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Abstract: In this paper, we consider building extraction from high spatial resolution remote sensing
images. At present, most building extraction methods are based on artificial features. However,
the diversity and complexity of buildings mean that building extraction methods still face great
challenges, so methods based on deep learning have recently been proposed. In this paper, a building
extraction framework based on a convolution neural network and edge detection algorithm is
proposed. The method is called Mask R-CNN Fusion Sobel. Because of the outstanding achievement
of Mask R-CNN in the field of image segmentation, this paper improves it and then applies it in remote
sensing image building extraction. Our method consists of three parts. First, the convolutional neural
network is used for rough location and pixel level classification, and the problem of false and missed
extraction is solved by automatically discovering semantic features. Second, Sobel edge detection
algorithm is used to segment building edges accurately so as to solve the problem of edge extraction
and the integrity of the object of deep convolutional neural networks in semantic segmentation. Third,
buildings are extracted by the fusion algorithm. We utilize the proposed framework to extract the
building in high-resolution remote sensing images from Chinese satellite GF-2, and the experiments
show that the average value of IOU (intersection over union) of the proposed method was 88.7% and
the average value of Kappa was 87.8%, respectively. Therefore, our method can be applied to the
recognition and segmentation of complex buildings and is superior to the classical method in accuracy.

Keywords: building extraction; convolutional neural networks; mask R-CNN; high-resolution remote
sensing image

1. Introduction

With the development of remote sensing satellite technology and the demand of urbanization,
it has become an important research field to automatically and accurately extract building objects
from remote sensing images. There are many studies on building extraction approaches from remote
sensing images based on artificial design features, and these approaches can be divided into three
categories. The first is the building extraction method based on edge and corner detection and matching.
In this method, feature matching is carried out through edge and corner information of the building
to complete building extraction [1]. The second is the building extraction method combined with
elevation information, and this kind of method uses elevation information to separate out non-ground
points, and then detect buildings by combining the common edge features, spectral features and other
artificial features [2]. The last is the object-oriented building extraction method. This kind of method
uses edge information to segment the remote sensing image initially so that homogeneous pixels make
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up objects of different sizes, then extract them by using the unique spectral information, shape and
texture features of the buildings [3]. Due to different shooting angles, light and other factors, remote
sensing images in different periods have considerable internal variability, and buildings have a variety
of structure, texture and spectral information, therefore, the methods above cannot perform well in the
extraction of complex buildings.

In recent years, deep learning technology has ushered in a new wave of revival. At present, deep
learning technology represented by deep convolutional neural networks has achieved excellent results
in the field of computer vision [4–6]. Compared with the traditional method of feature extraction
in artificial design, deep convolutional neural networks can obtain the structure, texture, semantics
and other information of the object through multiple convolutional layers, and their performance is
closer to visual interpretation in object recognition. The experiments in [7,8] had the advantages of
deep convolutional neural networks in the field of object detection, but also revealed the problems of
local absence and edge blur in image segmentation. This phenomenon is especially serious when the
hardware equipment is insufficient or the dataset is small. Figure 1 shows this phenomenon using a
mask image [9]. The main reasons for poor extraction results are as follows. Firstly, the lack of data sets
makes the convolutional neural network unable to effectively learn the hierarchical contextual image
features. Secondly, adding more layers to the suitably deep model leads to higher training errors [10].
Lastly, the prediction ability of CNNs (convolutional neural networks) with low computation is at the
expense of a decrease in output resolution.
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This paper investigates the possibility of artificial features to optimize the building extraction
results of convolutional neural networks. A fusion method of artificial edge features and convolutional
neural network recognition results is proposed to address the problem of building extraction accurately.

2. Related Work

(A) Artificial design model: this model based on artificial features has been widely used in the
detection of remote sensing images. Combining image segmentation technology, spectral constraint,
shadow constraint and shape constraint, Ding et al. proposed a new building extraction framework
based on the MBI (morphological building index) [11]. Aytekin et al. designed a general algorithm for
automatically extracting buildings from multispectral images by using spectral and spatial characteristics [12].
Jimenez et al. proposed an efficient implementation of MBI and MSI algorithms, which were specially
developed for GPU [13]. Jinxing et al. introduced a method based on multi-level segmentation and
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multi-feature fusion for building detection in remote sensing images [14]. Cui et al. proposed a method
based on the Hough transform combining edge and region to extract complex buildings [15].

(B) Deep learning model: convolutional neural networks have been successfully applied to
natural image categorization recently. Studies have shown that the deep learning method can
effectively improve the accuracy of building extraction. Guo et al. proposed a series of convolutional
neural networks that can be applied to a pixel level classification framework for township building
identification [16]. Kang et al. proposed a general framework for building classification based on
convolutional neural networks [17]. Makantasis et al. addressed the problem of man-made object
detection from hyperspectral data through a deep learning classification framework [18]. Nogueira et al.
analyzed three strategies of applying convolutional neural networks to remote sensing images [19]. The
results show that fine tuning is the best training strategy of convolutional neural networks applied to
remote sensing images. Yu et al. proposed a convolutional neural network remote sensing classification
model based on PTL-CFS (parameter transfer learning and correlation-based feature selection), which
can accelerate the convergence speed of CNN loss function [20].

Mask R-CNN was proposed after R-CNN [21], Fast R-CNN [22], and Faster R-CNN [23]. The
architecture of R-CNN is divided into three parts: firstly, 2000 candidate regions are extracted by
selective search; secondly, the extracted candidate regions are extracted by a multi-layer convolutional
neural network; lastly, support vector machine (SVM) and linear regression model are used to classify
and regress the object.

Although the R-CNN has high extraction accuracy, it is difficult to train and has lower execution
time of inference. To solve this problem, Fast R-CNN and Faster R-CNN are optimized in many ways:
1. The deep convolutional neural network is used to extract the features of the original image directly.
2. The RPN (region proposal network) is used instead of the selective search to extract the candidate
regions so as to reduce the training time of the model. 3. The end-to-end training is realized by using
fully connected layers instead of SVM. 4. The unified feature map size of the region of interest pooling
(ROI pooling) is proposed to meet the input requirements of fully connected layers.

Mask R-CNN adds a fully convolutional network (FCN) [24] branch to Faster R-CNN to segment
the object. At the same time, the ROI (region of interest) align method based on the bilinear interpolation
algorithm is proposed to solve the problem of the pixel offset between the input image and the feature
map caused by ROI pooling.

Mask R-CNN architecture is shown in Figure 2. The original image is processed by the multi-layered
convolutional network to obtain hierarchical contextual image features, then the candidate region is
extracted by region selection networks, and the ROI pooling of the feature map in Faster R-CNN is
solved by using ROI align based on the bilinear interpolation algorithm. In addition, FCN is introduced
as a branch of the model to achieve accurate segmentation of objects.
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3. Fast and Effective Building Extraction Method

Due to the high precision of Mask R-CNN in natural image segmentation, this paper will improve
the architecture of Mask R-CNN to get our framework, which is applicable to building extraction.
For simplicity, we abbreviate this method to MRFS (Mask R-CNN Fusion Sobel). Our method can be
summarized as follows:

(1) Image preprocessing: High resolution remote sensing images usually include panchromatic
images and multispectral images. Panchromatic images have high resolution and little spectral
information. Multispectral images have low resolution and rich spectral information. Both are
not conducive to dense pixelwise labeling. Therefore, we enhance image information through
fusing the panchromatic images and multispectral images.

(2) Constructing a network model: Our network architecture is improved based on Mask R-CNN.
The feature pyramid network is utilized for feature fusion in order to improve the final detection
accuracy. Compared with the Mask R-CNN model, RestNet50 (residual network) is used as
the pre-training model in this paper to extract building features, and to remove the branch of
boundary fitting and category judgment.

(3) Training of the network model: We adopt the cross-validation method to train our model.
(4) Detection: The trained model is used for building extraction, and the results are used as the input

data of the proposed method.
(5) Combining edge features: The remote sensing image is segmented by edge features, and the

building extraction results in the previous step are optimized by the results.

3.1. Image Preprocessing

A GF-2 remote sensing image is selected as the raw data, including the panchromatic image and
multispectral image. We fuse the panchromatic images and multispectral images to get high-resolution
multispectral images.

In order to ensure that the high-resolution multispectral images can preserve the color, texture and
spectral information of remote sensing images effectively, the nearest-neighbor diffusion pan-shaping
algorithm is used for image fusion, and the fusion maps are shown in Figure 3.
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3.2. Network Model

Mask R-CNN models have made remarkable achievements in the field of image segmentation.
Compared with the single-stage convolutional neural networks, Mask R-CNN has higher precision
in image segmentation. The architecture of the model is shown in Figure 4. In the original image,
the multi-layer convolutional neural network is used to obtain the high-dimensional feature map,
and candidate regions are extracted by RPN. The corresponding position offset between the feature
maps in Faster R-CNN and the original map is solved by using the pooling layer ROI align based
on the bilinear interpolation algorithm. In addition, the model achieves object segmentation by fully
convolutional networks as a branch.
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Compared with multi-object segmentation, building extraction in remote sensing images is
essentially a binary classification task. Therefore, the branch for category detection in the model is
removed to optimize the training time of the model. For our improved Mask R-CNN in this paper, the
cross-entropy loss function is used as follows.

3.2.1. Loss function

In our network architecture, the output of the RPN recommendation area is used as the input of
the fully convolutional layer, and FCN is used to complete a per-pixel classification. The cross-entropy
loss function is defined as:

Lx = Lmask = −
1
m

m∑
i=1

L(xi) (1)

L(xi) = −
1
n

n∑
j=1

[
y jlna j +

(
1− y j

)
ln

(
1− a j

)]
(2)

where L(x) denotes the loss function of the total training samples; Lmask is the loss function of the mask
branches; m is the total number of samples; Lxi is the loss value of a single sample; n is the number
of pixels of a single sample; y j is the expected output of a single pixel; and a j is the output of the
neural network.

The output layer of Mask R-CNN uses the sigmoid function as the activation function, and uses
the average binary value of each sample as a loss function. Cross entropy is used to train the back
propagation of convolutional neural networks. Building extraction is a binary classification for a single
pixel. The expected output of a single pixel can be expressed as 0 or 1. From the cross entropy function,
when the expected value of a pixel is 0 or 1, and the predicted value a j approaches the expected value
y j, the cross entropy loss function L(xi) approaches 0; otherwise, L(xi) is close to infinity.

3.2.2. Dataset Construction

We annotate different remote sensing images and use them as the experimental data of our method.
The dataset includes the visual interpretation of buildings from the GF-2 remote sensing image and a
building dataset from (https://www.cs.toronto.edu/~vmnih/data/). In summary, the training datasets
contain 3231 images. In order to increase the sample size, the data sets are rotated at 90◦, 180◦, and
270◦, and flipped vertically and horizontally. In order to ensure the uniform distribution of data, the
data sets are randomly divided into training sets and test sets with the proportion of 7:3.

In order to verify the performance of MRFS on different kinds of buildings, this paper selects
three kinds of buildings according to their structure and distribution characteristics. This is shown in
Figure 5.

https://www.cs.toronto.edu/~vmnih/data/


Sensors 2020, 20, 1465 6 of 13

Sensors 2020, 20, x FOR PEER REVIEW 6 of 13 

 

 

Figure 5. Validate dataset. (a) Large regular building group. (b) Village buildings. (c) Medium sized 

regular buildings. 

In order to verify the performance of MRFS on different kinds of buildings, this paper selects 

three kinds of buildings according to their structure and distribution characteristics. This is shown in 

Figure 5. 

3.3. Combining Artificial Edge Features 

Deep convolutional networks have a high accuracy of the recognition and localization of the 

object, but there are certain shortcomings in the segmentation of the object, which are mainly 

manifested on the edge extraction and the integrity of the object. In order to solve these problems, we 

propose an optimization method of object extraction based on deep convolutional neural networks 

combined with artificial edge features. 

 

Figure 6. Gaussian filtering result. 

The edge detection points of the Sobel operator are accurately located. There are fewer edge 

detection errors, and the operator detection edge points correspond to the actual edge points one by 

one. Therefore, we use the Sobel operator to obtain the gradient amplitude and gradient direction. 

In order to reduce the influence of image noise on the edge detector, a Gaussian filter is used for 

the smoothing operation. The Gaussian filtering results are shown in Figure 6. 

For the Gaussian smoothed image, the Sobel operator is used to obtain the gradient amplitude 

and gradient direction. The specific formula is as follows: 

𝐺𝑋 = [
−1 0 −1
−2
−1

0
0

−2
−1

] ∗ ⁡ 𝐴 (3) 

𝐺𝑦 = [
+1 +2 −1
0
−1

0
−2

0
−1

] ∗ ⁡ 𝐴 (4) 

where A denotes the original image, and 𝐺𝑋 and 𝐺𝑦 are the first derivative values in the horizontal 

and vertical directions. Thus, the gradient 𝐺 and direction 𝜃 of the pixel can be determined. 

Figure 5. Validate dataset. (a) Large regular building group. (b) Village buildings. (c) Medium sized
regular buildings.

3.3. Combining Artificial Edge Features

Deep convolutional networks have a high accuracy of the recognition and localization of the object,
but there are certain shortcomings in the segmentation of the object, which are mainly manifested on
the edge extraction and the integrity of the object. In order to solve these problems, we propose an
optimization method of object extraction based on deep convolutional neural networks combined with
artificial edge features.

The edge detection points of the Sobel operator are accurately located. There are fewer edge
detection errors, and the operator detection edge points correspond to the actual edge points one by
one. Therefore, we use the Sobel operator to obtain the gradient amplitude and gradient direction.

In order to reduce the influence of image noise on the edge detector, a Gaussian filter is used for
the smoothing operation. The Gaussian filtering results are shown in Figure 6.
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For the Gaussian smoothed image, the Sobel operator is used to obtain the gradient amplitude
and gradient direction. The specific formula is as follows:

GX =


−1 0 −1
−2
−1

0
0

−2
−1

∗ A (3)

Gy =


+1 +2 −1
0
−1

0
−2

0
−1

∗ A (4)
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where A denotes the original image, and GX and Gy are the first derivative values in the horizontal and
vertical directions. Thus, the gradient G and direction θ of the pixel can be determined.

M =
√

Gx2 + Gy 2 (5)

θ = arctan
(

Gy

Gx

)
(6)

where M denotes the edge strength of the image; and θ the edge direction.
In order to solve the shortcomings of convolutional neural networks on building extraction, we

propose optimizing the extraction results by an artificial design of edge features.
The process in detail is as follows:

a. Use the Sobel operator to detect edges of remote sensing images and apply the watershed
algorithm to perform label segmentation on gradient images, which is shown in Figure 7.

b. The trained convolutional neural network is used to build the extraction model and get the map
of the building extraction.

c. Get the area of the building object in step (b) and the area of the object in the corresponding
position in step (a). Establish a judgment function including the threshold value λ, as shown in
formula 7. When the pixel value of the object occupied by the mask is greater than a certain
threshold, the object is marked as a building object.

Υ(xi, yi) = sign(xi − λyi) (7)

where γ is 0, 1 or −1 for the building mark. If γ is 1 or 0, then object i is marked as building, and
if γ is −1, object i is marked as non-building. Here xi denotes the number of pixels of the mask
occupying object i, yi is the number of pixels of object i, and λ is the threshold.
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4. Experiments

4.1. Setting

All of the experiments are implemented on a single NVIDIA GeForce GTX1070 with 8 GB memory.
The training time of the u-net model is 5 h. Mask R-CNN uses ResNet50 as the backbone, with a batch
size of 2. We use a weight decay of 0.001 and momentum of 0.9. The training time of Mask R-CNN and
the MRFS model is 2 days, and 120 K iterations are completed. We use a threshold λ = 0.6.

4.2. Evaluation Criteria

In this paper, the three measures, IoU, detection accuracy (pixel accuracy), and Kappa coefficients,
are selected to evaluate our method. They are commonly used in remote sensing classifications. The
IoU describes the degree of overlap between the predicted value and the authenticity value; the
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detection accuracy is used to measure the proportion of correct prediction results; the Kappa coefficient
is usually used to measure the accuracy of remote sensing image classifications. Their formulae are
shown in Equation (8) to Equation (10):

IoU =
Area(P)∩ Area(T)
Area(P)∪ Area(T)

(8)

P =
TP

TP + FP
(9)

K =
p0 − pe

1− pe
(10)

In Equation (8), Area(P) is the prediction area and Area(T) is the true value area. In Equation (9),
P is the detection accuracy rate, TP is the correct detection, and FP is the error detection. In Equation
(10), K is the kappa coefficient, p0 explains the proportion of correct cells, and pe is the proportion of
misinterpretations caused by chance.

4.3. Analysis

4.3.1. Comparison of loss function curves

In order to analyze the effect of three convolution neural network models, we compared the loss
function curves of u-net [7], Mask R-CNN and MRFS. As shown in Figure 8, we record the training
error every five epochs and plot the loss function curve.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 13 

 

IoU =
𝐴𝑟𝑒𝑎(𝑃) ∩ 𝐴𝑟𝑒𝑎(𝑇)

𝐴𝑟𝑒𝑎(𝑃) ∪ 𝐴𝑟𝑒𝑎(𝑇)
 (8) 

P =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

K =
𝑝0 − 𝑝𝑒
1 − 𝑝𝑒

 (10) 

In Equation (8), 𝐴𝑟𝑒𝑎(𝑃) is the prediction area and 𝐴𝑟𝑒𝑎(𝑇) is the true value area. In Equation 

(9), P is the detection accuracy rate, TP is the correct detection, and FP is the error detection. In 

Equation (10), K is the kappa coefficient, 𝑝0 explains the proportion of correct cells, and 𝑝𝑒 is the 

proportion of misinterpretations caused by chance. 

4.3. Analysis 

4.3.1. Comparison of loss function curves 

In order to analyze the effect of three convolution neural network models, we compared the loss 

function curves of u-net [26], Mask R-CNN and MRFS. As shown in Figure 8, we record the training 

error every five epochs and plot the loss function curve. 

 

Figure 8. Comparison of u-net, mask R-CNN and MRFS on training error. 

Compared with u-net, Mask R-CNN and the MRFS model have higher training error because 

the deeper network has a higher training error [10]. It can be seen from Table 1 and Figure 8 that 

when the training error converges to a bad local minimum, the method proposed in this paper has a 

better performance. 

4.3.2. Evaluation of different types of buildings 

We use the same dataset to train the convolutional neural networks and divide it into three parts 

to test according to the building characteristics. The experiments are shown in Figures 9–11. This 

paper compares the performance of three convolution neural networks in three different regions, 

analyzes the shortcomings of convolution neural networks in building extraction of high-resolution 

remote sensing images, and verifies the effectiveness of the proposed method in this paper. 

Figure 8. Comparison of u-net, mask R-CNN and MRFS on training error.

Compared with u-net, Mask R-CNN and the MRFS model have higher training error because
the deeper network has a higher training error [10]. It can be seen from Table 1 and Figure 8 that
when the training error converges to a bad local minimum, the method proposed in this paper has a
better performance.

4.3.2. Evaluation of different types of buildings

We use the same dataset to train the convolutional neural networks and divide it into three parts
to test according to the building characteristics. The experiments are shown in Figures 9–11. This paper
compares the performance of three convolution neural networks in three different regions, analyzes
the shortcomings of convolution neural networks in building extraction of high-resolution remote
sensing images, and verifies the effectiveness of the proposed method in this paper.
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Figure 9. Comparison of MRFS, Mask R-CNN, SVM and KNN(k-Nearest Neighbor) on large
building extractions.

(1) In this paper, three evaluation indexes are used to measure the extraction results of SVM, u-net,
Mask R-CNN and MRFS. Figure 9 shows the high recognition ability of the above method for large
regular buildings. As shown in Figure 12, MRFS has obvious advantages in object integrity and edge
extraction compared with the classical convolutional neural network algorithm.
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Figure 10. Comparison of MRFS, Mask R-CNN, u-net, SVM and KNN on the village buildings extraction.

(2) For the village buildings, Figure 10 shows that compared with the SVM, the convolutional
networks model has better extraction results, which proves that the deep convolutional neural network
has advantages on the extraction of complex buildings. Due to the poor edge of rural buildings, the
evaluation result of MRFS is lower than that of area a.
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Figure 11. Comparison of MRFS, Mask R-CNN, SVM and KNN on medium sized area c.

(3) Comparing the performance of the four methods on medium sized buildings (as shown in
Figure 5c), Figure 11 shows that the convolutional neural network has a high consistency with the real
value of the building label. At the same time, it shows that the artificial feature can optimize the result
of the convolution neural network.
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4.3.3. Comparison of Single building extraction

In order to further analyze the efficiency of these four methods in remote sensing image building
extraction, Figure 12 shows the building extraction map of the four methods, where the black and the
white represent background and building respectively. SVM is conducive to the overall recognition of
buildings, but it cannot effectively distinguish between the cement floors and buildings, and there are
a lot of false extractions. Mask R-CNN and u-net have achieved high accuracy in building recognition
and building locating, However, compared with visual interpretation, they are still insufficient on edge
extraction and object integrity.

The main error sources of classical convolution neural networks are as follows: firstly, a
convolutional neural network has a high requirement on hardware equipment. The batch size
in this paper is 2. In convolutional neural networks, large batches usually make the network converge
faster, but due to the limitation of memory resources, large batches may lead to insufficient memory
or program kernel crash. Secondly, in the convolution neural network, the pooling layer is used to
reduce the model parameters, and the deconvolution operation will also affect the integrity of object
extraction to a certain extent. In summary, the difference between the proposed method and the
classical convolutional neural network in building recognition is mainly focused on the optimization
of building edges, which can solve the incompleteness of the building extraction.
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Figure 12. Building extraction result maps of different methods.

Figure 12 shows that the convolutional neural network performs poorly in edge extraction and
the integrity of the object but the MRFS can deal with such problems more effectively. Figure 13 shows
the extracted results of the single building objects after enlargement. Compared with convolution
neural networks, the support vector machine has better edge segmentation, but misses some areas
of complex buildings. For Mask R-CNN, u-net and MRFS proposed in this paper, the convolutional
neural network has better efficiency to locate buildings in complex areas.
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Table 1 shows that due to the complex structure and various materials of remote sensing image
buildings, object-oriented building extraction methods are prone to large-scale error recognition, and
convolutional neural networks solve this problem well. The MRFS method we proposed in this paper
solves the problems of edge extraction and the integrity of the object. Therefore, compared with the
Mask R-CNN and other methods, our method has better efficiency on different building extractions.

Table 1. Quantitative evaluation of different methods on building extraction.

Test
Area

IoU Pixel Accuracy Kappa

SVM u-net Mask
R-CNN MRFS SVM u-net Mask

R-CNN MRFS SVM u-net Mask
R-CNN MRFS

Area a 0.697 0.890 0.871 0.925 0.822 0.941 0.931 0.961 0.643 0.881 0.861 0.921
Area b 0.691 0.826 0.794 0.841 0.818 0.905 0.885 0.914 0.634 0.808 0.768 0.827
Area c 0.647 0.861 0.841 0.894 0.786 0.925 0.914 0.943 0.571 0.848 0.825 0.886
mean 0.679 0.859 0.836 0.887 0.808 0.924 0.910 0.940 0.616 0.846 0.818 0.878

4.3.4. Edge feature fusion parameter λ

In order to analyze the influence of the parameters of the MRFS, this paper carries out a number
of experiments by changing the object selection threshold parameter λ. The values of λ are set as 0.3,
0.4, 0.5, 0.6, 0.7 and 0.8, respectively. Figure 14 shows the changes of IoU, detection accuracy and kappa
with the threshold parameter λ. In this experiment, λ is in the range of [0.4,0.6], and the change of each
index is relatively small.
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5. Conclusions

In this paper, the design of deep convolutional neural networks in semantic segmentation is applied
to extract building from high-resolution remote sensing images. Based on the characteristics of the deep
convolutional network, building recognition and high-precision extraction in high-resolution remote
sensing images were realized. Concerning the problems of poor edge recognition and incomplete
extraction of the convolutional networks on the building extraction from remote sensing images, an
optimization method combining edge features was proposed to improve the efficiency of the network
model on building extraction. Experiments on 3231 images and 20,000 building objects were carried
out to verify the effectiveness of the method we proposed in this paper. Compared with the classical
convolutional network models, the accuracy rate and integrity of building extraction were improved.
In the future, the relationship between the selection of the threshold parameter λ and the Mask R-CNN
training results will be analyzed in detail, and the method will be improved by automatically getting
the model parameters.
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