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Abstract: The trust computing mechanism has an increasing role in the cooperative work of
wireless sensor networks. However, the computing speed, resource overhead, and anti-collaborative
attack ability of a trust mechanism itself are three key challenging issues for any open and
resource-constrained wireless sensor networks. In this study, we propose a fast, resource-saving, and
anti-collaborative attack trust computing scheme (FRAT) based on across-validation mechanism for
clustered wireless sensor networks. First, according to the inherent relationship among three network
entities (which are made up of three types of network nodes, namely base stations, cluster heads, and
cluster members), we propose the cross-validation mechanism, which is effective and reliable against
collaborative attacks caused by malicious nodes. Then, we adopt a fast and resource-saving trust
computing scheme for cooperation between between cluster heads or cluster members. This scheme
is suitable for wireless sensor networks because it facilitates resource-saving. Through theoretical
analysis and experiments, the feasibility and effectiveness of the trust computing scheme proposed in
this study are verified.

Keywords: cross-validation; anti-collaborative attack; resource-saving; trust computing; wireless
sensor networks

1. Introduction

Wireless sensor networks (WSNs [1–5]) are widely used in several fields such as intelligent
perception, military, disaster warning, medical care, etc. The main application of WSN is to sense the
surrounding environment and send the obtained information to the base station (BS) for subsequent
processing. For clustered WSNs such as EEHC [6], EC [7], HEED [8], TRAST [9], and LDTS [10],
clustering algorithms can significantly improve the performance and efficiency of wireless sensor
networks [11]. The clustering algorithm is used to divide nodes into multiple clusters. In each
cluster, a node with powerful computing capability is selected as the cluster head (CH). Multiple
CHs together form a higher level information transmission network. This layered network structure
helps increase the speed of data collection and can limit network operations that consume large
amounts of bandwidth [10,12]. Many applications in WSNs require coordination through wireless
communications between participating nodes for interactive operations such as task collaborations
and data transmissions [10,13–15].

However, the inherent security issues of WSNs also arise in the cooperation between participating
nodes. WSNs are usually highly accessible in existing applications, which makes them very vulnerable
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to malicious attacks. Therefore, it becomes very important to provide a secure and trusted collaboration
mechanism for WSNs. The trust mechanism and network entity behavior are an important factors that
WSNs must consider [10,16–20]. The trust mechanism can be used to detect the reliability and security
of the cooperative nodes (or to identify the faulty nodes) or to assist in the decision-making process,
such as whether a node needs to choose a partner to complete the data transmission task [21–26].

1.1. Challenges and Motivations of This Work

The trust mechanism is an important element in any network computing environment [27–33].
There are many advantages to introducing a trust mechanism in clustered WSNs [16–20] and selecting
a CH to detect failed or malicious nodes in the cluster [34]. In a multi-hop cluster environment [8],
the trust mechanism supports the selection of a trusted routing node (usually a CH), and a cluster
member (CM) can send the collected data to the CH. In communication between clusters, the trust
mechanism also supports the selection of trustworthy routing gateway nodes or other trustworthy
CHs through which the sender forwards data to the BS [10]. The BS is a powerful device that can
process the information collected from the CM and interact with the user.

However, due to its high resource consumption (such as memory, time, and communication
overhead), this makes traditional trust computing solutions developed for wired and wireless ad hoc
networks unsuitable for sensor networks. The computing speed and resource-saving problem of a
trust system are the most key requirements for resource-constrained WSNs. At the same time, the
anti-collaborative attack ability of a trust computing mechanism itself is another challenging issue
for any WSN (including clustered WSNs). Currently, there is a lack of a universal trust computing
solution designed for clustered WSNs that can simultaneously achieve computing speed, resource
efficiency, and resistance to collaborative attacks.

• Most studies do not consider both computational speed and resource overhead issues of the trust
computing scheme itself. The trust mechanism should be fast and save resources to serve a large
number of resource-constrained nodes in terms of accuracy, calculation speed, storage overhead,
and communication overhead [17,18,35]. Currently, many representative works have been
proposed for clustering WSNs, such as the group-based trust computing mechanism (GTMS) [18],
the belief-based trust evaluation mechanism (BTEM) [34], the trust and reputation scheme
(ATRM) [36], the trust-based cluster head election mechanism (TCHEM) [37]. However, most of
these studies do not simultaneously consider the computational speed and resource overhead
issues of the trust computing scheme itself. Most of these studies use complex trust calculation
algorithms at each CM or CH, which will greatly affect the applicability of the trust model.

• Most studies do not consider the anti-collaborative attack ability of the trust computing scheme itself.
The malicious nodes may cooperate to provide false feedback information to attack the trust
computing system. The anti-collaborative attack ability of the trust computing scheme should
have the ability to identify cooperative attacks. WSNs are usually deployed in insecure and
highly complex network environments, and nodes may be attacked and cooperatively spoofed.
Furthermore, an attacker can disrupt communication or spread misleading sensor values through
sensor nodes that have been compromised. In the traditional WSN trust mechanism, the trust
system collects remote feedback and then aggregates such feedback to generate a global trust for
the node, which can be used to evaluate the overall trust of the node (such as TCHEM [37] and
HTMP [34]). There are a large number of malicious nodes in an open or hostile WSN environment.
The ratings of these malicious nodes may produce erroneous results. Organized cooperative
attacks are the most important threat to trust mechanisms in WSNs [10,12,18]. However, most
previous studies lacked consideration of malicious cooperative attacks, which severely affected
the security, availability, and reliability of the system.

By identifying the inherent relationship among CMs, CHs, and BSs, we propose a fast,
resource-saving, and anti-collaborative attack trust computing scheme based on the cross-validation
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mechanism. This scheme can effectively eliminate collaborative attacks initiated by large collaborative
groups and large-scale malicious nodes. Different from the previous trust computing methods, in
the proposed trust mechanism, feedback comes not only from CMs, but also from CHs and BSs. This
cross-validation mechanism can effectively reduce malicious feedback and improve system security.

1.2. Main Idea and Contributions

To the best of our knowledge, this study is the first to construct a fast, resource-saving, and
anti-collaborative attack trust computing scheme based on an innovative cross-validation mechanism.
Compared with existing methods, the main contributions of this paper are as follows:

• A cross-validation trust aggregating mechanism, which has anti-collaborative attack ability against
garnished and collaborative attacks caused by malicious nodes. In the proposed cross-validation
trust aggregating mechanism, feedback not only comes from CMs, but also from CHs and BSs.
The feedback information from multiple sources confirms each and constitutes a cross-validation
mechanism. Such CM-level trust computing, with three trust factors, including CM-to-CM direct
trust, CM-to-CM feedback, and CH-to-CM feedback, constitutes a cross-validation relationship.
For CH-level trust computing, three trust factors, CH-to-CH direct trust, CH-to-CH feedback,
and BS-to-CH feedback, also constitute a cross-validation relationship. This cross-validation
mechanism can effectively reduce the risk of the system, while improving system reliability and
security. We investigated representative trust schemes in clustered WSNs, such as LDTS [10],
GTMS [18], DST [19], BTEM [34], ATRM [36], and TCHEM [37]. We found that many of these
studies lacked considerations of the anti-collaborative attack ability of the trust scheme itself. We
extended the traditional trust schemes in clustered WSNs and proposed a cross-validation trust
mechanism based on multiple trust factors, which has a stronger anti-collaborative attack ability
against collaborative attacks compared with existing trust mechanisms.

• A fast and resource-saving trust computing scheme for cooperation between CMs or between CHs,
which is suitable for resource-constrained WSNs. The computational speed and resource-saving of
a trust system are the most fundamental requirements for resource-constrained WSNs. However,
most of these studies (such as LDTS [10], GTMS [18], DST [19], BTEM [34], ATRM [36], and
TCHEM [37]) failed to consider the resource efficiency issue of the trust computing scheme
itself. In this study, the number of successful transmissions was considered as the key credential
to determine the trustworthiness of a node. We adopted fast algorithms and a resource-saving
mechanism to compute the trust value between nodes, which was suitable for resource-constrained
WSNs with large-scale nodes.

Together, these innovative designs made the fast, resource-saving, and anti-collaborative attack
trust computing scheme (FRAT) solution a fast, resource-efficient, and cooperative attack-resistant
solution that could be used in a clustered WSN environment. This study provided the theoretical
basis and experimental results for verifying the design of FRAT. Theoretical analysis and experimental
results showed that compared with the existing methods, FRAT had superior performance.

The main contents of the rest of this study are as follows: Section 2 provides an overview of
related work. The cross-validation mechanism for trust computing for clustered WSNs is described
in Section 3. Section 4 gives the details of the trust scheme in the FRAT scheme. Sections 5 and 6
respectively provide the theoretical and experimental analyses of FRAT. Section 7 is the conclusion of
this paper.

2. Related Work

Desai et al. proposed a trust evaluation method that used node’s internal resources to evaluate
node-level trust [12]. Using the suggested self-test algorithm, this method helped nodes trust
themselves after booting by ensuring reliable system memory. This algorithm was a completely
intermediary technology and had nothing to do with the network topology and auxiliary information.
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In [18], a group-based trust computing mechanism (GTMS) was proposed for clustered WSNs.
Compared with traditional trust schemes that always focus on the trust value of a single node, GTMS
evaluates the trust of a group of nodes. This approach provides a benefit to WSNs, which requires
less memory to store trust records on each node. GTMS helps to reduce the costs associated with trust
evaluation of remote nodes significantly.

In [34], a belief-based trust evaluation mechanism (BTEM) was developed for wireless sensor
networks. The proposed mechanism could resist against various network attacks such as on-off attacks,
bad-mouth attacks, and DoS (denial of service) attacks. Simulation-based experimental results showed
that the trust mechanism could not only successfully identify and isolate malicious nodes to a certain
extent, but also improve the detection rate of malicious behaviors.

In [37], a trust-based cluster head (CH) election mechanism (TCHEM) was proposed. Its basic
framework was proposed based on the clustered network model. In this network collaboration model,
all nodes had unique local IDs. This method could reduce the possibility of malicious or damaged
nodes becoming CHs. This mechanism discouraged sharing trust information between sensor nodes.
Therefore, this method reduced the impact of cooperative attacks.

In [36], a trust and reputation scheme (ATRM) based on a distributed agent mechanism was
proposed for WSNs. With the help of a mobile agent running on each network node, ATRM collects
trusted information and calculates the node’s trust. The benefits of local management schemes for trust
and reputation are that there is no need for a centralized repository, and the node itself can provide its
own reputation information when needed. As a result, there are no network-wide floods or acquisition
delays when performing reputation calculations and propagation.

In [35], the authors proposed a robust trust-aware routing framework (TARF) for dynamic WSNs.
Because there was no consideration of tight time synchronization, TARF provided a reliable and
energy-saving trust scheme. Facts have proven that TARF could effectively prevent harmful attacks
due to identity spoofing; through simulation and empirical experiments on large WSNs in various
scenarios including mobile and RF shielded network conditions, verifying the flexibility of TARF
through extensive evaluation. In addition, the authors implemented a low-overhead TARF module.
This implementation could be incorporated into existing routing protocols with minimal changes.

In [10], the authors proposed LDTS, a lightweight and highly reliable trust system for collecting
data through wireless sensor networks. First, a lightweight trust decision scheme based on node
identity (role) in a clustered wireless sensor network was proposed. This scheme is suitable for
such wireless sensor networks because it is conducive to energy saving. Because feedback between
cluster members (CM) or the cluster head (CH) is eliminated, this method can greatly improve system
efficiency while reducing attacks on the system by malicious nodes. Considering that the CH undertook
a large number of data forwarding and communication tasks, this study defined the cooperation of
reliability enhancement trust assessment methods between CHs. This method could effectively reduce
the network consumption caused by malicious or selfish CHs.

The research on the trust mechanism for WSNs has received extensive attention from scholars.
In WSNs, how to identify malicious nodes accurately is a challenging problem that has aroused
widespread concern in academia and industry. Table 1 concludes about the features of the trust
computing mechanism for WSNs mentioned. From Table 1, we can find that, in view of the security
and trustworthiness of WSNs, some feasible and rich solutions were proposed [10,12,18,34–37], but an
efficient trust computing mechanism designed for clustered WSNs from the simultaneous achievement
of overhead-saving and anti-collaborative attack ability is still necessary.
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Table 1. The comparison of the trust computing mechanisms for WSNs. FRAT, fast, resource-saving,
and anti-collaborative attack trust computing scheme.

Model Clustered
WSNs Cross-Validation Resource-Saving Anti-Collaborative

Attack

Trust
Evaluation
Approach

Desai model [12] No No No No Subjective
Shaikh model [18] Yes No Yes No Subjective
Raja model [34] No No No Yes Subjective
Crosby model [37] Yes No Yes No Subjective
Boukerche model [36] No No Yes No Subjective
Zhan model [35] No No No No Subjective
Li model [10] Yes No Yes No Adaptive
FRAT in this paper Yes Yes Yes Yes Adaptive

3. Cross-Validation Mechanism for Trust Computing

In this section, we first present the conceptual model and formal definitions based on the
cross-validation mechanism, which is employed by FRAT. We then establish a trustworthy clustered
WSN environment based on the trust relationship among network entities (CMs, CHs, and BSs). We
will also analyze possible attack patterns that threaten to build trust relationships.

3.1. Three-Tier Network Architecture Model

The clustering algorithm provides one of the most feasible solutions for communication in WSNs
due to its inherent resource-saving characteristics and its suitability for highly scalable networks. The
FRAT solution is based on a clustered WSN with a backbone, and its core function is to build a reliable
and efficient data aggregation network.

As shown in Figure 1, according to its characteristics, the nodes in a clustered WSN environment
can be identified as the CH or CM [10]. The CM in the cluster can communicate directly with its CH.
The communication between the CM and the BS can only be performed through the CH. In each cluster,
only the CH can forward data directly to the BS. The CH collects, aggregates, and forwards data from
the CM to the BS. The BS, CH and CM form a three-layer network architecture model (Figure 1).

BS 1

Cluster 1

Cluster 2

Cluster 3 Cluster 4

BS 2

CH1
CH2

CH3

CH4

CM level

CH levelBS level

CM level

CM levelCM level

Figure 1. Three-tier network architecture model, in which a member can be identified as a BS, a CH, or
a CM according to their features.

One of the key tasks of this study is to construct a trust-based network topology model that can
reduce the possibility of malicious members being selected as cooperative partners in data forwarding.
Through the cooperation of other CHs, one CH can forward the collected data to the central BS node.
It was assumed that the members were divided into multiple clusters based on existing clustering
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algorithms, such as [8,10]. We also assumed that each node had a unique ID, which could be used to
distinguish it from other nodes, similar to the assumptions in [18,34,37]. Once the cluster was formed,
they would maintain the same CMs unless a CM was blacklisted or dead or a new node joined the
sensor network.

3.2. Formal Definitions of Trust Based on Cross-Validation

Based on the inherent relationship among CMs, CHs, and BSs, this paper first systematically
studies and constructs a cross-validation trust computing scheme for clustered WSN environment. In
Figure 2, following the functions of the network nodes in the cluster WSN, a total of three network
entities exists, namely CMs, CHs, and BSs. Thus, a total of three collaborative groups can be formed:
a CM group ({CM1, CM2, · · · , CMi, · · · , CMI}, where i is the unique identity of a CM, I is the total
number of CM nodes in the system); a CH group ({CH1, CH2, · · · , CHj, · · · , CHJ}, where j is the
unique identity of a CH, J is the total number of CHs); and a BS group ({BS1, BS2, · · · , BSk, · · · , BSK},
where k is the unique identity of a BS, K is the total number of BSs). There are two basic trust
relationships between these network entities. One is the trust relationship between two CMs. This
is the most basic trust relationship in a clustered WSN environment [12]. The other is the trust
relationship between two CHs, and this is a special trust relationship in the clustered wireless
sensor network environment. This is a crucial factor in encouraging cooperation between CHs and is
highly important in successfully deploying a trustworthy clustered WSN. Referring to the methods
in [10,33,38], we then provide the cross-validation definitions of the trust relationship used in the
clustered WSN environment.

BS 1

BS 2

CH1
CH2

CH3 CH4

CM3

CM2CM1

F
e
ed

b
ac

k
 b

e
tw

ee
n
 C

H
s

CM4

Feedback between CHs

CM-to-CM direct trust, CM-to-CM feedback, and CH-to-CM 

feedback constitute a cross-validation relationship

CH-to-CH direct trust, CH-to-CH 

feedback, and BS-to-CH feedback also 

constitute a cross-validation relationshipCM5

Figure 2. Cross-validation mechanism for trust computing based on the three-tier network
architecture model.

The main innovation of the cross-validation approach is embodied in the following two aspects:

• First, three trust factors constitute a cross-validation relationship in the CM-level (or CH-level)
trust computing. For CM-level trust computing, three trust factors, including CM-to-CM direct
trust, CM-to-CM feedback, and CH-to-CM feedback, constitute a cross-validation relationship.
For CH-level trust computing, three trust factors, CH-to-CH direct trust, CH-to-CH feedback, and
BS-to-CH feedback, also constitute a cross-validation relationship. Different from the previous
trust computing methods, in the proposed trust mechanism, feedback not only comes from CMs,
but also from CHs and BSs. This cross-validation mechanism can effectively reduce the risk of the
system, while improving system reliability and security.

• Second, relying on the theory of standard deviation analysis [39,40], we used an aggregating
method for the overall trust degree in which three trust factors were further cross-validated with
one another. In statistics, deviation analysis refers to the absolute difference between any number
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in a set and the mean of the set [40]. Different from traditional methods, our mechanism based
on the theory of deviation analysis is a cross-validated trust calculation mechanism based on
multiple trust factors (in CM-level trust computing, including CM-to-CM direct trust, CM-to-CM
feedback, and CH-to-CM feedback; in CH-level trust computing, including CH-to-CH direct trust,
CH-to-CH feedback, and BS-to-CH feedback). The trust factor with a larger deviation compared
with the other two values is eliminated from the overall trust aggregation process. At the same
time, this removal solves the adaptive aggregation problem caused by malicious nodes (malicious
CMs or CHs).

Definition 1. Trust relationship between two CMs based on the cross-validation mechanism (called
CM-to-CM overall trust). The CM-to-CM overall trust is a quantifiable value of the competence of another
CM (the CM to be evaluated) to complete the task of the CM, based on the CM’s direct evaluation and the
feedback of CHs and other CMs. As the CH feedback information is integrated into CM-to-CM overall trust
computing, this CM-to-CM overall trust computing approach is a cross-validation mechanism.

Definition 1 and Figure 2 shows that the overall trust degree from CM to CM is the result of fusion
calculation through three trust factors, namely CM-to-CM direct evaluation, CH-to-CM feedback,
and CM-to-CM feedback. Due to feedback from two sources, this trust computing approach is called
the cross-validation mechanism. In traditional feedback-based trust calculation mechanisms, such as
in [12], feedback information mainly comes from the CMs, which could cause many problems, such as
malicious attacks and coordinated deception. In a clustered WSN, a CH is usually selected by CMs
according to its reliability, such as power, data forwarding success rate, and trust. Thus, feedback from
the CHs should have higher reliability. From this point of view, the cross-validation mechanism can
minimize system risks and improve the security of clustered WSNs.

Definition 2. Trust relationship between two CHs based on the cross-validation mechanism (called
CH-to-CH overall trust). The CH-to-CH overall trust is a a quantifiable value in the judgment of another CH
(the CH to be evaluated) to complete the task of the CH, based on the CH’s direct evaluation, and the feedback of
BSs and other CHs (as the BS feedback information is integrated into CH-to-CH overall trust calculation, this
CH-to-CH overall trust computing approach is a cross-validation mechanism).

Similar to CM-to-CM overall trust, the overall trust of CH-to-CH is the result of aggregation
calculation through three trust factors, namely CH-to-CH direct evaluation, CH-to-CH feedback, and
BS-to-CH feedback. To integrate more reliable feedback from BSs, existing BS equipment is usually
managed by a reputable ISP. The CH-to-CH overall trust is significantly enhanced. In addition, the
basic function of BSs allows for dynamic monitoring of the forwarding behavior of CHs. Thus, each BS
could provide feedback based on real monitoring data, which could then partly solve the problem of
malicious feedback from CHs.

Definition 3. Feedback between two CMs or between two CHs (called CM-to-CM feedback or
CH-to-CH feedback). Feedback between two CMs (or between two CHs) is a rating based on the CM or
CH history behavior. After the data forwarding task is completed, the CM or CH will calculate the real-time
trust. When another CM or CH requests it, the CH provides the value to the requester.

Definition 4. Feedback of a CH to a CM (called CH-to-CM feedback). CH’s feedback on the CM is an
objective rating based on the historical behavior of the CM. A CH dynamically monitors the CM behavior during
the data forwarding. After the data forwarding task is completed, the CH calculates the real-time trust of the
CM. When another CM requests it, the CH provides the value to the requester.

Definition 5. Feedback of a BS to a CH (called BS-to-CH feedback). BS’s feedback on the CH is an
objective evaluation based on the historical behavior of the CH. A BS dynamically monitors the CH behavior
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during the data forwarding. After the data forwarding task is completed, the BS will calculate the real-time trust
of the CH. When another CH requests it, the BS provides the value to the requester.

According to Definitions 1 and 2, the FRAT scheme needs to maintain two levels of trust
relationship: CM-to-CM overall trust and CH-to-CH overall trust. In this paper, CM-to-CM overall trust
is represented by TCMx ,CMy(∆t), and CH-to-CH overall trust is represented by TCHi ,CHj(∆t). Since trust
is a dynamic value that changes over time, we added a timestamp Deltat to the expression. Likewise,
the FRAT scheme needs to maintain four levels of feedback relationship: (1) feedback between a CM
and a CM, (2) feedback of a CH to a CM, (3) feedback of a CH to a CH, and (4) feedback of a BS to a
CH. We use FCMx ,CMy(∆t) to represent CM-to-CM feedback (use FCHi ,CHj(∆t) to represent CH-to-CH
feedback), FCHi ,CMx (∆t) to represent CH-to-CH feedback, FCHi ,CHj(∆t) to represent CH-to-CH feedback,
and FBSz ,CHj(∆t) to represent BS-to-CH feedback. DCMx ,CMy(∆t) and DCHi ,CHj(∆t) are the direct trust
between two CMs or CHs. These are different from traditional trust computing methods (such as
LDTS [10], GTMS [18], DST [19], BTEM [34], ATRM [36], and TCHEM [37]), in which the feedback
comes from a single source. In summary, in the proposed FRAT scheme, the feedback information
comes from multiple mutual cross-validation sources. Three types of feedback relationship form a
cross-validation mechanism, and this mechanism has a protective ability against collaborative attacks
caused by malicious nodes through the theory of deviation analysis.

To clarify the cross-validation mechanism, we provide the following example. Consider the case
in Figure 3, where CM-to-CM overall trust is computed based on the cross-validation mechanism. In
this case, if CM1 wants to compute the overall trust of CM2, CM1 first asks for the feedback of CM2 in
two ways (CMs and its CH). When the CM transmits data, all other CMs in the cluster are listening.
Each CM can hear the transmission of all other CMs within its broadcast range, and these CMs are
generally neighbor nodes. The neighbor nodes of CM1 (including CM3, CM4, and CM5) will send
their feedback to CM1 (including FCM3,CM2(∆t), FCM4,CM2(∆t), and FCM5,CM2(∆t)). The CH1 will send
its feedback FCH1,CM1(∆t) to CM1. Then, integrating its direct trust DCM1,CM2(∆t), CM1 can obtain
an overall trust TCM1,CM2(∆t) for CM2 based on a fusion calculation method. CM-to-CM direct trust,
CM-to-CM feedback, and CH-to-CM feedback constitute a cross-validation relationship.

CH1

CM3

CM2

CM1

CM4

CM5

3,
2
(
)

CM
CM
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2
( )

CM
CMF
t
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( )

CM
CMF
t
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CH CM
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1, 2
( )
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D t

1, 2
( )

CM CM
T t

Feedback from CMs

Feedback from CH

Direct trust 

between CMs

Figure 3. CM-to-CM overall trust computing based on the cross-validation mechanism. CM-to-CM
direct trust, CM-to-CM feedback, and CH-to-CM feedback constitute a cross-validation relationship.

A similar example of CH-to-CH overall trust computing based on the cross-validation mechanism
is depicted in Figure 4. We can easily understand how to compute the overall trust in the CH-to-CH
case from the CM-to-CM overall trust example in Figure 3. In this case, if CH1 needs to compute
the overall trust of CH4 (CH1-to-CH4 overall trust TCH1,CH4(∆t)), CH1 will ask for the feedback of
CM4 in two ways (CHs and its BS). In the case of Figure 4, CH2 and CH3 provide their CH-to-CH
feedback FCH2,CH4(∆t) and FCH3,CH4(∆t) to CH1, and BS1 provides its BS-to-CH feedback FBS1,CH4(∆t)
to CH1. At the same time, CH1 needs to compute the direct trust of CH4 (CH1-to-CH4 direct trust
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DCH1,CH4(∆t)). After the collection of trust information, CH1 uses the theory of standard deviation
analysis to perform the fusion calculation of overall trust TCH1,CH4(∆t).

In the proposed FRAT scheme, evaluation methods are different for these trust (or feedback)
relationships. Both TCMx ,CMy(∆t) and TCHi ,CHj(∆t) are trust decision credentials (or trust authorization
credentials), and they can directly act as authorization credentials for node selection in data aggregation,
fusion, and higher level transmission. However, DCMx ,CMy(∆t), DCHi ,CHj(∆t), FCMx ,CMy(∆t),
FCHi ,CHj(∆t), FCHi ,CMx (∆t), and FBSz ,CHj(∆t) are trust evaluation factors. Each of these factors is
one-sided and cannot fully reflect the interactive relationship of nodes in the entire system. Therefore,
these factors cannot act as the authorization credential directly. We need to perform fusion calculations
on these trust factors in order to obtain a more adequate and accurate overall trust. As mentioned in
Section 1, in terms of accuracy, calculation speed, storage overhead, and communication overhead, the
trust mechanism should be fast and resource-saving in order to provide services for a large number
of resource-constrained nodes. In this work, we propose a series of fast and resource-saving trust
computing methods for cooperation between CMs or between CHs. The calculation methods for these
nodes’ trust (or feedback) relationships are introduced in Section 4.

BS 1CH1

CH2

CH3 CH4

1,
4
( )

CH C
HF
t

1, 4
( )

BS CH
F t

1, 4
( )

CH CH
D t

3, 4
( )

CH CH
F t

1, 4
( )

CH CH
T t

Feedback from CHs

Feedback from BS

Direct trust between CHs

Figure 4. CH-to-CH overall trust computing based on the cross-validation mechanism. CH-to-CH
direct trust, CH-to-CH feedback, and BS-to-CH feedback also constitute a cross-validation relationship.

The content of the feedback mainly includes three types of trust, that is the CM-to-CM overall
trust degree, or CH-to-CM feedback trust, or CH-to-CH overall trust degree. In Sections 4.1and 4.2, we
introduce the calculation methods of these three types of trust. According to the calculation methods in
Sections 4.1 and 4.2, the information transmitted during feedback should be a positive integer between
one to 10.

3.3. Attack Pattern Analysis in the FRAT Scheme

In a clustered WSN, the ultimate goal of a trust system is to obtain accurate and reliable
functionality against selfish or collaborative network attacks [10]. An effective trust computing
system should have a good defense against malicious attacks, that is it should be able to resist selfish
or cooperative attacks from the CH and CM. In a clustered WSN environment, network attacks may
originate from both malicious CHs and CMs [41].

Definition 6. Collaborative attacks from CMs or CHs. As long as feedback is considered, a malicious
CM or CH will provide dishonest feedback to structure a good CM or CH and/or increase the trust of its
stakeholders. This type of attack is called a collaborative attack and is the most direct type of attack in a clustered
WSN environment.

The feedback from the cooperative nodes may produce incorrect trust evaluation results and how
to adopt a defense mechanism to prevent cooperative attacks by malicious nodes is the key task of
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this work. After determining the attack methods of malicious nodes, we can create an effective trust
calculation method to prevent malicious entities from achieving their goals by evaluating the behavior
of malicious entities, thereby resisting such attacks. However, directly identifying collaborative attacks
is a daunting task. In this study, we adopt an adaptive fusion computing method to eliminate false
feedback based on the theory of bias analysis, in which the three trust factors are further cross-validated
with each other. Compared with the traditional method, our mechanism based on the theory of bias
analysis is a cross-validation trust computing mechanism. Compared with the other two values, the
biased feedback is eliminated from the entire trust aggregation process.

4. Trust and Feedback Calculation in FRAT

As shown in Figures 2–4, there are two types of direct trust relationship and four types of
indirect feedback relationship in the clustered WSN environment. These trust factors have different
computing systems because their attributes are completely different. In this section, we introduce
related computing mechanisms for these trust factors.

4.1. CM-to-CM Overall Trust Calculation

CM-to-CM direct trust calculation. As mentioned earlier, the problem of saving overhead is
the most basic WSN that requires resource constraints. In probability theory and statistics, the beta
distribution is a series of continuous probability distributions defined on the interval [0, 1]. It is
parameterized by two positive shape parameters, which are indexed by random variables. The form
appears and controls the shape of the distribution. In [42], a beta trust system based on statistical
theory was proposed. The system had the characteristics of flexibility and high resource efficiency.
Inspired by the innovative work in [10,42], we used an improved betaprobability density function
to calculate the CM’s direct trust in the CM. The direct trust calculation on the CM is defined by the
following formula:

DCMx ,CMy(∆t)

=
⌈

10× E(ϕ(p|SCMx ,CMy(∆t), UCMx ,CMy(∆t))e
(1)

where ∆t is a time window. The length ∆t can be shorter or longer depending on the network analysis
scheme. Therefore, as time goes by, the window forgets the old experience, but adds new experiences.
The operation d·e is the closest integer function, such that d0.82148e = 8. The symbol p reflects
the posterior probability of the binary event (SCMx ,CMy(∆t), UCMx ,CMy(∆t)), and SCMx ,CMy(∆t) is the
total number of successful data communications between nodes CMx with CMy during time ∆t.
UCMx ,CMy(∆t) is the total number of unsuccessful data communications between nodes CMx with
CMy during time ∆t. E(ϕ(p|SCMx ,CMy(∆t), UCMx ,CMy(∆t))) is the expected probability of the beta
distribution ϕ(p|SCMx ,CMy(∆t), UCMx ,CMy(∆t)):⌈

E(ϕ(p|SCMx ,CMy(∆t), UCMx ,CMy(∆t)e

=

⌈
10× (SCMx ,CMy(∆t) + 1)

SCMx ,CMy(∆t) + α ∗UCMx ,CMy(∆t) + 2

⌉ (2)

where positive integer α ∈ [1 − N] is a punitive factor that reflects the punitive nature of failed
interactions. In special cases, if SCMx ,CMy(∆t) + UCMx ,CMy(∆t) = 0, which denotes no interactions
between node CMx with CMy during time ∆t. According to Equation (1), the value of DCMx ,CMy(∆t) =
5. If SCMx ,CMy(∆t) 6= 0 and UCMx ,CMy(∆t) = 0, then the value of DCMx ,CMy(∆t) is a positive increasing
value with the increase in the number of successful interactions. Figure 5 depicts the evolution trend
of CM-to-CM direct trust. We can observe that the value of CM-to-CM direct trust quickly reduces
with the increase in the number of failed interactions, which reflects the strictly punitive nature of the
proposed trust mechanism for the failure of interactions.
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(a) The number of unsuccessful interactions is 0 to 5, and that
of successful interactions is 0 to 80.
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(b) The number of unsuccessful interactions is 0 to 20, and
that of successful interactions is 0 to 80.
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(c) The number of unsuccessful interactions is 0 to 40, and
that of successful interactions is 0 to 80.

Figure 5. The value of CM-to-CM direct trust with penalty factor α = 4.

Compared with the original method proposed by [42], the main difference of the improved beta
probability density function is the penalty factor α to be introduced. If α = 1, then our approach falls
back to [42]. In α > 1, then our approach reflects the punitive nature of the failure of interaction. We use
Figure 6 for quantitative analysis of CM-to-CM direct trust under different values of penalty factor α.
In Figure 6, Sis the number of successful interactions, and Uis the number of unsuccessful interactions.
From Figure 6, the value of CM-to-CM direct trust shows a downward trend with increasing α, which
reaches our design goal for punishment of failed interactions. In WSN systems with high security
requirements, we should choose the value of α to approach 10.

CM-to-CM feedback calculation. As mentioned earlier, feedback is an important task for both
CMs and CHs. It also provides information and key performance indicators for trust assessment. There
are many collaborative CMs in a clustered WSN environment, and the feedback from these CMs is
considered as a social rating and should have a high reference value for node trust evaluation. We used
the improved beta probability density function with a strict punitive nature to compute FCMx ,CMy(∆t).
As a result, the calculation efficiency was improved.

FCMx ,CMy(∆t) =
⌈

10 ∗ (ξ(CMy) + 1)
(ξ(CMy) + α ∗ γ(CMy) + 2)

⌉
(3)
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where the positive integer α ∈ [1−N] is a penalty factor, which reflects the penalty nature for malicious
feedback. ξ(CMy) is the number of positive feedbacks (>0.5) toward CMy from other CMs in the
cluster, whereas γ(CMy) is the number of negative feedbacks (<0.5) from other CMs.
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Figure 6. Analysis of CM-to-CM direct trust under different values of α.

CH-to-CM feedback calculation. As shown in Figure 3, different from CM-to-CM feedback, the
CH-to-CM feedback is a value based on the CH rating. We assumed that I CMs existed in a cluster.
The CH would broadcast request packets in the cluster periodically. In response, all CMs in the cluster
would forward their direct trust values to other CMs to the CH. CHs would then maintain these trust
values in the matrix fCHi , as follows:

fCHi =


DCM1,CM1 DCM1,CM2 · · · DCM1,CMI

DCM2,CM1 DCM2,CM2 · · · DCM2,CMI
. . .

DCMI ,CM1 DCMI ,CM2 · · · DCMI ,CMI

 (4)

where DCMi ,CMy (i ∈ [1, I], y ∈ [1, I]) is the direct trust of a network member CMi for CMy. In addition,
if i = y, this means that the value is the node’s feedback for itself. In this study, an improved beta
probability density function is used to calculate FCHi ,CMy(∆t).

FCHi ,CMx (∆t) =
⌈

10 ∗ (g(CMy) + 1)
(g(CMy) + α ∗ b(CMy) + 2)

⌉
(5)

where positive integer α ∈ [1−N] is the penalty factor, which reflects the penalty function of malicious
feedback. g(CMy) is the number of positive feedbacks (>0.5) toward CMy from other CMs in the cluster,
whereas b(CMy) is the number of negative feedbacks (<0.5) from other CMs. Analyzing Equations (4)
and (5), we find that both feedback aggregation mechanisms are resource-saving methods with simple
formulas and are suitable for resource-constrained wireless sensor networks with large sensor nodes.

The feedback value is a positive integer between one and 10. Thus, we can define how a CH/CM
detects that a received feedback is positive or negative. If the value is less than or equal to five, we
consider this feedback to be negative. If the value is more than five, we consider this feedback to
be positive.

CM-to-CM overall trust aggregating calculation based on standard deviation analysis. As
indicated in Definition 1, the CM-to-CM overall trust is evaluated based on three factors: DCMx ,CMy(∆t),
FCMx ,CMy(∆t), and FCHi ,CMy(∆t). Therefore, aggregating these trust factors into a single value in an
unbiased manner is a challenging problem. In statistics, standard deviation analysis means the absolute
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difference between any number in a set and the mean of the set [39,40]. The basic idea of standard
deviation analysis is (1) to eliminate the number with a larger deviation than the other numbers and
(2) to calculate the average of the remaining numbers.

We suppose that µ(∆t) is the summation value of the three trust factors at time stamp ∆t. fmax(∆t)
is the maximum value of the three trust factors at time stamp ∆t. fmin(∆t) is their minimum value
at the same time stamp ∆t. γ(∆t) is the average value of the three trust factors. Then, the standard
deviation of the three trust factors is defined as follows:

δ(∆t) =
√

Ω(∆t)/3 ,

Ω(∆t) = (DCMx ,CMy(∆t)− γ(∆t))2+

(FCMx ,CMy(∆t)− γ(∆t))2+

(FCHi ,CMy(∆t)− γ(∆t))2

(6)

From a statistical perspective, the standard deviation of a dataset is a measure of the amount of
deviation between the observations contained in the dataset. Relying on the theory of bias analysis,
we adopted an aggregation method for the overall trust, which could overcome the limitations of the
traditional trust computing system [39,40]. The traditional trust mechanism weighs the attributes of
the trust manually or subjectively.

TCMx ,CMy (∆t) =


µ(∆t)− fmax(∆t)

2 , fmax(∆t) > (γ(∆t) + δ(∆t))
µ(∆t)− fmin(∆t)

2 , fmin(∆t) < (γ(∆t)− δ(∆t))
γ(∆t) , otherwise

(7)

Compared with the traditional methods, our mechanism in Equation (7) performs adaptive trust
calculation. The trust factor with a larger deviation compared with the other two values is eliminated
from the overall trust aggregation process using Equations (5), (6), and (7). This removal solves the
adaptive aggregation problem caused by collaborative attack CMs.

4.2. CH-to-CH Overall Trust Calculation

CH-to-CH direct trust calculation. We used a similar mechanism to calculate the direct trust
from CH-to-CH, that is the direct trust from CM-to-CM. The direct trust assessment method on CHs is
defined by the following formula:

DCHi ,CHj(∆t) =

⌈
10× (ψCHi ,CHj(∆t) + 1)

ψCHi ,CHj(∆t) + α ∗ βCHi ,CHj(∆t) + 2

⌉
(8)

where α ∈ [1− N] is a penalty factor. ∆t is a window of time. ψCHi ,CHj(∆t) is the total number of
successful data forwards. βCHi ,CHj(∆t) is the total number of unsuccessful data forwards of node CHi
with CHj during time ∆t.

CH-to-CH feedback calculation. In this study, we use an improved beta probability density
function to calculate FCHi ,CMj(∆t).

FCHi ,CMj(∆t) =

⌈
10 ∗ (v(CHj) + 1)

(v(CHj) + α ∗ θ(CHj) + 2)

⌉
(9)

where α ∈ [1− N] is a penalty factor. v(CHj) is the number of positive ratings (>0.5) toward CHj from
other CHs, whereas θ(CHj) is the number of negative ratings (<0.5) from other CHs.

BS-to-CH feedback calculation. As shown in Figure 4, the BS-to-CH feedback is a value based
on the BS rating. We assumed the existence of J CHs that interacted with a BS. The BS periodically
broadcast the request packet for feedback. In response, all CHs forwarded their direct trust values to
other CHs to the BS. The BS then maintained these trust values in the matrix cCHi :
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hCHi =


DCH1,CM1 DCH1,CM2 · · · DCH1,CMJ

DCH2,CM2 DCH2,CM2 · · · DCH2,CMJ

. . .
DCHJ ,CM1 DCHJ ,CM2 · · · DCHJ ,CMJ

 (10)

where DCHi ,CHj (i ∈ [1, J], j ∈ [1, J]) is the direct trust of node CHi for CHj. In this study, we use an
improved beta probability density function to calculate FBSz ,CHj(∆t).

FBSz ,CHj(∆t) =

⌈
10 ∗ (o(CHj) + 1)

(o(CHj) + α ∗ p(CHj) + 2)

⌉
(11)

where α ∈ [1− N] is the penalty factor. o(CHj) is the number of positive ratings (>0.5) toward CMy

from other CHs, whereas p(CHj) is the number of negative ratings (<0.5) from other CHs.

CH-to-CH overall trust aggregating calculation based on standard deviation analysis. We used
an aggregation method for overall trust based on deviation analysis theory, which could overcome
the limitations of traditional trust computing mechanisms where trusted attributes were weighted
manually or subjectively [39]. We supposed that v(∆t) was the summation value of the three trust
factors (DCHi ,CHj(∆t), FCHi ,CHj(∆t), and FBSz ,CHj(∆t)) at time stamp ∆t. smax(∆t) is the maximum
value; smin(∆t) is its minimum value; and ρ(∆t) is the average value. The standard deviation of the
three trust factors is defined as follows:

ω(∆t) =
√

Ψ(∆t)/3 ,

Ψ(∆t) = (DCHi ,CHj(∆t)− ρ(∆t))2+

(FCHi ,CHj(∆t)− ρ(∆t))2+

(FBSz ,CHj(∆t)− ρ(∆t))2

(12)

Then, the overall trust degree based on deviation analysis is defined as follows:

TCHi ,CHj (∆t) =


v(∆t)−smax(∆t)

2 , smax(∆t) > (ρ(∆t) + ω(∆t))
v(∆t)−smin(∆t)

2 , smin(∆t) < (ρ(∆t)−ω(∆t))
ρ(∆t) , otherwise

(13)

This trust aggregation in Equation (13) is an adaptive trust calculation mechanism. The trust
factor with a larger deviation compared with the other two values is eliminated from the overall trust
aggregation process using Equations (12) and (13).

5. Performance Analysis

In this section, we analyze the proposed trust mechanism from three aspects: (1) the attacker’s
ability to resist collaborative attacks and the trust computing scheme itself, (2) time complexity, and
(3) communication overhead (the latter two can reflect the computing speed and resource efficiency of
the trust computing solution).

5.1. Time Complexity Analysis

We took some resource-saving steps to calculate the trust value between nodes, which was suitable
for WSNs because it helped to save resources. In addition, we used an improved beta probability
density function to calculate the overall trust value. It was found that this mechanism was a method to
save resources and was suitable for resource-constrained nodes in large-scale sensor networks. Because
the calculation of all these trust factors was a statistical operation, the computational overhead of the
calculation could be ignored.
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Theorem 1. Using the proposed trust evaluation scheme, the total time complexity of CM-to-CM overall trust
computing was no more than O(g) + O(m) + O(k) + O(1).

Proof. In the period of CM-to-CM direct trust calculation (from Equation (1) to Equation (2)), the
time complexity is O(g), and g = SCMx ,CMy(∆t)+UCMx ,CMy(∆t). In the period of CM-to-CM feedback
calculation (Equation (3)), the time complexity is O(m) and m = ξ(CMy) + γ(CMy). In the period
of CH-to-CM feedback calculation (from Equation (4) to Equation (5)), the time complexity is O(k)
and k = g(CMy) + b(CMy). In the period of CM-to-CM overall trust aggregating calculation (from
Equation (6) to Equation (7)), the time complexity is O(1). Thus, the time complexity is O(g) +O(m) +

O(k) + O(1).

Theorem 2. Based on the proposed trust evaluation scheme, the total time complexity of CH-to-CH overall
trust computing was no more than O(q) + O(w) + O(r) + O(1).

Proof. In the period of CH-to-CH direct trust calculation (Equation (8)), the time complexity is O(q)
and q = ψCHi ,CHj(∆t) + βCHi ,CHj(∆t). In the period of CH-to-CH feedback calculation (Equation (9)),
the time complexity is O(w) and w = v(CHj) + θ(CHj). In the period of CS-to-CH feedback
calculation (from Equation (10) to Equation (11)), the time complexity is O(r) and r = o(CHj)+ p(CHj).
In the period of CH-to-CH overall trust aggregating calculation (from Equation (12) to Equation (13)),
the time complexity is O(1). Thus, the time complexity is O(q) + O(w) + O(r) + O(1).

In the period of trust factor measurement based on improved beta probability density functions
(from Equation (1) to Equation (13)), the computing time complexity was no more than O(g) +O(m) +

O(k) + O(1) (or O(q) + O(w) + O(r) + O(1)), which showed that the computing complexity of the
proposed trust computing scheme was far superior to those of some existing schemes, such as the
fuzzy-based trust models [11]), whose time complexity was O(n3log2n). In traditional trust computing
schemes, if n → ∞, trust aggregation calculations would become extremely slow. In this study, we
used a time-saving computer system that greatly increased the speed of trust calculation, which made
the trust calculation scheme very suitable for large WSNs.

5.2. Communication Overhead Analysis

In order to analyze the communication overhead of the FRAT mechanism under full load
conditions, we assumed that in the worst case, each CM wanted to communicate with other CMs in
the cluster and each CH wanted to communicate with other CHs in the cluster. In addition, each CH
needed to collect feedback from other CMs, and the BS must collect feedback reports from other CHs.

Theorem 3. Supposed that the network consists of J clusters and that the average size of clusters is I (including
the CH of the cluster). Based on the proposed trust computing scheme, the maximum communication overhead
is: 2I2 + 2J2 + 2I ∗ J.

Proof. (1) From Figure 3, in the cross-validation-based CM-to-CM overall trust calculations, feedback
came from three sources. First, when node CMi wanted to collect feedback from node CMx, the
node CMi sent at most one CM feedback request, and this node CMi received a response. Second,
CMi sent a feedback request to its CH and obtained feedback from the CH. Finally, CMi used its
self-feedback information, which required no communication overhead. Therefore, if node CMi
wanted to collect feedback from all nodes in the cluster, the maximum communication overhead became
2[(I − 1) + 1] = 2I. If all nodes wanted to transfer data to each other, the maximum communication
overhead was 2I ∗ I = 2I2.

(2) From Figure 3, in the cross-validation-based CH-to-CH overall trust calculation, the feedback
came from three sources. First, when CHj wanted to collect feedback from CHy, CHj sent a maximum
of one CH feedback request, for which CHi received one response. Second, CHj sent one feedback
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request to its BS and received one feedback from the BS. Lastly, CHj used its self-feedback information,
which did not require communication overhead. Therefore, if CHj wanted to collect feedback from
all CHs in the network, the maximum communication overhead became 2[(J − 1) + 1] = 2J. If all
CHs wanted to communicate with one another, then the maximum communication overhead was
2J ∗ J = 2J2. In addition, in the trust calculation from CH to CH, when the CH wanted to collect
feedback from its I members, it sent a I request and received a I response, thus resulting in a total
communication overhead of 2I. Therefore, the overall trust of the largest communication overhead
CH-to-CH was calculated as 2J2 + 2I ∗ J.

5.3. Anti-Collaborative Attack Ability Analysis

In Figures 2–4, according to the inherent relationship among the three network entities, we
propose the cross-validation mechanism, which is effective and reliable against collaborative attacks
caused by malicious nodes. In this sub-section, we analyze the anti-collaborative attack ability of the
FRAT scheme against collaborative attacks on the trust mechanism.

Theorem 4. Equations (1)–(3) consider not only the number of positive (or negative) ratings (ξ(CMy) and
γ(CMy)), but also the punitive nature for failed transactions. The feature of Equations (1)–(3) can effectively
prevent collaborative attacks from accomplice CMs.

Proof. If γ(CMy) > ξ(CMy), then FCMx ,CMy(∆t) ≥ 5, which covers a collaborative scenario where
individual CMs attempt to lie about a bad CM [10,18]. We must prove that when γ(CMy) > ξ(CMy),
then FCMx ,CMy(∆t) < 5. From Equation (3), feedback from CMs can be calculated using the following
improved beta probability density functions:

FCMx ,CMy(∆t) =
⌈

10 ∗ (ξ(CMy) + 1)
(ξ(CMy) + α ∗ γ(CMy) + 2)

⌉
=⇒

FCMx ,CMy(∆t) ≤
10 ∗ (ξ(CMy) + 1)

(ξ(CMy) + α ∗ γ(CMy) + 2)

Under the case that γ(CMy) > ξ(CMy), we must prove that FCMx ,CMy(∆t) < 5, that is,

(ξ(CMy) + 1)
(ξ(CMy) + α ∗ γ(CMy) + 2)

<
1
2

Under the condition γ(CMy) > ξ(CMy), a negative feedback exceeds a positive feedback. Thus,
we only need to prove the following:

2(ξ(CMy) + 1) < ξ(CMy) + α ∗ γ(CMy) + 2 =⇒

2ξ(CMy) + 2 < ξ(CMy) + α ∗ γ(CMy) + 2 =⇒

ξ(CMy) < α ∗ γ(CMy)

Due to γ(CMy) > ξ(CMy) and α > 1, ξ(CMy) < α ∗ γ(CMy) must exist, which proves
Theorem 4.

Through Theorem 4, we proved that our trust system at the CM level had a protective ability
against collaborative attacks from malicious nodes because this system could prevent such nodes from
fulfilling their objectives.

Theorem 5. Equation (9) considers not only the number of positive (or negative) feedbacks from CHs, but also
the punitive nature for failed transactions. The feature of Equation (7) can effectively prevent collaborative
attacks caused by accomplice CHs.
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Proof. We assumed that v(CHj) was the number of positive feedbacks and θ(CHj) was the number of
negative feedbacks in CH-to-CH trust computing. If v(CHj) < θ(CHj), then FCHi ,CHj(∆t) ≥ 5, which
covers a collaborative attack scenario where individual CHs attempt to lie about a bad CH. We must
prove that when v(CHj) < θ(CHj, then FCHi ,CHj(∆t) < 5. From Equation (9), feedback from CHs can
be calculated using the following improved beta probability density functions:

FCHi ,CMj(∆t) =

⌈
10 ∗ (v(CHj) + 1)

(v(CHj) + α ∗ θ(CHj) + 2)

⌉
=⇒

FCHi ,CMj(∆t) ≤
10 ∗ (v(CHj) + 1)

(v(CHj) + α ∗ θ(CHj) + 2)

We must prove that FCHi ,CMj(∆t) < 5, that is,

(v(CHj) + 1)
(v(CHj) + α ∗ θ(CHj) + 2)

<
1
2

Under the condition v(CHj) < θ(CHj), the number of negative feedbacks exceeds the number of
positive feedbacks. Thus, we only need to prove the following:

2(v(CHj) + 1) < v(CHj) + α ∗ θ(CHj) + 2 =⇒

2v(CHj) + 2 < v(CHj) + α ∗ θ(CHj) + 2 =⇒

v(CHj) < α ∗ θ(CHj)

Based on known conditions, existing θ(CHj) > v(CHj), and α > 1, thus v(CHj) < α ∗ θ(CHj)

must be established, which proves Theorem 5.

Through Theorem 5, we proved that our trust system at the CH level had a protective ability
against collaborative attacks from malicious nodes because this system could prevent such nodes from
fulfilling their objectives.

6. Experiment-Based Analysis and Evaluation

In this section, we first describe how to set up the experimental method in a simulated WSN
environment, including how to deploy the recommended trust scheme on the simulated environment
and how to set up the experimental configuration. The experimental results are then reported.

6.1. Experimental Methods and Parameters

Extensive experiments were conducted by using the NetLogo event simulator [10,43–45] to
validate the effectiveness of FRAT. For comparison, we also added GTMS [18] and ATRM [36] into the
simulator because both of them are independent of any specific routing mechanism.

In order to make the experiment closer to the real WSN environment, three types of nodes were
deployed in the simulator according to their identity, namely the CM, CH, and BS [10]. The CM could
be one of two types: good CM (GCM) and bad CM (BCM). The GCM always provided successful
cooperation, while the BCM provided unsuccessful cooperation. The behavior of a CM as a feedback
provider could be one of two types: honest CM (HCM) and malicious CM (MCM). The HCM always
provided correct feedback to any CM, while the MCM always provided feedback to other CMs contrary
to actual data. Similar to the CM, the GCH always provided successful cooperation, while the BCH
provided unsuccessful cooperation. The HCH always provided the correct feedback, while the MCH
always provided the opposite feedback of the actual data of the other CHs.

In the proposed trust computing scheme based on the cross-validation mechanism, the main
threat was caused by malicious feedback. We designed several performance mechanisms for a
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comprehensive trust assessment scheme. Due to the limitation of the paper length, we mainly evaluated
the performance of FRAT based on the following two aspects: the successful packet transmission rate
under different MCMs and the successful packet transmission rate under different MCHs.

Table 2 lists the simulation parameters and default values used in the experiment. A total of
1000–10,000 nodes were deployed in the simulator, and an average of 100 CMs were deployed in each
cluster. The penalty factor α was set at two to reflect a double punitive factor for selfish nodes or
failed collaborators. The total time step of the simulation run was 1000, and the time window for trust
calculation was 20. The percentage of the HCM was 30–100%, and the percentage of the HCH was
50–100%.

Table 2. Parameters and their possible values. HCM, honest CM; HCH, honest CH.

Symbol Description Possible Values
N = I × J total number of CMs 1000–10,000
I number of CMs in a cluster 100
J total number of CHs 100–1000
K total number of BSs 10
t time-step of simulation runs 1000
∆t time-window for trust computing 20
HCM percentage of HCMs 30–100%
HCH percentage of HCHs 50–100%
α penalty factor 2

6.2. Evaluation under Different MCMs

We computed the packet successful delivery ratio (PSDR) [10] to reflect the reliability of the trust
computing systems. A higher PSDR indicated higher reliability. In this set of experiments, we assumed
that most CHs in the WSN environment were trusted, of which MCHs only accounted for 10%. This
WSN environment was very similar to the actual situation, and most CHs were honest and trustworthy.

Figure 7 illustrates the PSDR comparison at different percentages of the MCM. In this set of
experiments, we assumed that the WSN environment was a trusted network community, of which
90% of the CHs were honest. The remaining 10% of CHs were malicious feedback providers. We
set the percentage of MCMs to 10%, 20%, 30%, 50%, 60%, and 70%, which indicated that the cluster
environment was fully honest (10%), honest (20%), relatively honest (30%), partly dishonest (50%),
dishonest (60%), and fully dishonest (70%), respectively. Figure 7a shows a fully honest WSN
environment, where the percentage of MCMs was only 10%. All three kinds of trust mechanisms
had high PSDR values beyond 92%. These results reflected that the three kinds of trust mechanisms
exhibited high reliability under an honest WSN community.

A robust trust mechanism should have a strong ability to counteract malicious behavior from
MCMs. To evaluate the performance of the trust system under a more complex network environment,
we gradually increased the proportion of malicious nodes. In Figure 7b–f, the proportion of MCMs
were set to 20%, 30%, 50%, 60%, and 70%, and the results indicated larger differences compared with
MCMs set to 10%. With the increase in the percentage of MCMs, the performance of GTMS and
ATRM exhibited a marked decline; the PSDR of GTMS dropped to 93%, and the PSDR of ATRM
dropped to 90%. The performance degradation may be mainly due to the usage of a one-way feedback
mechanism. Relatively, FRAT exhibited robust performance in a complex network environment with a
larger number of MCMs. These results were consistent with the actual situation, that is in a dishonest
network environment, the MCM may conduct cooperative attacks, which may seriously affect the
performance of the WSN environment. In order to improve the reliability of the proposed trust
management mechanism, we adopted the idea that the overall trust of CM-to-CM was an adaptive
combined value of bidirectional feedback (CM-to-CM feedback and CH-to-CH feedback). This new
feedback mechanism could significantly improve the reliability of the proposed trust mechanism.
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Figure 7. PSDR comparison with different percentages of malicious CMs (MCMs), where the proportion
of malicious CHs is 10% GTMS, group-based trust computing mechanism; ATRM, a trust and
reputation scheme.

6.3. Evaluation under Different MCHs

To evaluate the performance of the proposed trust mechanism at different MCH percentages, in
this set of experiments, we assumed that each cluster environment was honest, and the MCM ratio
was 20%. We set the proportion of MCHs to 10%, 20%, 30% 50%, 60%, and 70%, respectively. When
the proportion of MCHs was set to 10%, the WSN environment was trustworthy. Most CHs in this
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network could keep their commitment and provide consistent stable feedbacks. When the proportion
of MCHs was set to 20% or 30%, the WSN environment was relatively untrustworthy. More than
half of the CHs in this WSN environment could keep their commitment and provide a consistently
stable feedback. When the proportion of MCHs was set to 50%, the WSN environment was highly
untrustworthy. Over half of the CHs in this WSN environment provided contrary feedback of the
actual data for other CHs. Figure 8 shows a comparison of PSDR with different MCH percentages. A
reliable trust computing system should have a strong ability to resist malicious behavior from MCHs.
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Figure 8. PSDR comparison with different percentages of MCHs, where the proportion of malicious
CMs is 20%.
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In order to evaluate the performance of trust mechanisms in more complex network environments,
we gradually increased the proportion of malicious CHs in the system, and the proportion of MCHs
was set to 10%, 20%, 30%, 50%, 60%, and 70% in Figure 8a–8f. Figure 8a shows an honest WSN
environment, where the percentage of MCHs was only 10%. All three kinds of trust mechanisms
had a high PSDR under this WSN environment, in which all values fluctuated around 90%. These
results reflected that the three kinds of trust mechanisms exhibited high reliability under an honest
WSN community.

With the increase in the percentage of MCHs, the WSN environment rapidly evolved from
honest to fully dishonest. Figure 8d–f show that the performance of GTMS and ATRM exhibited a
marked decline; the PSDR of GTMS dropped from 92% to 83%, and the PSDR of ATRM dropped
from 90% to 82%. The performance degradation may be mainly due to the usage of a one-way
feedback mechanism in GTMS and ARTM. Relatively, FRAT exhibited a more reliable performance in a
complex network environment with a larger number of MCHs. These results were consistent with the
actual situation, that is, in a dishonest network environment, MCHs may conduct cooperative attacks,
which may seriously affect the performance of the WSN environment. To improve the reliability of
the proposed trust management mechanism, we adopted the idea that the CH-to-CH overall trust
was an adaptively merged value by the cross-validation feedback mechanism: CH-to-CH feedback
and BS-to-CH feedback. This cross-validation feedback mechanism could significantly improve the
anti-collaborative attack ability of the proposed trust mechanism. Thus, FRAT had a more robust
reliability than GTMS and ATRM under five kinds of WSN environment, i.e., honest, relatively honest,
partly dishonest, half dishonest, and fully dishonest, and it was suitable for trust computing under an
open WSN.

6.4. Overhead Evaluation

To evaluate the performance in a large-scale network environment, we adopted different cluster
numbers and different cluster sizes. Figure 9 shows the compared results of communication overhead
under different network scales. Six types of network environments were evaluated: (a) the network
consisted of 10,000 clusters, and each cluster included 20 nodes; (b) the network consisted of
10,000 clusters, and each cluster included 50 nodes; (c) the network consisted of 10,000 clusters,
and each cluster included 100 nodes; (d) the network consisted of 10,000 clusters, and each cluster
included 200 nodes; (e) the network consisted of 10,000 clusters, and each cluster included 300 nodes;
and (f) the network consisted of 10,000 clusters, and each cluster included 500 nodes. We compared
our mechanism with GTMS [18], ATRM [36], and UWSN [20].

As the value of each feedback was a positive integer between one and 10, one byte was required for
each feedback information. Table 3 lists the communication overhead (bytes) under full-load conditions.
When the number of nodes in each cluster was relatively small (Figure 9a–c), we could observe that
the communication overhead of FRAT was far below that of the other two trust mechanisms, GTMS
and ATRM, but slightly larger than UWSN. The reason was that UWSN adopted a flat wireless sensor
networks and did not require the overhead of the CH node. When the number of nodes in each cluster
was relatively larger (Figure 9d–f), we could see that the communication overhead of FRAT was far
below those of GTMS and ATRM. The communication overhead of FRAT gradually approached that
of UWSN. According to Theorem 3. and Figure 9, the proposed trust computing scheme based on the
cross-validation mechanism needed less communication overhead, and it was suitable for large-scale
resource-constrained WSNs.
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Figure 9. Comparing results of communication overhead under different network scales.
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Table 3. Communication overhead under full-load conditions.

Communication Overhead
FRAT 2I2 + 2J2 + 2I ∗ J
GTMS 2J(I(I − 1)(I − 2) + (J − 1)
ATRM 4J(I(I − 1) + (J − 1))
UWSN 2J2

7. Conclusions

In this study, we proposed a trust computing scheme based on a cross-validation mechanism for
clustered WSNs. Based on the theory of standard deviation analysis, this mechanism could remove
the biased factor from multiple feedback sources. The theoretical analysis and experimental results
provided useful insights. In a highly complex WSN environment with large percentages of malicious
and selfish nodes, the proposed trust computing scheme based on the cross-validation mechanism
may be insignificant, and thus, it should be given considerable attention in practical WSN applications.
However, future work can pursue the following research directions:

• In a real deployment, nodes leave/join different clusters. Thus, future work can consider designing
a scheme with node mobility.

• The proposed cross-validation mechanism was designed for clustered WSN. How to extend this
mechanism to a flat WSN is another important direction.
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