):

COPw =

.
Q
Pe

, (9)

where
.

Q—heat stream (kW); Pe—electric power recorded by the analyzer (kW).
The last element of the energy efficiency analysis of the heat storage system is the efficiency

related to the system’s work cycle. Periods of uninterrupted operation with a positive heat balance of a
duration not shorter than 2 h and not longer than the time of the daily interval were assumed as the
cycle of operation of the heat storage system in a water accumulator. The energy efficiency defined in
this way was determined according to the relationship (10):

COP =

∑τ = τk
τ = 0 Qi∫ τk
τ0

Pedτ
(10)

and after reducing to a common base of time the relationship (11) was obtained:

COP =

∫ τ1
τ0

.
Qdτ∫ τ1

τ0
Pedτ

, (11)

where
.

Q—heat stream (kW); τ0—heat storage system activation time (s), τk—heat storage system
shutdown time (s), Pe—electric power recorded by the analyzer (kW).

2.4.3. PCM Accumulator

During the charging process, heat to the PCM accumulator (Figure 8) was supplied by means
of an air stream heated by resistance heaters (Energy IN). As a result, the paraffin temperature
(∆Tparaffin) and internal energy of the bed (∆QACC) increased. Reception of heat from the accumulator
(discharge cycle) was carried out using cool air stream (TairIN) heating (TairOUT) in the accumulator
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bed. The difference in paraffin temperature was calculated for each cycle of accumulator charging and
discharging, thus determining how the temperature increased or decreased in a given cycle.
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The general energy balance equation in the accumulator bed was formulated in the form of
Equations (12)–(14) taking into account the inflows or outflows from the analyzed bed. Hence, taking
into account the heat balance equations in differential time dτ, one can write:

dQPCM =
(
d

.
QHEAT − d

.
QE

)
dτ (12)

dQHEAT =

∫ τ1+τ

τ1

PHEATdτ (13)

dQE =

∫ τ1+τ

τ1

(
d

.
QOUT − d

.
QIN

)
dτ, (14)

where QPCM—heat in PCM accumulator (kWh); PHEAT—heater power (kW);
.

QIN,
.

QOUT—energy of
stream of air forced in and flowing out of the accumulator (kW);

.
Qe—useful energy stream (kW);

.
QHEAT—supplied energy stream (kW).

The energy efficiency of the heat storage system in the phase change material was referenced to
the system’s work cycle. The energy efficiency of the PCM accumulator was determined according to
the relationship (15):

COP =

∫ τ1
τ0

.
Qe dτ∫ τ1

τ0
Pe dτ+

∫ τ1
τ0

.
QIN dτ

, (15)

where
.

Qe—useful heat stream (kW); t0—heat storage system activation time (s); tk—heat storage system
shutdown time (s); Pe—electric power recorded by the analyzer (kW);

.
QIN—input air heat flow (kW).

3. Results

3.1. Stone-Bed Accumulator

Heat storage efficiency tests were carried out at the following input parameter ranges. For
accumulator charging, 0.1 < τ < 23.6 hrs; 11.5 < TINS < 29.3 ◦C; 23.1 < RHINS < 90.9%; 3.7 < Va < 6.1
m/s, 470 < Pe_ch < 1180 W. For accumulator discharging, 0.2 < τ < 20.1 hrs; 6.6 < TINS < 22.2 ◦C; 73.1 <

RHINS < 95.2 %; 4.6 < Va < 6.4 m/s, 830 < Pe_disch < 1250 W.
The PCM accumulator system operation included charging and discharging periods. Charging

times ranged from 1.9 to 10.3 h and discharging times ranged from 2.5 to 11 h.
Figure 9 shows an example of the changes of measured and calculated parameters during one full

cycle of accumulator charging and discharging.
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Figure 9. The course of measured and calculated parameters during a full cycle of charging and
discharging the stone-bed accumulator.

During the charging cycle, the total amount of solar radiation energy was 4.17 kWh. Whilst
charging (the cycle time was nearly 11 hours), the total amount of heat stored in the accumulator
(calculated per 1m3 of the bed) was 0.84 kWh/m3. In the discharge cycle (cycle duration was
approximately 43 h), about 2.9 kWh / m3 was fed into the tunnel with plants. The greater amount of
heat delivered to the tunnel with plants, compared to the amount of heat stored during accumulator
charging, was at the expense of lowering the final bed temperature.

Figure 10 illustrates the charge and discharge cycles in which the total amount of solar radiation
in the cycle was 5.5 kWh.
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Figure 10. The course of measured and calculated parameters during the full cycle of charging and
discharging a stone-bed accumulator.

The charging cycle was approximately 11.5 h. During charging, nearly 0.91 kWh/m3 of heat was
stored in the accumulator, while during discharge 1.2 kWh/m3 of heat was supplied to the tunnel. As
before, the increased amount of heat results from a lower bed temperature at the end of accumulator
discharge when compared to the onset of charging.

As shown in the graph (Figure 11), the air passing through the bed of the accumulator’s bed is
dehumidified while the accumulator is being charged and humidified when it is discharged. The total
amount of water removed from the interior of the tunnel (mtot) when charging the accumulator depends
on the temperature of the injected air. As it results from the course of the presented relationships at the
beginning of the charging process, the amount of water mass stored in the accumulator bed increased
intensively, while with the heating of the bed the air drying rate decreases and even to the extent that
humidification of exhaust air occurs. This trend was observed for both analyzed cases.



Sensors 2020, 20, 1417 12 of 27

Sensors 2020, 20, x FOR PEER REVIEW 11 of 26 

 

before, the increased amount of heat results from a lower bed temperature at the end of accumulator 
discharge when compared to the onset of charging.  

As shown in the graph (Figure 11), the air passing through the bed of the accumulator’s bed is 
dehumidified while the accumulator is being charged and humidified when it is discharged. The total 
amount of water removed from the interior of the tunnel (mtot) when charging the accumulator 
depends on the temperature of the injected air. As it results from the course of the presented 
relationships at the beginning of the charging process, the amount of water mass stored in the 
accumulator bed increased intensively, while with the heating of the bed the air drying rate decreases 
and even to the extent that humidification of exhaust air occurs. This trend was observed for both 
analyzed cases. 

 
Figure 11. Change in the concentration of water vapor in the air forced in and flowing out of the bed, 
as well as the instantaneous and total water flow exchanged between the accumulator and the tunnel 
interior. 

In order to generalize the relationships obtained, the analyses were carried out for all 392 cycles 
and the obtained graphical relationships of the measured and calculated quantities were depicted in 
Figures 12–14.  

 
Figure 12. Averaged course of measured parameters during accumulator charging cycles. 

 
Figure 13. Averaged course of measured parameters during accumulator discharging cycles. 

-0,036
-0,0288
-0,0216
-0,0144
-0,0072
0
0,0072
0,0144
0,0216
0,0288
0,036
0,0432

-0,5
-0,4
-0,3
-0,2
-0,1

0
0,1
0,2
0,3
0,4
0,5
0,6

Cu
m

ul
at

ed
m

as
s o

f w
at

er
 re

pl
ac

ed
 

in
 th

e 
st

on
eb

at
te

ry
m

to
t(

g/
m

3 )

Ab
so

lu
te

hu
m

id
ity

 o
f t

he
 in

je
ct

ed
 a

ir 
(C

in
) a

nd
 

th
e 

ai
r f

lo
w

in
g o

ut
 (C

ou
t) 

of
 th

e 
ba

tte
ry

 (k
g/

m
3 )

In
st

an
ta

ne
ou

sw
at

er
m

as
s r

ep
la

ce
d

in
 th

e 
ba

tte
ry

m
tim

e
(g

/(
m

3 .1
20

se
c)

)

Cout Cin

mtot

mtime

charging process discharging process

0          4           8         12         16        20      24        28        32       36       40        44        48 

Experiment time (hrs)

Local time (hrs)
0:00                          12:00                           24:00                         12:00                            24:00          

-0,004

0,000

0,004

0,008

0,012

0,016

0,020

0,024

0,028

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

charging process discharging process

0      4      8     12    16    20    24    28    32    36    40    44    48    52    56    60    64    68    72    

0:00             12:00                24:00                 12:00              24:00                12:00              24:00

Experiment’s time (hrs)

Local time (hrs)

Cu
m

ul
at

ed
m

as
s o

f w
at

er
 re

pl
ac

ed
 

in
 th

e 
st

on
eb

at
te

ry
m

to
t(

g/
m

3 )

Ab
so

lu
te

hu
m

id
ity

 o
f t

he
 in

je
ct

ed
 a

ir 
(C

in
) a

nd
 

th
e 

ai
r f

lo
w

in
g o

ut
 (C

ou
t) 

of
 th

e 
ba

tte
ry

 (k
g/

m
3 )

mtot

Cin
Cout

In
st

an
ta

ne
ou

sw
at

er
m

as
s r

ep
la

ce
d

in
 th

e 
ba

tte
ry

m
ti

m
e

(g
/(

m
3 .1

20
se

c)
)

mtime

drying
humidifying

0.028

0.024

0.020

0.016

0.012

0.008

0.004

0.000

-0.004

0.6
0.5

0.3

0.01
0.0
-0.1
-0.2

-0.4
-0.05

-0.3

0.2

0.4

0.0432
0.036

0.0216

0.0072
0.0
-0.0072
-0.0144

-0.0288
-0.035

-0.0216

0.0144

0.0288

0

5

10

15

20

25

30

35

0

2

4

6

8

10

12

14

01
-0

4

01
-0

5

01
-0

6

01
-0

7

01
-0

8

01
-0

9

01
-1

0

01
-1

1

Date of experiments

Su
m

 of
 so

lar
 ra

di
at

io
n 

En
er

gy
ΣR

ou
t(k

W
hr

s)

ΣRout

Av
er

ag
ea

m
bi

en
tt

em
pe

ra
tu

rę
 T o

ut
(o C)

Tout

01
-0

4

01
-0

5

01
-0

6

01
-0

7

01
-0

8

01
-0

9

01
-1

0

01
-1

1

Date of experiments

Te
m

pe
ra

tu
re

in
sid

ef
oi

lt
un

el 
T a

cc
, 

T w
ito

ut
(o C)

Va
po

rp
re

ss
ur

e d
ef

ici
t in

sid
e t

he
 fo

il 
tu

nn
el 

VP
D a

cc
VP

D w
ito

ut
(k

Pa
)

0

0,75

1,5

2,25

3

3,75

4,5

5,25

6

0

5

10

15

20

25

30

35

40
Tunnel without accumalotr
Tunnel with accumalotr

Tacc

Twithout

VPDacc
VPDwithout

6

5.25

4.5

3.75

3

2.25

1.5

0.75

0

0

4,4

8,8

13,2

17,6

22

0

1

2

3

4

5

01
-0

4

01
-0

5

01
-0

6

01
-0

7

01
-0

8

01
-0

9

01
-1

0

01
-1

1

Date of experiments

Su
m

 of
 so

lar
 ra

di
at

io
n 

En
er

gy
ΣR

ou
t(k

W
hr

s)

ΣRout

Av
er

ag
ea

m
bi

en
tt

em
pe

ra
tu

rę
 T o

ut
(o C)

Tout

0

0,2

0,4

0,6

0,8

1

1,2

0

4

8

12

16

20

24

Te
m

pe
ra

tu
re

in
sid

ef
oi

lt
un

el 
T a

cc
, 

T w
ito

ut
(o C)

Tunnel without accumalotr
Tunnel with accumalotr

Tacc

Twithout

VPDwithout

VPDacc

Va
po

rp
re

ss
ur

e d
ef

ici
t in

sid
e t

he
 fo

il 
tu

nn
el 

VP
D a

cc
VP

D w
ito

ut
(k

Pa
)

01
-0

4

01
-0

5

01
-0

6

01
-0

7

01
-0

8

01
-0

9

01
-1

0

01
-1

1

Date of experiments

1.2

1

0.8

0.6

0.4

0.2

00

4.4

8.8

13.2

17.6

22

Figure 11. Change in the concentration of water vapor in the air forced in and flowing out of the
bed, as well as the instantaneous and total water flow exchanged between the accumulator and the
tunnel interior.

In order to generalize the relationships obtained, the analyses were carried out for all 392 cycles
and the obtained graphical relationships of the measured and calculated quantities were depicted in
Figures 12–14.
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Figure 12. Averaged course of measured parameters during accumulator charging cycles.
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Figure 13. Averaged course of measured parameters during accumulator discharging cycles.

The analysis showed that throughout the entire season from 0.003 to 1.27 kWh of heat was supplied
to the inside of the plastic tunnel (area 150 m2) from 1 square meter of accumulator surface during one
cycle. Taking into account the accumulator area (the active area in both processes was about 70 m2) and
the number of cycles, 7.09 MWh of heat was supplied to the interior of the tunnel. This is equivalent
to combustion of almost 1.74 tons of coal, assuming a boiler efficiency of 0.7 and a calorific value of
5.83 kWh / kg. During both operations, the process of humidifying and drying the air stream occurred.
The average amount of water vapor removed from the flowing air as a result of its condensation at
the flowing air-bed interface (in the charging process) was 0.03 kgH20/cycle per 1 m2 of accumulator
surface. When discharged, exhaust air was humidified, and its average value was 0.17 kgH20/cycle/m2.
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The mechanism of increasing humidity in the exhaust air results directly from the evaporation of water
vapor in contact with air at a lower temperature than the temperature of the stone bed. To sum up,
it can be stated that the dominating process during the accumulator charging was dehumidification,
while during the discharge process it was humidified.Sensors 2020, 20, x FOR PEER REVIEW 12 of 26 
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Figure 14. Changes in heat and mass during charge (a) and discharge (b) cycles.

Figure 15 presents selected changes in the COP coefficient as a function of solar radiation intensity
and the amount of air forced in for the accumulator charging process (a) and as a function of the
temperature and amount of air forced in during its discharge (b).
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Figure 15. The course of the energy efficiency coefficient of performance (COP) for the process of
charging (a) and discharging (b) a stone-bed accumulator.

As can be seen in both cases, when the air stream increases, the efficiency of the processes analyzed
decreases. In the examined conditions, the range of changes in the COP coefficient was, for the charging
process, from 0.1 to 9.0 and for the discharge process within the range of 0.2 to 9.8.

Figure 16 presents the course of the COP coefficient for successive charging and direct discharging
cycles (the coefficient was calculated from Equation (6)).
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Figure 16. The course of the COP coefficient taking into account the charging and direct discharging of
a stone-bed accumulator.

Research shows that the COP coefficient decreases as the temperature and stream of injected air
increase. In the experimental conditions, the average value of this coefficient was COP = 1.71. Based
on the results obtained by the non-linear estimation method using the quasi-Newton method, with a
significance factor of α = 0.05, an equation was found for the COP coefficient as a function of mean
temperature of the injected air and air stream. This equation takes the form:

COP = −3.52E−11
·T7.47

in_avg + 7.6·q−0.009
unit − 5.31; R2 = 0.88 (16)

for the ranges of input variables, 13.3 < Tin_avg < 25.1 ◦C; 9.41 < qunit < 21.84 dm3/(m2
·s), where

Tin_avg—mean temperature of the air forced into the accumulator in the processes of its charging and
discharging (◦C); qunit—stream of injected air per the accumulator surface unit (dm3/(m2

·s)).

3.2. Water Accumulator

The analysis of the test results is presented in graphs for three independent cycles. Figure 17
presents the operating parameters of the analyzed heat storage system for the cycle with the following
average values—Rout_a = 655 W/m2, Tin_aa = 36 ◦C, Tout_aa = 26 ◦C, TB_a = 20.2 ◦C,

.
Qa = 13 kW (where,

index a stands for the average value of the parameter which was calculated in accordance with equation
3), COP = 4.6. This cycle was chosen because it lasted 8 h and was the longest in the analyzed data
set from the period of 7 months. In this cycle, solar radiation reaching the object was stable, without
major interference, on a typical cloudless day with a maximum at 12:30 of 860 W/m2. The course of
the instantaneous heat flow

.
Q is correlated with the intensity of solar radiation, which can be clearly

seen in the period of operation from 10:00 to 13:00 (Figure 17). The maximum value of this stream is at
14:00 and is 17.5 kW. The end of the system operation in this cycle is characterized by a sharp drop in
power, which, in conjunction with the temperature course (Figure 18) may indicate a forced shutdown
of the heat storage system in the water accumulator. An important phenomenon is smoothing the
temperature of the air leaving the heat exchanger (Figure 18) in relation to the temperature course of
the air entering this heat exchanger. The water temperature TB in the accumulator increases from 17.5
to 23 ◦C, which equates to a storage of 105 kWh of heat (Figure 18).
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Figure 17. Timescale of solar radiation intensity and heat stream transferred to the accumulator for
cycle No. 1.
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Figure 18. Timescale of temperature distribution in the heat storage system in the water accumulator
for cycle No. 1.

Attention should be paid to the course of the instantaneous energy efficiency coefficient (COPw)
shown in the graph (Figure 19), which in this case is clearly correlated with the intensity of solar
radiation Rout (Figure 17). Based on the analysis of the presented cycle, it can be concluded that the
system should not be turned on if the difference in temperature of air Tin_a inside the tunnel and water
in the accumulator TB is lower than 10 ◦C (Figures 17 and 19), because energy efficiency COPw in
this range is less than 2. In addition, in this cycle, the maximum energy efficiency of the heat storage
system was observed at 6 with a temperature difference (Tin_a − TB) = 20 and solar radiation intensity
Rout = 800 W/m2.
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Figure 19. The course of changes in the efficiency of heat storage and the amount of heat stored in cycle
No. 1.

The next cycle selected for analysis (No. 2) was characterized by the following average
values—Rout_a = 730 W/m2, T-in_aa = 35 ◦C, Tout_aa = 31.0 ◦C, TB_a = 27.4 ◦C,

.
Qa = 17 kW, COP = 5.96.
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The charts (Figures 20–22) present selected operating parameters of the examined system for a cycle
that lasted over 4 hours and was two times shorter than cycle No. 1. In cycle No. 2, solar radiation
reaching the tunnel was subject to quite rapid changes at relatively high maximum instantaneous
values exceeding 1000 W/m2. Temporary short-term cloud cover was present for no longer than a
few minutes; however, it was characterized by a significant decrease in solar radiation to the value of
200 W/m2 (Figure 20). On the other hand, the course of the instantaneous heat flow

.
Q was subject to

greater changes in the range of 27 to 10 kW, the effect of which can be noticed in the form of heat impact
after switching on the system, which lasted about 15 min (Figure 21) and resulted from the fact that the
system was turned on after heating the tunnel additionally during the period of greatest radiation. The
time course of the temperature in the water accumulator TB and the temperature of the air leaving the
exchanger Tout_a steadily increased with rapid changes in the inlet air temperature Tin_a (Figure 21).
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Figure 20. Timescale of solar radiation intensity and heat stream transferred to the accumulator for
cycle No. 2.
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Figure 21. Timescale of temperature distribution in the heat storage system in the water accumulator
for cycle No. 2.
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Figure 22. The course of changes in the efficiency of heat storage and the amount of heat stored in cycle
No. 2.
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In the example of temperature courses, one can notice the positive effect of a significant heat
capacity of the heat exchanger, which, among others permits operating continuity with rapid changes
in solar radiation. The effects of heat shock as well as the high heat capacity of the air-water heat
exchanger system are clearly marked on the course of the instantaneous energy efficiency (Figure 22),
where values reach the dynamic maximum at level 9 and decrease quite quickly with quite considerable
scatter. The graph (Figure 21) shows premature shutdown due to the fact that the inlet temperature
Tin_a is lower than the temperature of the air outlet Tout_a from the heat exchanger, despite the fact that
the system works with an efficiency of over 2.

The last cycle selected for detailed analysis as part of the case study is the cycle marked
No. 3 (Figures 23–25) which is characterized by the following average values of selected
parameters—Rout_a = 660 W/m2, Tin_aa = 43.7 ◦C, Tout_aa = 36.4 ◦C, TB_a = 27.4 ◦C,

.
Qa = 7.2 kW,

COP = 2.74. The analyzed cycle No. 3 was selected because of the low energy efficiency with relatively
high operating parameters and duration comparable to cycle No. 1 but with a shift of three hours
towards the later daytime interval.
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Figure 23. Timescale of solar radiation intensity and heat stream transferred to the accumulator for
cycle No. 3.
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Figure 24. Timescale of temperature distribution in the heat storage system in the water accumulator
for cycle No. 3.

During changes in solar radiation (Figure 23) quite rapid changes of heat flux occur, with a
significant reduction in value from 10.5 to 1.5 kW. The system became more sensitive, which was
affected by the limited effects of heat capacity. The result of a significant reduction in the thermal
efficiency of the system is the relatively high temperature of the water accumulator TB, which in
this cycle varies between 31.5 ÷ 35 ◦C (Figure 24). High accumulator temperature also induces high
temperatures of other parameters Tin_a i Tout_a with low differences in these temperatures, for example,
Tout_a—TB is the lowest of the analyzed cycles and does not exceed 3.5 ◦C. Although the temperature
45 ◦C at the fan inlet is the highest of the cycles observed, the thermal efficiency

.
Q remains unaffected

as there is no condensation effect of the water vapor in the air flowing through the air-water exchanger.
Relatively smaller temperature differences, in particular Tout_a—TB and a reduction of the condensation
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effect, contribute to the fact that the highest observed COPw does not exceed the value of 3.5 (Figure 25)
and at lower solar radiation intensities they fall below the value of 1, which means that the heat storage
process is completely impractical.
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Figure 25. Changes in the efficiency of heat storage and the amount of heat stored in cycle No. 3.

The presented analysis shows that the work of the experimental greenhouse heat storage system
is effective provided that a complex control system is used that could analyze not only the temperature
difference, for example, Tin_a—TB but also the heat flux transferred to the accumulator.

Another aspect highlighted by the research was the calculation of the COP coefficient for the
entire system work cycle, that is, from activation to shutdown. 62 work cycles were analyzed and were
presented in energy efficiency charts depending on the solar energy Rout_a flux (Figure 26) and the
temperature difference Tin_aa−TB_a (Figure 27). From the presented graphical relationship (Figure 26)
one can notice a visible relationship between the COP coefficient and the solar radiation flux, however
the developed model is poorly fitted. The impact of temperature difference Tin_aa−TB_a on the energy
efficiency of the heat storage system is much stronger. The developed exponential model explains the
phenomenon satisfactorily, which is confirmed by the R2 = 0.74.
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Figure 26. Energy efficiency of heat storage depending on the solar radiation flux.
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Figure 27. Energy efficiency of heat storage depending on the temperature difference.

In order to develop the relationship that best describes the phenomenon, estimation of multiple
non-linear regression was performed. The developed model was presented an Equation (17) and its
graphical interpretation in a contour plot (Figure 28).

COP = 1.38E−3
·(Tin_aa − TB_a)

2.076
·Rout_a

0.341 + 1.004 R2 = 0.87, (17)

where Tin_aa—air temperature at the exchanger inlet (◦C); TB_a—water accumulator temperature (◦C);
Rout_a—intensity of solar radiation (W/m2).
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For the developed model, the calculated error σ is at the level of 0.11.
Assuming that the COP of the storage process cannot be less than 1, then the relationship takes

the form:
1 ≤ 1.38·10−3

·(Tin_aa − TB_a)
2.076
·Rout_a

0.341 + 1.004. (18)

Inequality is always met if Tin_aa>TB_a. However, assuming that the COP will be at a level greater
than 3, which is dictated by the efficiency of the national power system, the relationship (18) can be
reduced to the form (19):

3 ≤ 1.38·10−3
·(Tin_aa − TB_a)

2.076
·Rout_a

0.341 + 1.004 . (19)



Sensors 2020, 20, 1417 20 of 27

If we use the approximation 0.341 � 1/3 is used, then the relationship (19) can be reduced to the
form (20):  1446

(Tin_aa − TB_a)
2.076

3

≤ Rout_a. (20)

After parameterization of the relationship (19), it was established that the minimum difference
Tin_aa − TB_a should be greater than 11 ◦C, in order to achieve the assumed efficiency (COP = 3) with
solar radiation 1000 W/m2. It should be noted that the relationship (20) can be used to determine the
boundary parameters of the heat accumulation system in a water accumulator for specific production
and construction of a greenhouse or foil tunnel.

3.3. PCM Accumulator

The analysis shows a clear correlation between the charging time and the amount of heat stored in
the accumulator bed (Figure 29a). However, by analyzing the individual accumulator charging cycles
in detail, some of them indicate that the energy accumulated in paraffin can be twice as high despite
the same cycle time, which is the result of different levels of solar radiation intensity and the ability to
collect heat through the accumulator bed.Sensors 2020, 20, x FOR PEER REVIEW 19 of 26 
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Figure 29. Energy stored in the accumulating bed depending on the duration of the charge cycle (a).
Exhaust air enthalpy depending on the air enthalpy at the inlet of PCM accumulator (b).

In the process of accumulator discharging, the amount of heat received depends on the difference
in enthalpy of inlet and outgoing air from the accumulator (Figure 29b). There is a strong relationship
between the energy input and output of the accumulator (correlation coefficient 0.93).

When analyzing the available amount of usable energy from the accumulator in its discharge
cycle, it was found that the amount of this energy increases with the duration of the cycle. The graph
in Figure 30 shows the relationship of these parameters. The correlation coefficient was 0.74.

Generally, a greater amount of usable energy available in a paraffin-filled accumulator occurs in
the range of higher operating efficiency (Figure 31). However, there is no clear relationship between
these parameters. This means that for a certain amount of available heat, the accumulator can work
with varying degrees of efficiency.

The analysis of the impact of supplied and usable energy on changes in the paraffin temperature
in the accumulator bed shows that the energy supplied in the charging process gives a higher increase
in bed temperature (Figure 32). This is the result of a larger temperature difference between warm air
and paraffin. In addition, when using the difference in paraffin temperature, the range of temperature
changes in the bed should be taken into account. This applies in particular to the use of such heat
storage due to specific heat and/or specific heat and latent heat of the paraffin phase change.
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Figure 30. Useful energy as a function of discharge cycle time.
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Figure 31. Efficiency of the PCM accumulator depending on the amount of usable energy.
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Figure 32. Difference in paraffin temperature as a function of supplied and usable energy of the
PCM accumulator.

This is clearly seen in the discharge process, where for a similar difference in paraffin temperature
the useful energy can be up to three times higher.

The amount of usable energy available from an accumulator filled with paraffin (Figure 33)
generally increases as a direct result of energy supplied for accumulation along with an increase in
the temperature difference of the accumulator bed. Only in the range of low differences in paraffin
temperature (from 8 to 16 ◦C) a different trend was observed. The equation determining the available
useful energy (QE) in the PCM accumulator cycle was determined as a function of the energy supplied
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to the accumulator and the increase in paraffin temperature, using a linear estimation with the
quasi-Newton method. The significance of the parameters was set at a level less than 0.05.Sensors 2020, 20, x FOR PEER REVIEW 21 of 26 
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Useful heat from the accumulator (kWh/cycle):

QE = 0.0493·Qinlet
2 + 0.00099·∆Tpara f f in

2 R2 = 0.75 (21)

for the ranges of input variables:

43.99 ≤ Qinlet ≤ 178.3 ◦C9.5 ≤ ∆Tpara f f in ≤ 31.2 ◦C

The amount of usable energy available from a battery filled with paraffin (Figure 34) increases
with increasing battery efficiency and with increasing temperature difference of the battery bed. The
equation used to ascertain the available useful energy in the PCM accumulator cycle was determined
as a function of accumulator efficiency (Eff) and paraffin temperature increase (∆tparaffin), using a linear
estimation with the quasi-Newton method. The significance of the parameters was set at a level less
than 0.05.
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Useful heat from the accumulator (kWh/cycle):

QE = E f f
1.059 + 28.996· ∆Tpara f f in R2 = 0.73 (22)

for the ranges of input variables:

11.8 ≤ E f f ≤ 60.5 %9.5 ≤ ∆Tpara f f in ≤ 31.2 ◦C.

Changes in the COP coefficient taking into account energy supplied to the battery and useful energy
(Figure 35) increases with increasing battery efficiency and with increasing temperature difference
of the battery bed. The equation for the efficiency of the PCM accumulator was determined in the
function of energy supplied to the accumulator (ES) and usable energy (QE), using a linear estimation
with the quasi-Newton method. The significance of the parameters was set at a level less than 0.05.
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Figure 35. Changes in the COP coefficient taking into account energy supplied to the battery and
useful energy.

Energetic efficiency index (COP) of the PCM accumulator (-):

COP = −0.003·ES + 0.009·QE + 0.381 R2 = 0.97 (23)

for the ranges of input variables:

44 ≤ ES ≤ 178.3 kWh7.48 ≤ QE ≤ 55.5 kWh.

The efficiency of the PCM accumulator operation during the experiment was between 11.8 and
60.5%. Such a large variation resulted from the thermal range of the accumulator operation. The
system achieved lower efficiency in the range of temperatures where only specific paraffin heat was
used, whereas accumulator operation in the phase transition temperature range was characterized by
higher efficiency.

3.4. Comparison of Analyzed Battery Types

The three types of heat accumulators investigated have been tested in low-temperature bed
operation systems, that is, for a stone-bed accumulator 17.3 ÷ 37 ◦C, for a water accumulator 15 ÷ 37 ◦C
and for a PCM 12.3 ÷ 55.2 ◦C. The given temperature range limits were extreme values that were
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reached during the experiment. As one can see, the temperature ranges of accumulator operation were
similar, hence there were premises for comparative analysis, which resulted in the accumulator type
being the preferred option in terms of heat storage.

The energy efficiency coefficient of performance (COP) defined in the formulas (Equations (6),
(11) and (15)) was used as the comparison criterion. This criterion takes into account the amount of
heat accumulated in relation to the unit of electricity supplied to the system. With the efficiency of the
electricity generation system, which in Poland is 35%, the desired energy effect should be achieved
if the COP exceeds 3.0. The COP value results directly from the ratio of the primary fuel used to
power plant turbines in relation to the direct use of this fuel for heating purposes. For example, if a
power plant consumes 1 kWh of energy contained in the primary fuel within an hour and 0.35 kWh
of energy is obtained when converting this energy into electricity, which means that that amount
of electricity should contribute to the accumulation of 1kWh of primary energy. In the presented
reasoning, the efficiency of the electricity transmission system and the primary fuel energy conversion
system at the place of its use for the purposes of the heat accumulator was omitted. The above reasoning
applies only to stone-bed and water accumulators, as in the case of the PCM battery, the power was
realized by PV panels.

With such a criterion, the work area can be determined in a rectangular coordinate system, that is,
the difference between the inlet air temperature and the bed temperature and the intensity of solar
radiation. The results are illustrated in Figure 36.
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Figure 36. Recommended limits of work parameters of the analyzed accumulators for COP> 3.0.

For a stone-bed accumulator, the desired energy effect can be obtained for a temperature difference
(air inlet to the accumulator and bed temperature) in the range of 3 to 11 ◦C and average solar radiation
intensity in the range from 150 to 600 W/m2. However, a water accumulator satisfies this condition if
the average temperature difference is above 11 ◦C and the intensity of solar radiation is greater than
350 W/m2. At the same time, the impact of solar radiation intensity is much smaller due to the thermal
inertia of the entire accumulation system, especially during short periods of operation. However,
the value of solar radiation intensity above 350 W/m2 already indicates a significant share of direct
radiation in the stream of solar energy reaching the tested object. Energy efficiency at COP = 3 is
the lower boundary state required for the local energy system. For the purposes of a comparative
assessment of the accumulators in question, the work area was also checked with an energy efficiency
of not less than 5. In this respect, both stone-bed and water accumulators can be used. In the case
of stone bed, such efficiency was obtained in several measurements, hence there are no grounds for
safe inference for engineering practice. However, such a high efficiency can be achieved by a water
accumulator, provided that the temperature difference is greater than 15 ◦C and the average intensity
of solar radiation is above 450 W/m2, which results in a full share of direct radiation.
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The graphical analysis (Figure 36) also shows a practical premise that in the case of a stone-bed
accumulator, this accumulator shows better efficiency at lower parameters, that is, temperature
difference and solar radiation intensity. In turn, for a water accumulator, a higher temperature
difference and a higher value of solar radiation intensity are recommended.

The PCM phase change accumulator has a much smaller COP and is not comparable with a
stone-bed or water accumulator. The COP value for this type of accumulator does not exceed 0.6
and should not be used in thermal systems supporting the heating systems of horticultural facilities.
Storage efficiency is influenced not only by the amount of energy acquired but also by the insulation of
the tank walls [44]. The phase change accumulator works well for long-term heat storage. The tests [45]
in which the PCM accumulator was used in the heating installation showed that it is possible not only
to store excess heat but also to improve the efficiency of the entire system. In this application of the
PCM accumulator, it is necessary to install heaters powered by PV panels. However, this configuration
of the system solves the problem of coherence of the energy source, that is, the shift in energy supply
and demand.

In both cases, adequate control is extremely important to obtain the maximum COP value. The
efficiency of heat storage in a PCM accumulator can be increased by modernizing the material used for
the construction of the accumulator and changing its geometry [46].

4. Conclusions

The research clearly shows that the accumulators used for heat storage (stone-bed and water),
with rational control of their operation, can contribute to reducing the negative effects associated with
heating facilities and furthermore, that the PCM accumulator, in its present format, should not be used
for heat storage in the low temperature range. The most important conclusions resulting from the
conducted analysis are—(1) the efficiency of operation of the stone-bed and the water accumulator
is comparable in a wide range of parameters of the surrounding climate (thermal and solar); (2) the
stone-bed accumulator has a profound energetic effect in the range of the average temperature difference
(measured between the air inlet of the accumulator and the bed) from 3 to 11 ◦C and the average
intensity of solar radiation in the range from 150 to 600 W/m2; (3) the water accumulator has a positive
energetic effect in the range of higher operating parameters (temperature, insolation), that is, with a
temperature difference above 11 ◦C and solar irradiance greater than 350 W/m2.

Hence, the two analyzed types of accumulators can be recommended for horticultural practice,
with the water accumulator preferred for short-term heat storage (e.g., when using it to heat water
dedicated to plant irrigation) or to heat the greenhouse air at sunrise to prevent condensation of water
vapor on slowly heated fruits or plants.
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