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Abstract: Accurate and robust detection of multi-class objects in very high resolution (VHR) aerial
images has been playing a significant role in many real-world applications. The traditional detection
methods have made remarkable progresses with horizontal bounding boxes (HBBs) due to CNNs.
However, HBB detection methods still exhibit limitations including the missed detection and the
redundant detection regions, especially for densely-distributed and strip-like objects. Besides,
large scale variations and diverse background also bring in many challenges. Aiming to address
these problems, an effective region-based object detection framework named Multi-scale Feature
Integration Attention Rotation Network (MFIAR-Net) is proposed for aerial images with oriented
bounding boxes (OBBs), which promotes the integration of the inherent multi-scale pyramid features
to generate a discriminative feature map. Meanwhile, the double-path feature attention network
supervised by the mask information of ground truth is introduced to guide the network to focus on
object regions and suppress the irrelevant noise. To boost the rotation regression and classification
performance, we present a robust Rotation Detection Network, which can generate efficient OBB
representation. Extensive experiments and comprehensive evaluations on two publicly available
datasets demonstrate the effectiveness of the proposed framework.

Keywords: object detection; aerial images; feature attention; convolutional neural networks (CNNs)

1. Introduction

An insightful understanding in very high resolution (VHR) aerial images (20 cm–30 cm resolution)
can be available under imagery analysis for geospatial areas [1,2]. Object detection, a critical
component of automatic aerial imagery analysis, plays an important role in national defense
construction, urban planning, environmental monitoring and so on [3–5]. Although many object
detection methods in VHR aerial images have been proposed before, this task is still full of great
challenges due to arbitrary orientations and large scale variations with various background. Recently,
with the rapid development of convolutional neural networks (CNNs), a variety of CNN-based object
detection frameworks [6,7] have been proposed and very impressive results have been achieved over
natural benchmarks including PASCAL VOC [8] and MS COCO [9]. The existing CNN-based object
detection methods can be commonly divided into two parts: two-stage methods and single-stage
methods. In the two-stage methods, the input image in the first stage contributes to the generation of
category-independent region proposals, and subsequently features of these regions are extracted, then
the refinement of category-specific classifiers and regressors is achieved for classification and regression
in the second stage. Finally, accurate detection results are attained with the deletion of redundant
bounding boxes, such as non-maximum suppression (NMS). Region-based CNN (R-CNN) [10] is a
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pioneering work. Its reformative version SPP-Net [11], Fast-RCNN [12] makes it possible to simplify
learning and runtime efficiency. Faster-RCNN [6] integrates the proposed Region Proposal Network
(RPN) and Fast R-CNN into a unified network by sharing convolution weights, which makes object
detection quick and accurate in an end-to-end manner. Zhang et al. [13] proposed a multiscale
cascaded object detection network and introduce multiscale features in pyramids to obtain feature
of each scale with a novel attention method, which can highlight the object features and efficiently
detect objects for traffic sign with complex background. Many high-performance detection methods
are also proposed until now, such as FPN [14], R-FCN [15], Mask-RCNN [16], Libra RCNN [17],
Trident-Net [18], and so forth. In addition, the single-stage methods directly consider object detection
as a regression problem, without the procedure of proposal generation, which can perform nearly
real-time achievement. YOLO [19] and SSD [20] are popular in single-stage methods, which
maintained real-time speed with ensured detection accuracy. RetinaNet [7] proposes a new focal
loss function to address class imbalance issue of single-stage approaches. Inspired by the two-stage
methods, RefineDet [21] can adjust the sizes of anchors and locations with the adoption of cascade
regression and the application of an Anchor Refinement Module (ARM), and then filter out easy
negative anchors to improve accuracy.

Inspired by the great success of CNN-based object detection methods in natural images, a growing
number of studies have been devoted recently to object detection in VHR optical aerial images [22,23].
Considering the arbitrary orientation, Cheng et al. [24] proposed to learn a Rotation-Invariant CNN
(RICNN) model based on R-CNN framework used for multi-class object detection. To achieve real-time
object detection, Tang et al. [25] adopted a regression method based on SSD to detect vehicle targets
through applying a set of default boxes with various scales on per feature map location. To be specific,
to better fit the shape of objects, the offsets for each default box are predicted. To deal with the problem
of multi-scale detection with the large ratio of remote sensing objects, Guo et al. [26] proposed a unified
multi-scale framework, which is composed of multi-scale object proposal network and a multi-scale
detection network. To achieve further accuracy of the localization in aerial images, Zhang et al. [27]
proposed a Double Multi-scale Feature Pyramid Network (DM-FPN), which makes the most of
semantic and resolution features simultaneously and bring up some multi-scale training, inference and
adaptive categorical non-maximum suppression (ACNMS) strategies. In addition, object detection
based on weakly supervised deep learning method arouses more and more attentions of researchers in
recent years. Except depending on the costly bounding box annotations, Li et al. [28] proposed a weakly
supervised deep learning method which combine the separate category information and mutual cues
between scene-level pairs to train a deep network for multi-class geospatial object detection.

These methods have achieved very promising detection performances by using horizontal
bounding boxes (HBBs) as region of interests. HBBs are appropriate for ground-level images with
mainly regular and vertical objects. However, in VHR aerial images, objects can have any orientations
between 0 and 360 degrees viewed from overhead. Such HBB-based methods can result in missed
detection and redundancy of detection region especially for densely-distributed and strip-like objects
such as ship and large vehicle as shown in Figure 1. Therefore, employing oriented bounding boxes
(OBBs) as region of interests is highly recommended, which can identify more accurate and intuitive
localization with fitting regions for aerial images. Recently, OBB-based methods in VHR aerial images
gradually attract researchers’ attention. The existing methods, which contribute to the oriented object
detection, can be divided into three categories: OBB detection with generating rotated region proposals,
OBB regression from the coarse horizontal region proposals and OBB representation by calculating
minimum area rectangle from the mask shape prediction. For the first method, Yang et al. [29]
presented a Rotation Dense Feature Pyramid Networks (R-DFPN) by producing rotational proposals
from the RPN to achieve rotated location regression in the Fast-RCNN stage for ship detection with a
large aspect ratio. Azimi et al. [30] proposed Rotation Region Proposal Network (R-RPN) and Rotated
Region of Interest Network (R-RoI) to generate and handle Rotation-based proposals respectively.
Ding et al. [31] proposed RoI Transformer to address the misalignment problem between the horizontal
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region of interests and oriented objects. Moreover, the Rotated RoI Learner and Rotated Position
Sensitive RoI Align layer are designed to boost rotated object classification and regression. These
methods achieve advanced performance. Meanwhile, the computational burden will mount as well as
a result of the possibility that each pixel may generate dozens or even hundreds of rotated proposals
with using a more complicated structure. For the second method, R2CNN [32] is an efficient and classic
rotation detection method, but it is especially for scene text detection, which is not suitable for aerial
scenarios. Inspired by the R2CNN, Yang et al. [33] proposed a multi-class detection method based
on Faster R-CNN named SCRDet, making it probable to estimate and regress OBBs by making good
use of the coarse resolution information in horizontal regions. SCRDet can achieve precisely rotation
detection especially for small and cluttered objects on VHR remote sensing images. For the third
method, Li et al. [34] proposed a rotation detector named RADet inspired by Mask RCNN [16], which
obtains the rotated bounding box by calculating the minimum aera rectangle from the correspondingly
precited mask shape. This simple presentation with an efficient multi-scale network achieve the
competent performance on two benchmarks DOTA [35] and NWPU VHR-10 [36].

(a) (b)

Figure 1. (a) HBB detection of densely-distributed and strip-like objects with large redundancy regions;
objects in yellow line of dashes are prone to missed detection; (b) OBB detection is suitable; objects in
yellow line can be detected rightly with fitting regions.

To better build an accurate and oriented object detection for multi-class objects in VHR aerial
images with diverse background, this paper proposes a novel Multi-scale Feature Integration Attention
Rotation Network (MFIAR-Net). The proposed framework is composed of three modules: Multi-scale
Feature Integration Network (MFIN), Double-Path Feature Attention Network (DPFAN) and Rotation
Detection Network. Compared with advanced rotation detection methods such as RADet [34],
SCRDet [33], RoI-Transformer [31] and ICN [30], our framework is more suitable for multi-class
and arbitrary-oriented object detection in aerial images. The main contributions of this paper are
as follows:
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• We propose an accurate and unified Multi-scale Feature Integration Attention Rotation Network
(MFIAR-Net) for VHR aerial images, which can efficiently detect the multi-category and
arbitrary-oriented objects with fitting OBBs.

• We propose a Multi-scale Feature Integration Network (MFIN) by integrating semantically strong,
low-spatial resolution features and semantically weak, high-spatial resolution features into a
discriminative feature map to handle the scale variations of geospatial objects. The Asymmetric
Convolution Block (AC Block) is a crucial design to substitute for standard square-kernel
convolutional layer to extract distinguished features.

• We design a Double-Path Feature Attention Network (DPFAN) supervised by the mask
information of ground truth to guide the network to focus on object representations and suppress
the irrelevant background information.

• We present a robust Rotation Detection Network to regress OBBs with five parameters
(x, y, w, h, θ), in which Position Sensitive RoI Align (PS RoI Align) layer and a new multi-task
learning loss is introduced to make the localization of deep network more sensitive and benefit
the oriented regression.

Besides, the multi-scale training and inference strategy is adopted to handle multi-scale remote
sensing objects. The proposed framework is evaluated on two publicly aerial datasets DOTA [35]
and HRSC2016 [37] compared with several state-of-the-art approaches. And the effectiveness and
superiority of the proposed framework is demonstrated with comprehensive experiments.

The rest of this paper is organized as follows: Section 2 describes the proposed MFIAR-Net
for oriented object detection in detail. Section 3 illustrates the datasets, details of implementation,
evaluation criteria and experiment results. Section 4 discusses the proposed framework, conducts the
careful ablation study and analyzes limitations and future research directions. Finally, the conclusions
are drawn in Section 5.

2. Proposed Method

In this section, we present details of the proposed Multi-scale Feature Integration Attention
Rotation Network (MFIAR-Net). Figure 2 shows the overview framework of MFIAR-Net. First of all,
the feature map is expected to contain more multi-scale feature information by FPN and Multi-scale
Feature Integration Network (MFIN). The Double-Path Feature Attention Network (DPFAN) can guide
the network to focus foreground information. The coarse horizontal regions are still regressed in the
end of first stage to keep critical information. To improve the sensitivity of location and the precision
of five-parameter (x, y, w, h, θ) regression in Rotation Detection Network, PS RoI Align layer and a
new Multi-task learning loss is introduced. More details are provided in the following subsections.



Sensors 2020, 20, 1686 5 of 21

Figure 2. Overview framework of Multi-scale Feature Integration Attention Rotation Network
(MFIAR-Net) for oriented object detection. The proposed framework based on FPN, consists of
Multi-scale Feature Integration Network, Double-Path Feature Attention Network and Rotation
Detection Network.

2.1. Multi-Scale Feature Integration Network (MFIN)

Feature Pyramid Network (FPN) [14] is an effective method to extract multi-scale feature
information from a single image. In order to obtain distinguished feature representation of FPN
for geospatial objects, Asymmetric Convolution Block (AC Block) [38] is employed after the output of
each scale. Furthermore, we integrate simultaneously the multi-scale feature maps into a discriminative
feature map with appropriate size, the integrated feature possesses balanced information from each
spatial resolution, which is key for scale variations in aerial images. MFIN consists of two important
processes: multi-scale feature extraction and multi-scale feature integration.

2.1.1. Multi-Scale Feature Extraction

As Figure 2 shows, the proposed architecture can be divided into five stages based on ResNet [39],
and the output of each stage’s final residual block is regarded as C2, C3, C4, C5 with diverse spatial
resolutions. Note that the strides are 4, 8, 16, 32 pixels corresponding to the input image. The P2,
P3, P4, P5 are obtained by a top-down pathway and lateral connections corresponding to C2, C3,
C4, C5 respectively. Concretely, the top-down pathway begins with the bottom layer of the network
and progressively upsamples it while transformed versions of higher-resolution features are added
from the bottom-up pathway. FPN generates semantically strong, low-spatial resolution features and
semantically indistinctive, high-spatial resolution features in different level from P5 to P2. To remove
the mixture problem of upsampling and obtain distinguished features of P2, P3, P4, P5, the AC Block
with three parallel branches is introduced to replace the standard square-kernel 3× 3 convolution
layer. As Figure 3 shows, the AC Block is constructed of three parallel convolutional layers with 3× 3,
1× 3 and 3× 1 kernels respectively. Different from the Inception Module [40], the outputs of them are
summed up to enrich the feature representation’s space, then a ReLu activate function is adopted to
get the output feature. In AC Block, the horizontal 1× 3 kernel and vertical 1× 3 kernel are added,
which concentrates on the significance of skeleton feature of ‘+’ shape, especially the features of object
center. Because the skeleton of ‘+’ shape have key information of object and the center point has the
maximum energy. As Figure 4 illustrates, the output of FPN features including P2, P3, P4, P5 have
the blurred objects. The objects of interests are highly distinguished in F2, F3, F4, F5 after the AC
Block. Compared with the standard 3× 3 convolution, AC Block delivers more powerful feature for
the multi-scale feature pyramid with little extra time-consume computations. The ablation study about
AC Block also demonstrates its effects.
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Figure 3. (a) The structure of Asymmetric Convolution Block (AC Block) with three parallel convolution
layers with 3× 3, 3× 1 and 1× 3 kernels. The ReLu activation is operated on the sum of them.; (b) The
AC Block focuses on the significance of skeletons feature of ‘+’ shape.

(a)P2 (b)P3 (c)P4 (d)P5

(e)F2 (f)F3 (g)F4 (h)F5

Figure 4. (a)–(d) represent the Feature map P2, P3, P4 and P5 respectively, (e)–(h) represent the
corresponding F2, F3, F4 and F5 after AC Block.

2.1.2. Multi-Scale Feature Integration

The FPN plays an important role in multi-scale feature extraction. Inspired by the “feature
balance” from the Libra RCNN [17]. The FPN method will make fused features focus more on adjacent
resolution but less on others. The semantic information contained in non-adjacent levels would be
diluted once per fusion during the information flow. So, our study focuses on the good manner of
feature balance designed for remote sensing images. The multi-level features F2, F3, F4, F5 are strongly
attained after the AC Block. Low-level and high-level informations are complementary for object
detection. How to make full use of multi-level features to generate more discriminative representations
is crucial to detection performance. As indicated in Figure 5, F2 possesses the highest spatial resolution,
F5 possesses the lowest spatial resolution. Aiming to integrate multi-level features and maintain their
semantic hierarchy concurrently, we first resize the multi-level features F2, F3, F4, F5 to an intermediate
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size by using bilinear feature interpolation method. By introducing the expected size of integrated
features, SCRDet [33] explored that the small stride of the anchor (SA) can obtain more samples with
high quality particularly for the small objects. Meanwhile, SA is equivalent to the reduction factor of
the feature map relative to the input image. In order to balance the semantic information and location
information, we adopt the size of F3 as the integrated size. The integration feature can be obtained
by the averaging operation as Equation (1). In this procedure, multi-scale features from high-level
to low-level are aggregated at the same time. The output of MFIN integrated semantic and spatial
features to strengthen the multi-scale information flow and make features more balanced, which is
denoted as I.

I =
1
4

F5

∑
F2

Fi (1)

Figure 5. The structure of MFIN. Based on FPN, the AC Block is adopted to replace 3× 3 convolution
layer. To make the integration of multi-scale features, different resized operations are employed. Note
that Up represents upsample layer and Down represents downsample layer, which are implemented
by bilinear interpolation method.

2.2. Double-Path Feature Attention Network (DPFAN)

Aerial images have varied background of geospatial scenarios. Excessive background noise
causes the object information inconspicuous, which results in missed detection and false alarms.
Visual attention turns out to be effective in various computer vision tasks [13,41,42]. We construct a
supervised Double-Path Feature Attention Network (DPFAN) to guide the whole network to capture
the object information in visual representation. Figure 6 shows the detailed structure of DPFAN.
Concretely, the feature map I passes through an AC ConvNet structure, and a new two-channel
feature map Q is generated. In AC ConvNet, the AC Block still performs better than standard 3× 3
convolution in obtaining strong representation and improving robustness of rotation work. Then we
take two parallel branches to exact the foreground features. In each branch, the softmax function is
employed on Q to obtain the saliency map, which represents the scores between [0,1] of foreground
and background in different channels. We only select the foreground score map to multiply with I to
attain the foreground regions, which are A1 and A2 respectively. Finally, a better attention feature map
A is obtained by summing up A1 and A2 from the two parallel attention branches. The implementation
process of feature attention is represented as Equation (2). Note that the index 0 denotes the foreground
score map.

A = A1 + A2 = [so f tmax1(Q)]0 ∗ I + [so f tmax2(Q)]0 ∗ I (2)
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Figure 6. The structure of DPFAN, a double-path feature attention network supervised by binary mask
map of ground truth in training time. In inference time, the model works without mask map.

To guide the network with a definite direction, we adopt a supervised learning method. According
to ground truth, a binary mask map can be obtained as a label, and then the attention loss between the
binary mask and two-channel feature map Q can be calculated by using the pixel-wise cross-entropy
loss only in training time. In inference time, our model can work effectively and independently without
mask information of ground truth.

2.3. Rotation Detection Network

Based on Faster R-CNN [6], the proposed network has two stages. In first stage, the coarse
horizontal region proposals are still obtained from RPN. In the second stage, the final predicted OBBs
with five parameters (x, y, w, h, θ) from the rotation detection head are regressed. Specially, as Figure 7
shows, θ is defined as the angle between the x-axis and w side in range [−π/2, 0). (x, y) means the
oriented box’s center coordinate and w, h represent the width and height of oriented box, respectively.
Besides, rotation non-maximum suppression (R-NMS), the rotational variant of NMS, is applied to
select the best localized regions and to remove redundant detections for OBBs. In order to build a
robust rotation detection with a cute angle θ, PS RoI Align layer and a new multi-task learning loss
function are introduced in the proposed Rotation Detection Network.

Figure 7. The illustration for the rotation angle. Red line of dashes represents the HBB; White line
represents the OBB. θ represents the rotated angle between the x-axis and w side.
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2.3.1. PS RoI Align Layer

A fixed-length (e.g., 7× 7) feature map for succeeding classification and bounding box regression
tasks is built by RoI pooling layer [12] in the second stage. Considering the problem of feature
misalignment especially for large aspect ratio objects, R-DFPN [29] and SCRDet [33] employed RoI
Align [16] by utilizing bilinear interpolation to obtain the precise coordinates instead of quantified
integers for candidate regions. To settle a dilemma between translation-invariance in image
classification and translation-variance in object detection, PS RoI Pooling is proposed in R-FCN [15].
At first, a fully convolutional network generates position-sensitive score maps. Each of these score maps
encodes the position information in reference to a relative spatial position. Then, a positive-sensitive
RoI pooling layer is followed which gets score maps information in the final convolutional layer of
second stage.

In the proposed method, a more robust PS RoI Align layer is built by combining the RoI Align
with PS RoI Pooling. Specially, we abandon two rounding operations during the PS RoI Pooling,
one is to quantify the coordinates of candidate region into integer at first, the other is to quantity the
coordinates of each bins in position-sensitive score maps. Like RoI Align, we use bilinear interpolation
to obtain the precise coordinates respectively. Not only can PS RoI Align avoid the misalignment
between the inputs and the extracted feature maps, but also can make the deep convolutional backbone
effectively converted to object detector with well translation-variance performance. The experiments
demonstrate that PS RoI Align layer can improve the performance 1.27% and 0.72% than frequently
used RoI Pooling layer and RoI Align layer respectively.

2.3.2. Multi-Task Learning Loss Function

In our proposed MFIAR-Net, the tasks including coarse horizontal region proposals learning
in RPN, regression and classification of OBBs and attention network learning are performed at the
same time. We present a new multi-task learning loss to guide the whole framework as the objective
function, which is defined as:

L = LRPN + λ1LReg_OBB + λ2LCls + λ3LAtt, (3)

where LRPN indicates the region proposal networks loss, LReg_OBB represents the oriented bounding
box loss, LCls means the classification loss and LAtt is the loss of attention network learning in DPFAN.
λ1, λ2 and λ3 balance losses between the different tasks.

Specially, LReg_OBB is defined as:

LReg_OBB =
1
N ∑

i
p∗i ∑

j∈{x,y,w,h,θ}
Lreg(vij, vij

∗), (4)

when the labeled class is foreground, p∗i = 1, else p∗i = 0. v∗ = (v∗x, v∗y, v∗w, v∗h, v∗θ ) denotes the target
vector of ground truth, v = (vx, vy, vw, vh, vθ) indicates the predicted offset vector. Lreg is smooth L1
function, which is responsible for OBB’s regression of five parameters. They are defined respectively
as follows:

Lreg = smoothL1(v− v∗)

smoothL1(x) =

{
0.5x2, i f |x| < 1
|x| − 0.5, otherwise

(5)

vx = (x− xa)/wa, vy = (y− ya)/ha

vw = log(w/wa), vh = log(h/ha)

vθ = θ − θa

(6)
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v∗x = (x∗ − xa)/wa, v∗y = (y∗ − ya)/ha

v∗w = log(w∗/wa), v∗h = log(h∗/ha)

v∗θ = θ∗ − θa,

(7)

where x, y, w, h and θ indicate the box’s center coordinates, width, height and rotated angle, respectively.
Variable x, xa and x∗a mean predicted box, anchor box and ground truth box respectively (similarly for
y, w, h, θ). Besides, LAtt in DPFAN guides the network to have a learning direction, which is defined as:

LAtt =
1

h× w

h

∑
i

w

∑
j

Latt(uij, u∗ij), (8)

where u∗ij represents mask’s pixel of label, uij represents predicted pixel of the two-channel feature
map Q in the DPFAN. Latt is pixel-level softmax cross-entropy loss. Note that LRPN and LCls are the
same as Faster R-CNN [6].

3. Experiments

In this section, we will demonstrate the effectiveness of the proposed MFIAR-Net on publicly
available aerial datasets: DOTA [35] and HRSC2016 [37]. At fisrst, we introduce datasets,
implementation details and evaluation metrics. Then we compare MFIAR-Net method with the
state-of-art methods in accuracy and speed performance.

3.1. Dataset Description

3.1.1. DOTA

In VHR optical aerial images with arbitrary quadrilateral annotation, the DOTA [35] is a large-scale
dataset for benchmarking object detection captured from different sensors and platforms. DOTA
involves 2806 aerial images totally with pre-divided 1411 training images, 458 validation images
and 937 testing images. The fully annotated DOTA benchmark possesses 188,282 instances, which
belong to 15 common classes, namely, plane (PL), baseball diamond (BD), bridge (BR), ground track
field (GTF), small vehicle (SV), large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC),
storage tank (ST), soccer ball field (SBF), roundabout(RA), harbor(HA), swimming pool (SP) and
helicopter(HC). The image size, ranging from around 800× 800 to 4000× 4000 pixels, contains objects
which exhibit a great variety of scales, orientations, and shapes. The testing images have no annotations.
The accuracy evaluation of the test data, accordingly, have to be submitted to the DOTA Evaluation
Server http://captain.whu.edu.cn/DOTAweb/evaluation.html with a fixed format.

3.1.2. HRSC2016

HRSC2016 [37] is a challenging dataset collected from famous harbors in Google Earth for ship
detection. The dataset involves 1061 images totally with 436 images for training, 181 images for
validation and 444 images for test respectively. The fully annotated HRSC2016 possesses 2976 samples
with more than 20 categories of ships in diverse appearances. The image sizes range from 300× 300 to
1500× 900, most of which are larger than 1000× 600. The strip-like ship detection is a better illustration
of OBBs.

3.2. Implementation Details

Our designed MFIAR-Net is an end-to-end learning network by using ResNet-101 [39] as
backbone, which is pretrained on ImageNet [43] to initialize the network. Our experiments are
implemented by TensorFlow (https://tensorflow.org) on a Nvidia GeForce RTX 2080Ti GPU with 11G
memory. For DOTA, we partition original images into 800× 800 patches with 200 pixels’ overlap by a
sliding window. The model is trained by 300k steps in total, and the learning rate is 3e-4 for the first

http://captain.whu.edu.cn/DOTAweb/evaluation.html
https://tensorflow.org
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100k steps, then 3e-5 and 3e-6 for the next two 100k steps. For HRSC2016, we resize the short side of
image to 800, the long side is fitted with the original ratio for training and testing time. We train the
model with the same initial learning rate for the total 200k steps, the learning rate is 3e-4 for the first
80k steps, then 3e-5 and 3e-6 for the next 70k and 50k steps. The common settings for two datasets are
as follow. We adopted the Momentum Optimizer as model optimizer where weight decay is set to
0.0001 and momentum is set to 0.9. The batch size of input image is set to 1, and the mini-batch size
of RoIs in two-stage is 512 for training. For anchor details, the base anchor size is set to 256, and the
anchors scales are setting from 2e-4 to 2e0. Besides, anchor ratios are set to [1/1, 1/2, 1/3, 1/4, 1/5,
1/6, 1/7, 1/9] to cover all objects’ size as far as possible. When IoU > 0.7, the anchor is regarded as a
positive sample, and a negative sample is generated when IoU < 0.3. Besides, the two thresholds in
the second stage get set to 0.4 owing to the sensitivity of angle and IoU with ortated rectangle. The
balanced hyperparameters in Equation (3) are set to λ1 = 4, λ2 = 2, λ3 = 1. It is worth noting that the
setting of balanced hyperparameters is important for fully training of deep model. To a certain degree,
it depends on empirical data in most cases. The initial values are set to 1 for λ1, λ2 and λ3, respectively.
The loss values including regression, classification and attention are vital reference data in training
time. In this paper, the regression of five parameters (x, y, w, h, θ) is a primary task, and increasing λ1

can enhance performance of OBB regression. The classification is also important for OBB localization.
Increasing λ2 in a small degree can also strength the performance of model. Attention is mainly aimed
for feature extraction, which can make indirect effects for OBB regression. The balanced parameter λ3

should not be large in the training time.
Specially, DOTA is a typical multi-scale VHR aerial dataset. To fully exploit multi-scale

information of various objects, we adopt the multi-scale strategy in training and inference time
for DOTA. More concretely, the original images are resized two scales {1.0, 0.5} before dividing the
image into patches, and then each scale is selected from {600, 700, 800, 900, 1000, 1100, 1200} for
each sample randomly as the size of a patch image’s short side. And the long side is adjusted with
the original ratio in training and testing time. Similarly, for HRSC2016, we adopted the scale with
{600,700,800,900} for each sample randomly as the size of a patch image’s short side. The long side
is also adjusted with the original ratio in training and testing time. In addition, we adopted random
flipping and random rotating at an angle from [−90◦,90◦] with 15◦ interval for data augmentation on
two datasets.

3.3. Evaluation Metrics

To evaluate the performance of object detector, widely used mean Average Precision (mAP) is
adopted as evaluation criteria, which is calculated by Recall and Precision. The Precision metric
represents the ratio of detection that are true positives, and the Recall metric means the ratio of
positives that are detected accurately. The Precision and Recall metrics can be formulated as follows:

Precision =
TP

(TP + FP)
(9)

Recall =
TP

(TP + FN)
(10)

where, TP, FP and FN indicate the number of true positive, false positive and false negative respectively.
Meanwhile, we can also utilize Recall (R) and Precision (P) to get Average Precision (AP) value of
each category. The mAP is calculated by the mean value of AP over all categories. They are defined
as follows:

AP =
∫ 1

0
P(R)dR (11)

mAP =
1

Ncls

Ncls

∑
i=1

APi (12)
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where P(R) indicates the P-R function, Ncls represents the number of categories.

3.4. Comparison with the-State-of-Art Methods

In this subsection, we compare the performance of our proposed method MFIAR-Net with the
state-of-art rotation detection methods on DOTA [35] and HRSC2016 [37] datasets. The generality and
effectiveness of the proposed framework are demonstrated by showing exhibiting quantitative and
qualitative results.

3.4.1. Results on DOTA Dataset

Table 1 summarizes the experimental results of different methods. As can be seen in Table 1,
we compare with FR-O [35], R-DFPN [29], R2CNN [32], RRPN [44], ICN [30], RoI-Transformer [31]
and recently proposed SCRDet [33] and RADet [34]. The results reported here were obtained by
submitting our predictions to the official DOTA evaluation server. At first, the methods based on
generating rotated region proposals including R-DFPN, RRPN, ICN and RoI-Transformer, can achieve
a good performance with the fitting proposals produced from RPN stage. Among these methods,
ICN and RoI-Transformer focus on the OBB Task of multi-class object detection for remote sensing
images, which gain performance at 68.20% and 69.56% mAP. Especially for ship (SH) and ground track
field (GTF), RoI-Transformer have the best AP values with 83.59% and 75.92%, respectively. R-DFPN
is designed for ship detection, which have inadequate ability to detect multi-class and multi-scale
objects. RRPN is constructed for rotated text scene detection, which are not suitable for aerial images
with complex background. Secondly, the methods depending on regression from coarse horizontal
region proposals including R2CNN, SCRDet and our proposed MFIAR-Net, these methods have the
clear superiority in mAP. SCRDet gets 72.61% mAP and our proposed MFIAR-Net gains 73.49% mAP.
These methods concentrate on the OBB regression with multi-category rotation detector. The SCRDet
has best performance in plane (PL), storage tank (ST), soccer ball field (SBF) and roundabout (RA).
MFIAR-Net has distinct performance in baseball diamond (BD) and small vehicle (SV) and harbor
(HA). Thirdly, RADet based on rotated rectangle from the mask shape prediction, is a simple and
efficient method for obtaining a rotating bounding box, which gains competent mAP performance with
69.09%. For large-vehicle (LV) and swimming pool (SP), RADet has the best AP value, which illustrates
the manner calculated from mask is efficient. Compared with other methods, our proposed MFIAR-Net
outperforms other advanced rotation methods, which is more accurate for multi-class object detection
and more suitable for the rotated object detection in VHR aerial images. Some qualitative results of
MFIAR-Net on DOTA are given in Figure 8.

Table 1. Comparison of the performance on OBB task with the state-of-art methods on DOTA test set.
The numbers in boldface indicate the best detection results on each class.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP(%)

FR-O 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30 52.93
R-DFPN 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94
R2CNN 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01
ICN 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

RADet 79.45 76.99 48.05 65.83 65.46 74.40 68.86 89.70 78.14 74.97 49.92 64.63 66.14 71.58 62.16 69.09
RoI-Transformer 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
MFIAR-Net(ours) 89.62 84.03 52.41 70.30 70.13 67.64 77.81 90.85 85.40 86.22 63.21 64.14 68.31 70.21 62.11 73.49

3.4.2. Results on HRSC2016 Dataset

To further validate the effectiveness of our proposed rotation framework, we construct extensive
experiments on HRSC2016 dataset. HRSC2016 contains a large number of thin and long ship
instances with arbitrary orientation, which brings in ultimate challenge for rotation-based methods.
For HRSC2016 evaluation, the results are reported by the standard VOC AP metrics with Intersection
Over Union (IoU) threshold of 0.5. RoI-Transformer [31], SCRDet [33] and RADet [34] are selected
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as the representation in three categories of oriented object detections to make a comparison with our
proposed MFIAR-Net. As the Table 2 shows, these methods achieve competitive results. Specially,
RoI-Transformer [31] can achieve 86.20% mAP owing to the high-quality rotated region proposals.
Compared with RoI-Transformer, our proposed MFIAR-Net increased 3.61% highly. There are two
main reasons. On one hand, it’s hard to distinguish between background and foreground in most
situations of HRSC2016. Our designed attention network DPFAN supervised by the binary mask plays
an important role in achieving state-of-art performance. On the other hand, PS RoI Align can make the
network avoid the misalignment between objects and extracted feature maps, especially for strip-like
ship in HRSC2016. Some visualization results are shown in Figure 9.

Table 2. Comparison of detection accuracy and speed with advanced methods on HRSC2016 test set.
The numbers in boldface indicate the best detection result.

Method R2CNN RRPN SCRDet RADet RoI-Transformer MFIAR-Net(ours)

mAP(%) 73.07 79.08 83.41 84.31 86.20 89.81
speed 0.5s 0.28s 0.20s 0.24s 0.16s 0.14s

In order to illustrate the computational complexity of the presented method, we make a
comparison about the detection speed with different models. To make the comparison as fair as
possible, we set the same image size with 800× 800 and test the single image with post-processing
operations (like R-NMS). As Table 2 shows, the speed of SCRDet [33] is 0.20 s, whose time consuming
of computation is due to the channel of base feature map is 1024 until finish detection. The channel
of our proposed MFIAR-Net is 256 after FPN, which can save much time without performance loss.
RADet [34] is based on Mask RCNN [16], which prediction of mask branch is a pixel-to-pixel task. It
needs more computation time with 0.24 s speed. RoI-Transformer [31] is based on generating rotated
proposals in RPN stage. Compared the horizontal proposals, each pixel need to generate dozens or
even hundreds of rotated proposals, which brings in more computation. In our proposed MFIAR-Net,
the OBB prediction is regressed from the horizontal proposals from the RPN stage. In order to cover
all objects’ size as far as possible, the setting of anchor ratios is [1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/9],
which will result in more computation. Nevertheless, MFIAR-Net can achieve 0.14s speed, which also
illustrates the proposed method has potential application.
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Figure 8. Visualization of detection results of proposed MFIAR-Net on OBB task of DOTA.
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Figure 9. Visualization of detection results of proposed MFIAR-Net on test set of HRSC2016.

4. Discussion

4.1. Ablation Study

In this subsection, we conduct an ablation study to analyze and discuss the impact of each
component of the proposed MFIAR-Net on performance. Compared with HRSC2016, DOTA has large
scale variations of multi-category objects and more complicated backgrounds of geospatial scenarios
to better verify the effectiveness. For ablation experiments, we firstly to setup the baseline and then
gradually to set different network configurations to make an efficient and robust framework on DOTA.
Note that all experiments are trained on train and validation datasets and our predicted results of test
dataset are submitted to official DOTA evaluation server to get final experimental results.

4.1.1. Ablation for Multi-Scale Feature Integration Network (MFIN)

First of all, we set the baseline to capture the multi-scale features. As we all know, FPN [14] based
on Faster RCNN [6] has the strong ability to handle the multi-scale objects. R-DPFN [29] have analyzed
the FPN is better than Faster RCNN with single high-level feature map. And the later related works
including ICN [30], RoI-Transformer [31] and recently proposed method RANet [34] are based on FPN
in feature extraction, which illustrates the advantages of multi-scale feature pyramid. So, we setup
FPN model based on Faster RCNN with rotated detection head as our baseline. Then, we construct the
network to improve the expressiveness of multi-scale features based on the baseline model. Inspired
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by the Libra RCNN [17], we find that the integration of feature pyramid representations determines
the detection performance. As Figure 10 shows, we construct the network in different integration
manners of multi-scale features to explore this idea. As the Table 3 shows, the performance which way
of integration into P3 feature map performs the best mAP of 65.81%, 2.09% larger than baseline model.
On one hand, the size of feature map is larger, the object samples are more high-quality. On the other
hand, the low-level feature is more content detailed, which can bring large number of negative samples
and weaken the detection performance. The main reasons why the way of integration into P3 has the
best performance can divide into two aspects. Firstly, P3 can balance semantic and location feature
map by integrating the pyramidal representations in the intermediate position. Secondly, the size of P3
can make the network have finer object sampling, in which negative samples is not excessive.
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Figure 10. Different integration manners of multi-scale features of P2, P3, P4, P5. (a) The way of
Integration into P2; (b) The way of Integration into P3; (c) The way of Integration into P4; (d) The
way of Integration into P5. Note that Up and Down represent upsample and downsample operations
respectively are achieved by the bilinear interpolation method.

In addition, in order to extract more powerful features for rotated objects, the AC Blocks are
adopted after each pyramidal feature instead of the standard square-kernel convolutional layer.
The horizontal and vertical kernels were added to enrich the feature space, especially for the model’s
adaptability of rotation distortions, which can improve the capability of rotational invariance for the
network. The Table 3 shows that AC Block can reach 66.75%.

Table 3. Different integration manners of the multi-scale feature maps for Multi-Scale Feature
Integration Network (MFIN).

Method mAP(%)

FPN (based on Faster R-CNN) 63.72
+Integration into P2 64.53
+Integration into P3 65.81
+Integration into P4 64.25
+Integration into P5 60.73

+MFIN (AC Block + Integration into P3) 66.75

4.1.2. Ablation for PS RoI Align Layer

In order to demonstrate the efforts of PS RoI Align layer, we make an ablation study for RoI
Pooling, RoI Align and PS RoI Align separately. Our baseline is based on RoI Pooling layer, which
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divides the region proposal into a fixed-length in the second stage. It can be evidenced in Table 4 that
the detection results have been improved by 1.27% and 0.72% after replacing RoI Pooling and RoI
Align with PS RoI Align, respectively. The PS RoI Align layer has better performance, reaching 68.02%.
On one hand, PS RoI Align can address the problem of location misalignment, compared with RoI
Pooling. On the other hand, PS RoI Align can promote the sensitivity of location by means of encoding
score maps with reference to a relative spatial position. By combining RoI Align and PS RoI Pooling,
PS RoI Align brings their advantages to work well and make a better performance of mAP.

Table 4. Different RoI Pooling layer. The numbers in boldface indicate the best performance.

Method mAP(%)

Baseline (RoI Pooling) + MFIN 66.75
RoI Align 67.30

PS RoI Align 68.02

4.1.3. Ablation for Double-Path Feature Attention Network (DPFAN)

Attention structure plays a key role in guiding the network to focus on the object information
and suppress the influence of background. In Table 5, we study on the techniques of attention
structure. The detection performance of mAP was increased by 1.55% to 69.57% after adding the
proposed Double-Path Feature Attention Network (DPFAN), which demonstrates the effectiveness
of including attention structure. In addition, we also construct experiments with Single-Path Feature
Attention Network (SPFAN), which is constructed with the one branch of DPFAN. The Table 5 shows
that SPFAN can achieve a small improvement by 0.61%. The two-branch DPFAN can obtain more
supervised information to guide the network to present the object’s features better. As Figure 11
illustrates, the background is distinctly suppressed after our proposed feature attention network. It
also demonstrated intuitively the effectiveness of DPFAN.

Table 5. Different feature attention network configurations. DPFAN represents our proposed
Double-Path Feature Attention Network. SPFAN represents a single branch of DPFAN. The numbers
in boldface indicate the best performance.

Method mAP(%)

Baseline + MFIN + PS RoI Align 68.02
+ SPFAN 68.63
+ DPFAN 69.57

(a) (b) (c) (d)

Figure 11. Visualization of the attention network of DPFAN. (a) Input feature map of DPFAN;
(b) Output feature map of DPFAN; (c) Ground truth; (d) Binary mask map as supervised information
for attention network.
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4.1.4. Ablation for Multi-scale Strategy

We perform the multi-scale training and inference strategy to enhance the scale diversity of remote
sensing objects. Table 6 shows that the input image with single scale of 800 can get the 69.57% mAP.
At first, the original images are resized two scales {1.0, 0.5} before dividing the image into patches.
After partition of the scaled images, scaling the short side of cutout image to one size from {600, 700,
800, 900, 1000, 1100, 1200} randomly and the long side at the original ratio can improve the performance
of model from 69.57% to 72.51% with backbone of ResNet-101, which demonstrates the effectiveness
of the multi-scale strategy in training and inference time. Furthermore, our model with a deeper
backbone ResNet-152 can achieve a better 73.49% performance.

Table 6. The ablation study for the multi-scale strategy. The numbers in boldface indicate the
best performance.

Method Backbone mAP(%)

Baseline + MFIN + PS RoI Align + DPFAN ResNet-101 69.57
+Multi-scale Strategy ResNet-101 72.51
+Multi-scale Strategy ResNet-152 73.49

4.2. Discuss on HBB Task

Our proposed MFIAR-Net is designed with rotated detection head (x, y, w, h, θ) and achieves
the state-of-art detection performance on OBB task. To better verify comprehensive performance of
our proposed network structure, we conducted the experiments with traditional HBB detection head
(x, y, w, h). It can be seen in Table 7 that MFIAR-Net also have competitive performance with HBB
task on DOTA dataset, compared with the advanced methods. The experimental results show that the
proposed network structure has strong generalization.

Table 7. Comparison of detection accuracy of different methods with HBB on DOTA.

Method SSD [20] YOLOv2 [19] FR-H [6] ICN [30] IOU-Adaptive [45] SCRDet [33] MFIAR-Net(ours)

mAP(%) 10.94 39.20 60.46 72.50 72.72 75.35 76.07

4.3. Limitations of Proposed Method

Although our designed method has achieved great performance for multi-scale rotation detection,
there still exist some limitations. On one hand, the long and thin OBBs with acute angle come with the
difficultly for optimization of the whole network. A more appropriate objective loss function needs to
be explored further. On the other hand, for the particularly small objects such as the ship, our method
still needs to be improved compared with RoI-Transformer. In order to boost the performance further,
it can be from two aspects: one is a better network to reconcile the small and large objects, another one
is a preferable OBB’s representation form for oriented objects. At the same time, detection efficiency
is also an import factor in practical remote sensing system. In the future, we will concentrate more
attention on the real-time detection with high-accuracy.

5. Conclusions

In this paper, we have proposed a novel and effective region-based rotation object detection
framework named MFIAR-Net, designed expertly for multi-category and arbitrary-orientation objects
in VHR aerial images. The MFIN can extract multi-scale features discriminatively and integrate into a
distinguished feature with an appropriate size, which balanced semantically strong, coarse-resolution
features and semantically weak, high-resolution features simultaneously. Taking the complex and
diverse background into consideration, a supervised Double-Path Feature Attention Network (DPFAN)
is designed to guide the whole network to capture the object information and suppress irrelevant
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noise. Moreover, a robust Rotation Detection Network is presented, which effectively achieves OBB’s
localization and classification. The ablation study was constructed carefully to demonstrate the
performance improvement of each component in the overall network. Experimental results on public
datasets DOTA and HRSC2016 show that our framework can achieve state-of-art performance with a
competitive detection speed on OBB task.
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