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Abstract: Magnetic microwires can present excellent soft magnetic properties and a giant
magnetoimpedance effect. In this paper, we present our last results on the effect of postprocessing
allowing optimization of the magnetoimpedance effect in Co-rich microwires suitable for magnetic
microsensor applications. Giant magnetoimpedance effect improvement was achieved either
by annealing or stress-annealing. Annealed Co-rich presents rectangular hysteresis loops.
However, an improvement in magnetoimpedance ratio is observed at fairly high annealing
temperatures over a wide frequency range. Application of stress during annealing at moderate values
of annealing temperatures and stress allows for a remarkable decrease in coercivity and increase in
squareness ratio and further giant magnetoimpedance effect improvement. Stress-annealing, carried
out at sufficiently high temperatures and/or stress allowed induction of transverse magnetic anisotropy,
as well as magnetoimpedance effect improvement. Enhanced magnetoimpedance ratio values for
annealed and stress-annealed samples and frequency dependence of the magnetoimpedance are
discussed in terms of the radial distribution of the magnetic anisotropy. Accordingly, we demonstrated
that the giant magnetoimpedance effect of Co-rich microwires can be tailored by controlling the
magnetic anisotropy of Co-rich microwires, using appropriate thermal treatment.

Keywords: amorphous microwires; giant magnetoimpedance effect; magnetoelastic anisotropy;
thermal treatment; internal stresses; induced magnetic anisotropy

1. Introduction

Magnetic and magnetoelastic sensors and composites utilizing soft magnetic wires with giant
magnetoimpedance (GMI) present extremely high sensitivity to external stimuli, such as magnetic
field, stress or temperature, making them suitable for many applications [1–7]. Most of the
emerging applications request reduced dimensionality, combined with excellent soft magnetic
properties, superior mechanical properties, enhanced corrosion resistance and biocompatibility [7–12].
Generally, amorphous materials, and particularly amorphous magnetic wires, present the best
combination of soft magnetic properties and superior mechanical characteristics [13,14]. The other
functional properties, like reduced dimensionality, improved corrosion resistance and biocompatibility
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have been achieved in amorphous microwires coated by flexible and insulating glass-coating [8–12,14].
Therefore, studies of amorphous wires gained considerable attention since the 1970s [1–5,8–10].

In fact, the Taylor–Ulitovsky technique suitable for preparation amorphous glass-coated microwires
with typical metallic nucleus diameters, d, ranging between 0.1 and 100 µm (although the most common
d values are between 5 and 40 µm), coated by thin and continuous glass coating with typical thickness
from 0.5 up to 10 µm, was known since the 1960s [15,16]. However, the rediscovery of giant
magnetoimpedance, GMI [17,18], (primary discovered in permalloy crystalline wires [19]) stimulated
extensive research on the development of magnetically soft wires [20–24]. Particularly, a GMI ratio
up to 650% has been achieved in Co-rich glass-coated microwires, either by precise control of the
chemical composition and the preparation parameters [25] or by the appropriate postprocessing [26–28].
The development of such microwires allows us to achieve extremely high magnetic field sensitivity
(up to 10 %/A/m) [26–28].

The origin of the GMI effect is commonly related to a variation of the skin depth, δ, under applied
magnetic field, H, that can be observed in a magnetic conductor with high circumferential magnetic
permeability, µφ, given by the following equation [17–24]:

δ =
1√
πσ µΦ f

(1)

where σ is the electrical conductivity and f is the AC current frequency.
Accordingly, the magnetic field dependence of the GMI effect is determined by the magnetic

field dependence of magnetic permeability, and hence by the type of magnetic anisotropy [17–25].
Commonly, the GMI effect is represented by the GMI ratio, ∆Z/Z, which is defined as follows:

∆Z
Z

=
Z (H) −Z(H max)

Z(H max)
×100 (2)

where Z is the sample impedance; and H and Hmax are the given and maximum applied DC magnetic
fields, respectively.

Generally, amorphous wires present soft magnetic properties. However, the best magnetic
softness is reported in Co-rich amorphous microwires with nearly-zero magnetostriction coefficient,
λs [22–29]. The magnetic softness of crystalline magnetic materials is affected by their crystalline
structure, various types of defects, grain size and boundaries, texture, etc. In contrast, the soft
magnetic properties of amorphous materials are associated to their glassy-like structure and, hence,
the absence of the defects typical for crystalline materials [22,24]. Accordingly, the main factors limiting
magnetic softness of amorphous materials are the magnetoelastic and shape anisotropies [22,24].
The magnetoelastic anisotropy, Kme, is determined by the magnetostriction coefficient, λs, and the
internal stress, σi, [22,24,25]. The magnetostriction coefficient, λs, in amorphous alloys is affected by the
chemical composition: nearly-zero λs values have been reported in CoxFe1−x (0 ≤ x ≤ 1) or CoxMn1−x (0
≤ x ≤ 1) alloys with Co content, x, ranging between 0.03 and 0.08 [30–32]. Therefore, the most common
route for optimization of magnetic softness is to use alloys with a vanishing magnetostriction coefficient.

High circumferential magnetic permeability of Co-rich microwires is commonly attributed to the
bamboo-like domain structure of the outer domain shell [28,29].

Alternatively, vanishing λs value and, hence, improved magnetic softness and GMI effect can be
achieved by devitrification of quite particular Fe-rich (Finemet-type) wires [32–34]. However, the main
obstacle for applications of Finemet-type microwires is poor mechanical properties.

The other parameter that affects the magnetic softness and, hence, the GMI effect of the
magnetic microwires is the value and distribution of the internal stresses. In fact, both the value of
internal stresses and magnetostriction coefficient are factors that contribute to the magnetoelastic
anisotropy [16,25,26,35–38]. The origins of internal stresses are the rapid melt quenching itself and
the different thermal expansion coefficients of the metallic nucleus and the glass coating [35–38].
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Accordingly, for a given chemical composition (with a given magnetostriction), the magnetoelastic
anisotropy can be further reduced by internal stresses relaxation.

The most common way of the stress relaxation is the thermal treatment. However, magnetic
hardening of Co-rich microwires upon annealing is reported in a few recent publications dealing with
attempts to improve their magnetic softness [24,39,40]. The origin of such magnetic hardening was
attributed either to the influence of internal stresses on magnetostriction coefficient (and therefore
magnetostriction change upon annealing) [39–41] or the modification of the domain structure after
thermal treatment [41]. However, the beneficial influence of stress-annealing on magnetic softness and
the GMI effect is recently reported for Fe-rich microwires with large and positive magnetostriction
coefficient [42,43]. A remarkable improvement in magnetic softness and the GMI effect is attributed to
stress-annealing-induced transverse magnetic anisotropy [42,43].

There are quite a few publications about stress-annealing on magnetic properties and GMI effect
of Co-rich microwires [44–46]. Among other results, it was observed that, although stress-annealed
Co-rich microwires generally showed higher coercivity, Hc, than as-prepared Co-rich microwires,
they may have a higher GMI ratio. In addition, stress-annealed Co-rich microwires have a lower Hc

and a higher ∆Z/Z than Co-rich microwires annealed at the same temperature [44–47]. Therefore, there
are expectations that magnetic hardening previously reported in Co-rich microwires upon annealing
can be avoided if conventional annealing will be replaced by stress-annealing.

In this paper, we report experimental results on optimization the GMI effect and magnetic softness
of Co-rich glass-coated microwires by annealing and stress-annealing.

2. Experimental Methods

As described in the Introduction, magnetic properties and GMI effect of Co-rich microwires
depend on the chemical composition of the metallic nucleus and microwires geometry (metallic nucleus,
d, total diameter, D, and their ratio, ρ = d/D). Therefore, in order to elucidate the influence of the thermal
treatment on hysteresis loops and the GMI effect, we selected just one Co-rich chemical composition
and geometry and subjected this microwire to different thermal treatments.

We prepared amorphous Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 (metallic nucleus diameter d = 22.8 µm,
total diameter D = 23.2 µm) glass-coated microwire by using Taylor–Ulitovsky technique, as earlier
described [15,16,47,48]. The amorphous character of the samples was checked via X-ray Diffraction
(XRD) and by the Differential Scanning Calorimeter (DSC). XRD studies were performed by using
a BRUKER (D8 Advance) X-ray diffractometer with Cu Kα (λ = 1.54 Å) radiation. XRD spectra
of all as-prepared and annealed samples present a broad halo, which is typical for completely
amorphous materials.

For DSC studies, we employed a 204 F1 Netzsch calorimeter. Using the DSC (heating rate of
10 K/min), we determined that the crystallization temperature, Tcr1, (defined as the beginning of the
first crystallization peak) in as-prepared microwire is about 553 ◦C.

The microwires were annealed at a temperature, Tann, in the range from 200 to 375 ◦C, in a
conventional furnace. Consequently, all the studied microwires keep an amorphous structure and
thence presented good mechanical properties typical for amorphous materials. We used a fixed
annealing time of 60 min. This annealing time is commonly used for thermal treatment of amorphous
and nanocrystalline materials [32,34]. For each annealing temperature, one as-prepared microwire of
around 15 cm in length was used. All as-prepared samples selected for studies had the same magnetic
properties and geometry (metallic nucleus diameter and glass-coating thickness). All heat treatments
were carried out in several samples, and the results were compared, to ensure reproducibility.
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Tensile stress was applied during annealing, as well as during cooling of the sample in the furnace.
The stress value in the metallic nucleus, σm, was estimated by taking into account the different Young’s
moduli of metal, E2, and glass, E1, as previously described [43,48]:

σm =
K·P

K·Sm + Sgl
(3)

where K = E2/E1, P is the applied mechanical load and Sm and Sgl are the cross-sections of the metallic
nucleus and the glass coating, respectively. The value of applied stresses was between 118 and 472 MPa.

Hysteresis loops were recorded by using the fluxmetric method previously successfully employed
for studies of magnetic microwires by us [24,25,27]. The schematic picture of the experimental setup
is provided in Figure 1. The electromotive force, ε, in the pick-up coil with N turns produced by the
change of magnetic flux, φ, is given by the following equation [29,49]:

ε = −N
dφ
dt

(4)
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Figure 1. Scheme of the setup allowing measuring of hysteresis loops of magnetic microwires.

The microwire occupies a small part of the coil cross-section. Therefore, the magnetic flux
produced by the external field can be essentially relevant, and hence it is necessary to consider both
parts of magnetic flux, originating from the sample magnetization, M, and from the magnetic field, H:

φ = µ0 [(Ac −As)H + As(H + M)] = µ0[Ac H + As M] (5)

where Ac and As are the coil and sample cross-section areas. Then, the induced voltage contains two
components in pick-up coil.

ε = − µ0N
d(AcH + As M)

dt
= −µ0 N

[
Ac

dH
dt

+ As
dM
dt

]
(6)

An identical compensation coil is used to eliminate the component Ac (dH/dt) due to an external
magnetic field. The compensation coil is connected in series-opposition with the pick-up coil. Both coils
are placed inside the long solenoid coaxially. The distance between the compensation and the pick-up
coils is about 7 cm. The compensation quality and lack of interference between the coils are proved by
absence of the signal without the sample. The quality of compensation and the absence of interference
between the coils are confirmed by the absence of a signal without a sample. Accordingly, the resulting
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electromotive force, εc, depends only on the rate of change of the magnetization of the sample, as
follows:

εc = − µ0 N As
dM
dt

(7)

As a result, εc = 0 in the absence of a sample. Then the sample magnetization can be obtained by
integrating the induced voltage, as follows:

M =
1

Nµ0As

∫
ε dt (8)

The hysteresis loops measurements can be performed at different frequencies, f, however, usually
f = 100 Hz is most useful. As previously shown, this method allows measurements of the hysteresis
loops in the f-range between 10 and 1000 Hz [50,51]. Generally, the εc signal grows with frequency
increasing. However, at sufficiently high frequencies (f > 200 Hz), a change in the overall shape of
hysteresis loops is observed: there is a deviation from the perfectly rectangular hysteresis loop typical
of a magnetically bi-stable microwire. This change in the hysteresis loop shape was explained by
considering the counterbalance between the sweeping rate, dH/dt, and the switching time related to
the time of domain wall propagation throughout the wire. Therefore, the frequency of about 100 HZ

was selected.
Hysteresis loops can be represented as the normalized magnetization, M/Mo, versus the applied

magnetic field, H, where Mo is the magnetic moment of the sample at the maximum magnetic field
amplitude, Ho [49].

The microwire impedance, Z, was evaluated from the reflection coefficient, S11, and measured
using a vector network analyzer and a micro-strip sample holder, as described elsewhere [52,53].
A previously developed method allowed Z measurements within the wide frequencies, f, up to GHz
frequencies [52]. The use of a sufficiently long solenoid with micro-strip sample holder placed inside
allowed us to measure the magnetic field dependence of the GMI effect. The GMI ratio was evaluated
by using the Equation (2).

Furthermore, the magnetostriction coefficient, λs, of the studied microwire, estimated using the
SAMR method adapted for microwire research, as described elsewhere [31,54], gives a value of about
λs ≈ −0.3 × 10−6.

3. Results and Discussion

As-prepared Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwire exhibits linear hysteresis loop with low
coercivity (Hc ≈ 4 A/m, see Figure 2). Similar to what is reported for the other Co-rich microwires
with similar λs values [39,40], perfectly rectangular hysteresis loops with coercivity, Hc ≈ 90 A/m,
were observed in samples annealed at sufficiently high Tann (see Figure 2).
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All annealed samples present almost the same coercivity. However, increase of the squareness ratio,
Mr/Mmax, upon Tann rising can be appreciated (Figure 2). As recently reported [46], Co-rich microwires
present maximum GMI ratio at frequencies, f, about 100–200 MHz. Therefore, the comparative
studies of annealing temperature effect on the GMI ratio are performed for f = 200 MHz. As can be
appreciated from Figure 3, the maximum GMI ratio, ∆Z/Zm, decreases after annealing at Tann = 200 ◦C.
However, samples annealed at higher Tann exhibit larger ∆Z/Zm ratios (see Figure 3c,d).
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Moreover, annealing affects not only the ∆Z/Zm values, but also the shape of ∆Z/Z(H) dependencies:
as-prepared exhibits double-peak ∆Z/Z(H) dependence (see Figure 3a). However, a noticeable
modification of the ∆Z/Z (H) dependencies can be appreciated upon annealing: For the samples
annealed at Tann = 200 and 350 ◦C, ∆Z/Z(H) dependencies still present a double-peak shape.
However, the magnetic field at which the maximum on ∆Z/Z(H) dependence takes place, Hm, becomes
lower than that for the as-prepared sample (Hm ≈ 1.7 kA/m for as-prepared sample, Hm ≈ 1.2 kA/m for
Tann = 200 ◦C and Hm ≈ 0.7 kA/m for Tann = 350 ◦C; see Figure 3a,b,d).

Finally, the ∆Z/Z(H) dependence in the samples annealed at Tann = 250 ◦C present a decay with
magnetic field increase from H = 0 (Figure 3c).

The observed annealing influence on ∆Z/Z(H) dependencies correlates with the evolution of the
hysteresis loops upon annealing and hence can be associated with internal stresses relaxation [28–30,53].
Within the framework of the core–shell model of the domain structure of amorphous ferromagnetic
wires, the inner axially magnetized core radius, Rc, can be estimated from the squareness ratio, Mr/Mo,
as follows [28–30,55]:

RC = R

√
Mr

M0
(9)

where R is the microwire radius.
As can be observed in Figure 2, squareness ratio, Mr/M0, rapidly increases upon annealing.
Accordingly, from Rc(Tann) dependence evaluated by using Equation (9), we can deduce that the

inner axially magnetized core radius, Rc, increases after annealing, as shown in Figure 4.
Furthermore, at Tann = 350 ◦C, Rc ≈ 0.97R, i.e., almost entire sample volume consists of the axially

magnetized core. Accordingly, axial magnetic anisotropy can be considered for annealed samples.
Previously, the arising of rectangular hysteresis loops and, hence, axial magnetic anisotropy was
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explained by internal stresses relaxation, as well as the magnetostriction coefficient modification upon
annealing [39–41].
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The magnetic field dependence of impedance, Z, is determined by the type of magnetic
anisotropy [21]. The decrease in Z(H) from H = 0 is reported for magnetic wires with axial magnetic
anisotropy [21,22]. The double-peak Z(H) dependencies are predicted and observed for magnetic
wires with transverse magnetic anisotropy [21–23,41]. Therefore, the observed modification of
∆Z/Z(H) dependencies upon annealing (see Figure 3) correlates well with the evolution of the bulk
hysteresis loops.

As can be observed from Figure 5, the evolution of ∆Z/Zm upon annealing is not restricted
to 200 MHz: Surprisingly, higher ∆Z/Zm values for Tann = 250 and 350 ◦C are observed in a wide
frequency range. Previously, decreasing of the GMI ratio in annealed Co-rich microwires presenting
with annealing-induced magnetic bistability has been reported [39]. However, systematic studies have
not been conducted.
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Figure 5. Frequency dependence of the maximum GMI ratio evaluated for as-prepared and annealed
at different Tann microwires.

The observed GMI ratio improvement upon annealing can be explained by the high circumferential
magnetic permeability in the surface layer responsible for the GMI effect. As can be deduced from
Figure 4, the samples annealed at Tann = 200 and 250 ◦C present rather similar Rc values (8.1 and 8.5 µm,
respectively). However, lower ∆Z/Zm values are observed for the sample annealed at Tann = 200 ◦C.
Therefore, the reason for lower ∆Z/Zm of the samples annealed at Tann = 200 ◦C can be related to deeper
internal stresses relaxation and, hence, higher circumferential magnetic permeability in the surface
layer upon annealing at Tann = 250 ◦C.
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As mentioned in the introduction, transverse magnetic anisotropy can be induced by
stress-annealing, at least in Fe-rich microwires [42,43]. Such transverse magnetic anisotropy allowed
remarkable magnetic softening and the GMI-effect improvement. Additionally, higher GMI effect in
some frequency ranges has been reported for Co-rich microwires, too [44]. Therefore, we studied the
influence of stress-annealing on the GMI effect.

Influence of various parameters, like annealing temperature and stress applied during the
annealing on hysteresis loops of the studied samples is provided in Figure 6.
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studied samples.

From the hysteresis loops provided in Figures 2 and 6, we can deduce that, similar to the case
of Fe-rich microwires, stress-annealing allows for the induction of transverse magnetic anisotropy.
However, rather higher Tann and σ values are needed to induce transverse magnetic anisotropy
in studied Co-rich microwires. For intermediate Tann and σ values, stress-annealed microwires
present lower coercivity (20 ≤ Hc ≤ 25 A/m for 200 ◦C ≤ Tann ≤ 350 ◦C and σ ≤ 354 MPa) and higher
squareness ratio (Mr/Mo ≈ 0.97 for 200 ◦C≤ Tann ≤ 350 ◦C and σ≤ 354 MPa). For comparison, remarkable
transverse-stress-annealing-induced magnetic anisotropy has been reported for Fe75B9Si12C4 microwire
annealed at Tann = 300 ◦C (σ = 380 MPa) or Tann = 325 ◦C (σ = 190 MPa) [49].

For sufficiently high Tann and σ (σ = 472 MPa Tann = 350 ◦C), we obtained samples with an
almost-linear hysteresis loop, extremely low coercivity (Hc ≈ 2 A/m), squareness ratio (Mr/Mmax < 0.1)
and magnetic anisotropy field (Hk ≈ 70 A/m) (see Figure 6b).

A comparison of the ∆Z/Z(H) dependencies of annealed and stress-annealed at the same annealing
temperatures (Tann = 200 ◦C and Tann = 350 ◦C) for microwires measured at the same frequency
(200 MHz) is provided in Figure 7. In both cases, stress-annealed samples present considerably higher
∆Z/Zm values. However, this difference is more remarkable for Tann = 200 ◦C (see Figure 7a).
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As can be appreciated from Figure 8, ∆Z/Zm improvement is observed for the whole frequency
range for both Tann. Similar to the as-prepared sample, the highest ∆Z/Zm values are observed between
100 and 200 MHz.
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The observed influence of postprocessing on the GMI effect of studied Co-rich microwires can be
summarized as follows: (i) appropriate postprocessing (annealing or stress-annealing) can be beneficial
for GMI effect improvement; (ii) application of stress during annealing allows remarkable decrease of
coercivity and increase of squareness ratio at moderate σ and Tann values; (iii) transverse magnetic
anisotropy can be induced by stress-annealing at sufficiently high σ and Tann values; (iv) creep-induced
magnetic anisotropy depends on σ for Tann values; and (v) observed GMI ratio improvement is observed
in the whole frequency range employed in these studies.

A more remarkable influence of stress-annealing can be appreciated from Figure 8c,
where ∆Z/Zm(Tann) dependence evaluated for f = 150 MHz for annealed and stress-annealed samples
is shown. ∆Z/Zm varies from 94% for as-prepared up to 220% for stress-annealed.

One of the unusual results is that the GMI ratio improvement is observed even for annealed
samples which present perfectly rectangular hysteresis loops. As reported recently, Co-rich microwires
annealed and even stress-annealed at moderate σ and Tann values present single and fast domain
wall propagation [46,47]. Consequently, the existence of inner axially magnetized single domain core
must be assumed for Co-rich microwires annealed and stress-annealed at moderate σ and Tann values.
Our evaluation of the inner axially magnetized core radius (see Figure 4) gives values up to 95% for the
total metallic nucleus volume. However, improved GMI ratio of annealed and stress-annealed samples
must be associated to the existence of surface layer with high circumferential magnetic permeability.

∆Z/Z(H) dependencies of annealed and stress-annealed microwires measured at 200 MHz
(Figure 3c,d and Figure 7) are consistent with their axial magnetic anisotropy deduced from bulk
hysteresis loops. On the other hand, GMI effect is essentially restricted to the magnetic properties in the
surface layer of microwires. The skin depth, δ, given by Equation (1) is affected by a few parameters,
among them, the frequency, f : By raising the frequency, f, the minimum skin depth, δm, decreases [56].

Consequently, the frequency dependence of the GMI ratio must be related to the radial distribution
of the magnetic anisotropy: At higher frequencies, thinner surface layers must be involved in the
∆Z/Z(H) dependencies.

As observed in Figure 9, all annealed and stress-annealed samples measured at 500 MHz
present double-maximum ∆Z/Z(H) dependencies, which are typical for transverse magnetic anisotropy.
This difference in ∆Z/Z(H) dependencies for 200 and 500 MHz can be related to the circumferential
magnetic anisotropy of the thin surface layer of the studied samples.
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In fact, the penetration skin depth, δ, and its dependence on magnetic field and frequency can be
evaluated from the ∆Z/Z(H) dependencies, considering that the changes in the real component of the
impedance are due to changes in the effective area in which the AC-current flows as a consequence of
the skin-effect [56–60]. Such an approach relates the penetration depth, δ, and the ratio RDC/RAC (RDC
is the DC-resistance of the wire, and RAC is the real component of the impedance) as follows:

δ = r[1 − (1 − RDC/RAC)1/2] (10)

where r is the wire radius.
In the case of stress-annealed FeSiBC microwires, a drastic decrease of minimum penetration

depth, δmin, upon stress-annealing has been reported [57].
The evaluation of δ (H) dependencies for the sample stress-annealed at 350 ◦C, presented

in Figure 10a, shows features similar to those reported for as-prepared Co-rich microwires and
as-prepared and stress-annealed Fe-rich microwires: a noticeable dependence on the magnetic field
and the frequency. Similarly, the δ (H) dependencies for the sample annealed at 250 ◦C (without stress)
are presented in Figure 10b. The δ (H) dependencies of the annealed and the stress-annealed samples
present similar features. However, the stress-annealed samples have lower δmin values.

The frequency dependence of the minimum penetration depth, δmin, evaluated from Figure 10a,b,
shows a decrease with f rising. The sample stress-annealed at Tan = 200 ◦C presents similar δmin

(f) dependence, with slightly higher δmin values (see Figure 10c): In both stress-annealed samples,
δmin values near 1–1.2 µm can be observed at high frequencies. Finally, the sample annealed without
stress presents slightly higher δmin values, of about 1.3 µm.

On the other hand, the approximate thickness of the outer domain shell with transverse magnetic
anisotropy, estimated from Figure 4 (where the estimation of the inner axially magnetized domain
radius is provided), gives values of about 0.5 µm. It is clear that, if δmin becomes comparable with the
outer domain shell thickness, its influence can be more significant.
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Accordingly, improvement of the GMI ratio observed in annealed and stress-annealed samples
exhibiting rectangular hysteresis loops and observed modification of the ∆Z/Z(H) dependencies
with frequency can be attributed to the spatial distribution of the magnetic anisotropy. In
particular, the existence of an inner axially magnetized core and an outer shell with high
circumferential magnetic permeability near the surface can be assumed for annealed and stress-annealed
microwires. Discussed radial distribution of the magnetic anisotropy can be attributed to the
stress-induced anisotropy.

The origin of stress-induced anisotropy in amorphous materials is still not clear, although it is
discussed in numerous publications [60–62]. The most common origin of stress-annealing-induced
anisotropy is either “back stresses” or directional pair (chemical or topological) ordering [41–49,60–62].
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The pair-ordering mechanism is commonly considered for amorphous alloys with two or
more magnetic elements. Accordingly, for studied multicomponent Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2

microwire, this mechanism can be considered. However, as mentioned above, in the case of
studied microwires, higher Tann and σ (as compared to Fe-rich microwires) are requested to observe
considerable transverse magnetic anisotropy [41–49]. Therefore, observed stress-annealing-induced
anisotropy can present similar origins for the case of Fe-rich microwires, i.e., either back stresses or
topological short-range ordering [41–49]. The particularity of glass-coated microwires is that they
are essentially composites consisting of metallic alloy nucleus and glass-coating that induces strong
internal stresses [35–39]. Consequently, as previously proposed elsewhere [63,64], “back stresses” can
appear during the annealing and subsequent cooling.

On the other hand, the alternative origin of the radial distribution of magnetic anisotropy and
different magnetic anisotropy in the surface layer of metallic nucleus was recently attributed to the
existence of the interfacial layer between the metallic nucleus and the glass coating [65,66].

As can be seen from the observed dependences, both annealing and stress-annealing are promising
methods for optimization the GMI ratio of Co-rich magnetic microwires.

The above examples provide routes to optimize the GMI effect in Co-rich microwires.

4. Conclusions

We have demonstrated that the GMI effect of Co-rich microwires can be remarkably improved by
appropriate thermal treatment.

A significant improvement in the GMI ratio at certain annealing conditions is observed in spite of
remarkable magnetic hardening and transformation of a linear hysteresis loop with low coercivity
(Hc ≈ 4 A/m) to a rectangular one with Hc ≈ 90 A/m upon annealing of Co-rich microwires. The GMI
effect can be further improved by the stress-annealing.

The hysteresis loops of stress-annealed microwires are considerably affected by the stress-annealing
conditions (annealing time, temperature or stress applied during the annealing).

Stress-annealing performed at moderate values of annealing temperatures and stress allows for a
remarkable decrease of coercivity and increase of squareness ratio and further GMI-effect improvement.
Stress-annealing, carried out at sufficiently high temperatures and/or stress allowed induction of
transverse magnetic anisotropy, as well as GMI-effect improvement. Frequency and magnetic field
dependencies of penetration skin depth were evaluated from ∆Z/Z(H) dependencies.

Enhanced GMI ratio values for annealed and stress-annealed samples, and the evolution of
∆Z/Z(H) dependencies with frequency and dependence of penetration skin depth on frequency and
magnetic field were discussed in terms of the radial distribution of the magnetic anisotropy.

Consequently, the GMI effect of Co-rich microwires can be optimized by the appropriate postprocessing.
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