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Abstract: The coverage problem is a fundamental problem for almost all applications in wireless
sensor networks (WSNs). Many applications even impose the requirement of multilevel (k) coverage
of the region of interest (ROI). In this paper, we consider WSNs with uncertain properties. More
precisely, we consider WSNs under the probabilistic sensing model, in which the detection probability
of a sensor node decays as the distance between the target and the sensor node increases. The difficulty
we encountered is that there is no unified definition of k-coverage under the probabilistic sensing
model. We overcome this difficulty by proposing a “reasonable” definition of k-coverage under
such a model. We propose a sensor deployment scheme that uses less number of deployed sensor
nodes while ensuring good coverage qualities so that (i) the resultant WSN is connected and (ii) the
detection probability satisfies a predefined threshold pth, where 0 < pth < 1. Our scheme uses a
novel “zone 1 and zone 1–2” strategy, where zone 1 and zone 2 are a sensor node’s sensing regions
that have the highest and the second highest detection probability, respectively, and zone 1–2 is the
union of zones 1 and 2. The experimental results demonstrate the effectiveness of our scheme.

Keywords: sensor deployment; sensor coverage problem; network planning; probabilistic sensing
model; wireless sensor network

1. Introduction

A wireless sensor network (WSN) has various applications in health-care, smart home, security,
environmental exploration, and the military [1,2]. A sensor node (or simply node) is the basic
component of a WSN. A WSN usually consists of numerous nodes deployed in a region of interest
(ROI). Two nodes can communicate with each other if each is within the transmission range of the
other, in which case we say that there is a link between them or that they are neighbors. Each node is
able to collect data and process information and communicate with neighboring nodes.

Among various issues in WSNs, the coverage problem and the connectivity problem have been
regarded as crucial foundations because many applications rely on them. Surveys for the coverage
problem can be found in [3,4]. A good sensor deployment strategy should consider both coverage and
connectivity. Sensor deployment not only determines the cost of constructing the network but also
affects how well the given ROI will be monitored. This paper assumes that each node’s sensing region
is of a disk shape (see Figure 1a) and all nodes have the same sensing range rs and communication
range rc.

Let u be a location in the ROI, si be a node in the WSN, and d(u, si) be the Euclidean distance
between u and si. Most of the past researches use the binary sensing model [5–7], where nodes are
assumed to be accurate in detecting targets within their sensing ranges. More precisely, under the
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binary sensing model (see Figure 1b for an illustration), the detection probability p(u, si) of u by si is
defined as

p(u, si) =

{
1 if d(u, si) ≤ rs,
0 otherwise.

•
si

rs

(a)

d(u, si)

p(u, si)

0

1

rs

(b)

d(u, si)

p(u, si)

0

1

rs

(c)

Figure 1. (a) Disk shape. (b) Binary sensing model. (c) Probabilistic sensing model.

In physical scenarios, the distance decay effect cannot be ignored. That is, the detection probability
of a node decays as the distance between the target and the node increases. Based on this, the coverage
problem under a more realistic model, called the probabilistic sensing model, has been investigated;
see [7–11]. A survey for the coverage problem with uncertain properties can be found in [12]. Do notice
that unlike the binary sensing model, which has a unified definition of p(u, si), there is no unified
definition of p(u, si) under the probabilistic sensing model; see Section 2 for details. We now give the
definition of p(u, si) used in [7] and in this paper. Under the probabilistic sensing model (see Figure 1c
for an illustration), the detection probability p(u, si) of u by si is defined as

p(u, si) =

{
e−λd(u,si) if d(u, si) ≤ rs,
0 otherwise,

(1)

where λ is a sensor-dependent parameter.
Many real-world applications impose the requirement of multilevel k > 1 coverage. For example,

k ≥ 2 for military or surveillance applications, k ≥ 3 for positioning protocols using triangulation [13],
conducting data fusion [14], and minimizing the impact of sensor failure [15]. Sensor deployment with
multilevel (k) coverage have been discussed in [7,15–17].

Under the binary sensing model, an ROI is said to be k-covered if every location in the ROI can
be detected by at least k nodes (i.e., every location in the ROI is within k nodes’ sensing regions).
Unfortunately, to the best of our knowledge, there is no unified definition of k-coverage under the
probabilistic sensing model. We now are ready to elaborate this issue. Let A = {s1, s2, . . . , sn} be the
set of sensor nodes deployed in the ROI. In [7], a location u in the ROI is considered as k-covered if the
probability that there are at least k nodes that can detect u is not smaller than a predefined threshold
pth, where 0 < pth < 1. More precisely, in [7], a location u in the ROI is said to be k-covered if

∏
si∈A′

p(u, si) ≥ pth, for some A′ ⊆ A with |A′| = k. (2)

For clarity, we call this definition of k-coverage the k-threshold coverage. In [18], a location u in
the ROI is said to be k-covered if

∑
si∈A

p(u, si) ≥ k. (3)

For clarity, we call this definition of k-coverage the k-expectation coverage. In both [7] and [18],
the ROI is said to be k-covered if every location u inside the ROI is k-covered. The p(u, si) used in [18]
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is defined as (4), which is a generalization of (1) and is introduced in Section 2. By (3), the event of u
detected by si is independent of the event of u detected by sj for j 6= i. Reference [18] proves that the
ROI is k-covered by A if, among all locations inside the ROI, the minimum expected number of nodes
is k (there is a typo and k should be at least k).

Three main considerations in WSNs’ coverage are: maximizing coverage quality, maximizing
network lifetime, and minimizing the number of deployed nodes. The coverage quality and lifetime are
two conflict factors with respect to energy consumption. Reference [12] points out that the k-coverage
requirement makes the problem more sophisticated because more nodes are needed; deploying less
nodes by decreasing the overlap region and prolonging the network lifetime become complicated.
The k-expectation coverage [18] has the drawback that the user cannot specify his/her preference for
the threshold pth, meaning that the user cannot specify their desired coverage quality. Moreover, it is
possible that the entire ROI is regarded as k-covered but some locations inside it are detected by a lot
of nodes each with a small detection probability. The k-threshold coverage [7] has the drawback that it
tends to use too many sensor nodes; we give the calculation details in Section 2. In short, Wang and
Tseng [7] first calculate rth (notice that rth is denoted as rp

s in [7]) and then replace the original rs with
rth in the deployment.

The objective of this paper is to propose a sensor deployment scheme to use less number of nodes
while ensuring the following two important coverage qualities: (i) the resultant WSN is connected
and (ii) the detection probability satisfies a predefined threshold pth, where 0 < pth < 1. Although
k-threshold coverage [7] achieves the same objective, we find that the nature of k-threshold coverage
makes rth tend to become much smaller than the original rs. For example, suppose k = 3 and m denotes
meters. Then:

• If λ = 0.05 and rs = 30 m, then rth for pth = 0.7, 0.8, 0.9 are 2.377 m, 1.487 m,
and 0.702 m, respectively.

• If λ = 0.08 and rs = 30 m, then rth for pth = 0.7, 0.8, 0.9 are 1.486 m, 0.929 m,
and 0.439 m, respectively.

These very small rth’s cause a large number of nodes to be deployed. Since the number of nodes
is very large, the overall detection probability might be underestimated.

In this paper, we try to propose a “reasonable” solution to the k-coverage problem under the
probabilistic sensing model. The main contributions of this paper are as follows.

• We propose a “reasonable” definition of k-coverage under the probabilistic sensing model, called
the k-layer coverage, and propose a scheme to achieve k-layer coverage.

• We propose a novel “zone 1 and zone 1–2” strategy to fulfill k-layer coverage scheme and ensure
good coverage quality. We propose an efficient algorithm to calculate the radius r1 of zone 1,
which takes at most 18 iterations when error tolerance ε = 10−6.

• Experimental results shows that our k-layer coverage scheme indeed uses less sensor nodes,
thereby demonstrating the effectiveness of our scheme.

Our k-layer coverage scheme partitions the nodes into k subsets, each forming one layer of
coverage, and ensures that for every location u inside the ROI, the detection probability for u by nodes
in “each layer” is not smaller than pth. In particular, our k-layer coverage scheme ensures that every
location u inside the ROI is within zone 1 of at least k nodes and within zone 1–2 of at least another
2 · k nodes (zone 1 and zone 1–2 are defined in Section 4). When coverage quality is considered, our
k-layer coverage scheme provides a good solution. Different from the k-threshold coverage [7], which
replaces the original rs with rth, our k-layer coverage replaces the original rs with r1. We prove that as
long as

√
3r1 < rs, we have r1 > k · rth, meaning that our k-layer coverage will use less nodes. When

the number of nodes is considered, our k-layer coverage scheme also provides a good solution.
The rest of this paper is organized as follow. Section 2 introduces the related works. Section 3

gives preliminaries, assumptions, and objectives. Section 4 gives the basics of the k-layer coverage.
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Section 5 gives our k-layer coverage scheme. Section 6 illustrates experimental results. Concluding
remarks are given in the final section.

2. Related Works

Recall that a good sensor deployment should consider both coverage and connectivity. Assuming
that the ROI is a convex set, Zhang and Hou [19] investigate the relationship between coverage and
connectivity and prove that rc ≥ 2rs is both necessary and sufficient to ensure that coverage implies
connectivity. With such a proof, one can then focus only on the coverage problem. As long as rc ≥

√
3rs,

nodes can be deployed according to the regular triangular lattice pattern (triangular pattern for short;
see Figure 2) so that both coverage and connectivity can be ensured [7,20]. Using the triangular
pattern, neighboring nodes will be regularly separated by a distance of

√
3rs. A deployment using the

triangular pattern is sometimes called an optimal deployment since it is asymptotically optimal in terms
of the number of nodes needed to achieve full coverage of the ROI.

• •

•
rs

√
3rs

(a)

• • •

• • • •

• • •
rs

√
3rs

3rs

2

√
3rs

2

(b)

Figure 2. Triangular pattern: (a) three neighboring nodes, (b) the general case.

In some applications, rc ≥ 2rs or rc ≥
√

3rs may not hold. Wang and Tseng [7] therefore consider
an arbitrary relationship between rs and rc, thus relaxing the limitations of existing results. In [7],
for the the binary sensing model, two solutions to achieve k-coverage are proposed: the naive duplicate
placement scheme (duplicate scheme for short) and the interpolating placement scheme (interpolating
scheme for short). The idea of the duplicate scheme is to use a good sensor placement method to
ensure 1-coverage and connectivity and then duplicate k nodes on each designated location. However,
since the duplicate scheme may result in some regions in the ROI having a much higher coverage levels
than k, the interpolation scheme is therefore being proposed to “reuse” these regions to generate a
multilevel coverage. When k = 1 or k = 2 or (k ≥ 3 and rc >

2+
√

3
3 rs), it is found that the interpolation

scheme will not save nodes compared to the duplicate scheme, thereby adopting the duplicate scheme.
For clarity, we summarize the schemes used in [7] in Table 1. Notice that the interpolation schemes
used in the (rc ≤

√
3

2 rs)-case and the (
√

3
2 rs < rc ≤ 2+

√
3

3 rs)-case are different.

Table 1. Scheme used by [7]: “k” means “to make the ROI k-covered”, “duplicate” means “duplicate
scheme”, “interpolation” means “interpolation scheme”, and “tri. pattern” means “triangular pattern”.

k Case rc ≤
√

3
2 rs Case

√
3

2 rs < rc ≤ 2+
√

3
3 rs Case 2+

√
3

3 rs < rc <
√

3rs Case rc ≥
√

3rs

k = 1 duplicate duplicate duplicate duplicate and tri. pattern
k = 2 duplicate duplicate duplicate duplicate and tri. pattern
k ≥ 3 interpolation interpolation duplicate duplicate and tri. pattern

Wang and Tseng [7] adapt the schemes of the binary sensing model to the probabilistic sensing
model. Set (?) = (k ≥ 3 and rc ≥

√
3rs) for convenience. We now use the (?)-case as an illustration
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to show how [7] performs the adaption. According to Table 1 (shown in Section 2), under the binary
sensing model, [7] will use the duplicate scheme and triangular pattern in the (?)-case. Under the
probabilistic sensing model, in the (?)-case, [7] first calculates rth (notice that rth is denoted as rp

s in [7]).
Then, [7] replaces the original rs with rth in the deployment to ensure that every location inside the
ROI is k-covered under the probabilistic sensing model. Since the duplicate scheme places k nodes on
each designated location, [7] calculates rth by

∏
si∈A′

p(u, si) ≈ e−kλrth

and
e−kλrth ≥ pth ⇒ rth ≤

ln pth
−kλ

where u is a location in the ROI having the minimum k-covered probability and u is detected by a set
A′ of k nodes placed at a designated location with distance rth to u.

Let u, si, d(u, si), and p(u, si) be defined as in Section 1. In [11,18,21,22], four parameters (λ, β, r, re)

are used to specify a probabilistic sensing model and p(u, si) is defined as

p(u, si) =


1 if d(u, si) ≤ r− re,
e−λ(d(u,si)−(r−re))β

if r− re < d(u, si) ≤ r + re,
0 otherwise,

(4)

where λ and β are sensor-dependent parameters (see Figure 3). That is, if d(u, si) ≤ r− re, then a target
at u will definitely be detected by si; if d(u, si) > r + re, then the detection probability will be too small
and will be totally ignored. If r− re < d(u, si) ≤ r + re, then the behavior of the detection probability
obeys the function e−λ(d(u,si)−(r−re))β

. By taking β = 1 and r = re =
rs
2 , (4) coincides with (1).

•si r− re

r + re

(a)

d(u, si)

p(u, si)

0

1

r− re r + re

(b)

Figure 3. (a) r− re and r + re. (b) The generalized probabilistic sensing model.

Notice that besides the binary sensing model and the probabilistic sensing model, some researchers
consider the evidence-based sensor coverage model and use the theory of belief functions to solve the
coverage problem; see [23–26]. Notice that [23–26] consider 1-coverage and their ROI is assumed as a
two- or three-dimensional grid of points. In this paper, we consider k-coverage and our ROI contains
every location inside it. Some other references related to k-coverage can also be found in [27–31].
Before ending this section, for clarity, we summarize our most related works in Table 2.
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Table 2. Definitions of k-coverage: A = {s1, s2, . . . , sn} is the set of sensor nodes deployed in the ROI
and “det. prob.” means “detection probability”.

k-Coverage by Definition det. prob. p Given by

k-expectation [18] ∑si∈A p(u, si) ≥ k Equation (4)
k-threshold [7] ∏si∈A′ p(u, si) ≥ pth, for some A′ ⊆ A with |A′| = k Equation (1)
k-layer (this paper) see Definition 1 Equation (1)

3. Preliminaries, Assumptions, and Objectives

Typical types of coverage are target coverage, area coverage, and barrier coverage. The purpose of
target coverage is to cover (monitor) a set of specific targets (or points), that of area coverage is to cover
the entire ROI, and that of barrier coverage is to detect intruders who intend to cross a long belt region.
In a WSN, nodes are deployed in ad-hoc or pre-planned manner. In pre-planned deployment, nodes
are placed to designated locations in the ROI so that fewer nodes can provide satisfactory coverage
with lower network maintenance and management cost. Area coverage is usually more difficult and
can be solved by ad-hoc or pre-planned deployment, depending on the application scenario.

This paper discusses “area coverage” by “pre-planned deployment”; the following assumptions
are made:

1. The ROI is of a rectangular shape.
2. Sensor nodes are homogeneous, i.e., with the same sensing range rs and communication range rc.
3. rc ≥

√
3rs.

4. The application that we are interested in allows nodes to be deployed in pre-planned manner.
5. The detection probability, p(u, si) of u by si, used in this paper is (1).

The objective of this paper is to propose a “reasonable” definition of k-coverage under the
probabilistic sensing model and to develop a sensor deployment scheme that uses less number of
nodes while ensuring the following two coverage qualities: (i) the resultant WSN is connected and
(ii) the detection probability satisfies a predefined threshold pth, where 0 < pth < 1.

4. Basics of the k-Layer Coverage

4.1. The Definition of k-Layer Coverage

Definition 1. Given an ROI and a set A of a finite number of nodes deployed in the ROI, a location u in the
ROI is k-layer covered (or k-covered for short) if A can be partitioned into k subsets A1,A2, . . . ,Ak such that

1− ∏
si,j∈Ai

(1− p(u, si,j)) ≥ pth, for each i = 1, 2, . . . , k (5)

for a predefined threshold pth, where 0 < pth < 1. The ROI is k-layer covered (or k-covered for short) if every
location inside it is k-layer covered.

For convenience, we call each Ai one “layer” and call the above coverage the k-layer coverage.
See Figure 4 for an illustration. The k-layer coverage ensures that the detection probability for u
contributed by each layer (i.e., each Ai) is not smaller than pth. Thus, u is k-layer covered if and only if
it is 1-layer covered by each Ai, i = 1, 2, . . . , k. Consequently, the ROI is k-layer covered if and only if it
is 1-layer covered by each Ai, i = 1, 2, . . . , k.
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Ak forms a 1-layer coverage

A2 forms a 1-layer coverage

A1 forms a 1-layer coverage

Figure 4. The concept of k-layer coverage.

4.2. “Zone 1 and Zone 1–2” Strategy

We regard each node’s sensing region as the composition of three concentric circular zones: zone 1,
zone 2, and zone 3, as shown in Figure 5. We denote by r1 the radius of zone 1 and r2, the outer
contour radius of zone 2, where r1 < r2 ≤ rs. We take r2 =

√
3r1 so that the calculations can be greatly

simplified. Zone 1 has a higher detection probability than zone 2 which further has a higher detection
probability than zone 3. Zone 3 might be empty and our coverage scheme will not take it into account.
For convenience, denote by zone 1–2 the union of zones 1 and 2.

•
r1

r2rs

zone 1

zone 2

zone 3

Figure 5. Zone 1, zone 2, zone 3, r1, r2, and rs. We take r2 =
√

3r1.

The following theorem states the “zone 1 and zone 1–2” strategy used in our k-layer coverage
scheme, whose proof is in Section 5.

Theorem 1. Our k-layer coverage scheme ensures that for each Ai, every location inside the ROI is within
zone 1 of one node in Ai and within zones 1–2 of at least another two nodes in Ai.

4.3. An Algorithm for Calculating the Radius r1 of Zone 1

To use the “zone 1 and zone 1–2” strategy, we need to calculate r1. Let u be an arbitrary location
inside the ROI. By Theorem 1, there exist three distinct nodes sa, sb, and sc in Ai such that u is within
zone 1 of sa and zones 1–2 of sb and sc. By (5), we have

1− ∏
si,j∈Ai

(1− p(u, si,j)) ≥ 1− (1− p(u, sa))︸ ︷︷ ︸
node sa

(1− p(u, sb))︸ ︷︷ ︸
node sb

(1− p(u, sc))︸ ︷︷ ︸
node sc

≥ 1− (1− e−λr1)(1− e−λr2)(1− e−λr2).

On the one hand, to minimize the number of nodes, r1 should be as large as possible. On the other
hand, to ensure coverage quality, r1 cannot be too large because the following inequality is needed:

1− (1− e−λr1)(1− e−λr2)(1− e−λr2) ≥ pth. (6)

Therefore, we should find the largest possible r1 that satisfies (6). The following algorithm finds
such an r1 and we now briefly describe the idea behind our algorithm.



Sensors 2020, 20, 1831 8 of 17

Since the detection probability of any target outside rs is defined as zero, r1 and r2 must satisfy
r1 < r2 ≤ rs. Since we take r2 =

√
3r1, the largest possible r1 is therefore rs√

3
. Substituting r1 by rs√

3
into (6), we have

1− (1− e−λ rs√
3 )(1− e−λrs)(1− e−λrs) ≥ pth.

Thus, our k-layer coverage has an unavoidable lower bound pmin
th of pth, which is defined as

pmin
th = 1− (1− e−λ rs√

3 )(1− e−λrs)(1− e−λrs).

This unavoidable lower bound pmin
th is due to the system assumption that the detection probability

of any target outside rs is zero. If pth ≤ pmin
th , then our algorithm enlarges pth to be pmin

th and returns rs√
3

for r1. In the remaining part of this paragraph, we assume pth > pmin
th and show how to calculate r1

when pth > pmin
th . Since

1− (1− e−λr2)3 ≤ 1− (1− e−λr1)(1− e−λr2)(1− e−λr2) ≤ 1− (1− e−λr1)3,

we have
1− (1− e−λr2)3 ≤ pth ≤ 1− (1− e−λr1)3. (7)

For convenience, denote by r∗1 the the largest possible r1 that satisfies (6) under the assumption
that pth > pmin

th . We say that a value is an ε-approximation of r∗1 if it satisfies (6) and satisfies a given error
tolerance ε. The following method finds either r∗1 or an ε-approximation of r∗1 by using (7). Substituting√

3r1 for r2 in (7), we have

1− (1− e−λ
√

3r1)3 ≤ pth ≤ 1− (1− e−λr1)3.

Thus
1− e−λr1 ≤ (1− pth)

1
3 ≤ 1− e−λ

√
3r1 .

Hence
(e−λr1)

√
3 = e−λ

√
3r1 ≤ 1− (1− pth)

1
3 ≤ e−λr1 .

By using 1− (1− pth)
1
3 ≤ e−λr1 , we can obtain an approximate r1. Since 1− (1− pth)

1
3 is a lower

bound of e−λr1 , let
lower = 1− (1− pth)

1
3 .

By using e−λr1 ≤ (1− (1− pth)
1
3 )

1√
3 , we can obtain another approximate r1. Since (1− (1−

pth)
1
3 )

1√
3 is an upper bound of e−λr1 , let

upper = (1− (1− pth)
1
3 )

1√
3 .

By keeping
lower ≤ e−λr1 ≤ upper,

when our algorithm stops, it finds either r∗1 or an ε-approximation of r∗1 . Our full algorithm is now
shown in Algorithm 1.
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Algorithm 1

Input: pth, rs, and λ, where pth is the threshold, rs is the sensing range, and λ is the sensor-dependent

parameter given in (1).
Output: rs√

3
if pth ≤ pmin

th ; r∗1 or an ε-approximation of r∗1 if pth > pmin
th .

1: if pth ≤ pmin
th then r1 ← rs√

3
2: else
3: f ound← false;
4: ε← 10−6;
5: lower ← 1− (1− pth)

1
3 ;

6: upper ← (1− (1− pth)
1
3 )

1√
3 ;

7: while (( f ound = false) and (upper− lower) ≥ ε)) do
8: mid← lower+upper

2 ;
9: val ← 1− (1−mid)(1−mid

√
3)(1−mid

√
3);

10: if (val = pth) then f ound← true;
11: else if (val < pth) then lower ← mid;
12: else upper ← mid;
13: end if
14: end while
15: if ( f ound = true) then
16: r1 ← ln mid

−λ ; //r∗1
17: else
18: r1 ← ln upper

−λ ; //an ε-approximation of r∗1
19: end if
20: end if
21: return r1;

Theorem 2. If pth ≤ pmin
th , then Algorithm 1 returns r1 = rs√

3
in O(1) time. If pth > pmin

th , then Algorithm 1

returns either r∗1 or an ε-approximation of r∗1 for ε = 10−6 after at most 18 iterations.

Proof. The first statement is obvious. Assume that pth > pmin
th and consider the second statement.

Then, Algorithm 1 returns either r1 = ln mid
−λ or r1 = ln upper

−λ . Consider the former case. In this case,

mid = e−λr1 . By lines 9∼10, 1− (1−mid)(1−mid
√

3)(1−mid
√

3) = pth. Thus r1 is exactly r∗1 . Now,
consider the latter case. In this case, r1 < r∗1 . Hence

1− (1− e−λr1)(1− e−λ
√

3r1)(1− e−λ
√

3r1) > 1− (1− e−λr∗1 )(1− e−λ
√

3r∗1 )(1− e−λ
√

3r∗1 ) = pth.

Thus r1 satisfies (6). The execution of the while-loop ensures that r1 satisfies the error tolerance ε.
Therefore r1 is an ε-approximation of r∗1 . We now prove that when ε = 10−6, Algorithm 1 takes at most

18 iterations. Set x = 1− (1− pth)
1
3 for easy writing. Since 0 < pth < 1, we have 0 < x < 1. By line 5,

initially lower = x. By line 6, initially upper = x
1√
3 . Therefore, initially upper − lower = x

1√
3 − x.

Let f (x) = x
1√
3 − x. The function f (x) achieves its maximum value when f ′(x) = 1√

3
x
√

3−3
3 − 1 = 0,

which occurs when

x =
√

3
3√
3−3 = 3

1
2 ·

3√
3−3
·
√

3−3√
3+3 = 3

3+
√

3
−4 .
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Note that f (3
3+
√

3
−4 ) : 0.199572 < 0.2. Moreover, each iteration of the while-loop cuts the search

space by half. Thus after the execution of i-th iteration of the while-loop,

(upper− lower) < f (3
3+
√

3
−4 )× 2−i < 0.2× 2−i.

When 0.2× 2−i < ε (i.e., when i > log2
0.2
ε ), Algorithm 1 terminates its while-loop. Since ε = 10−6,

we have log2
0.2
ε : 17.61 < 18. Thus Algorithm 1 takes at most 18 iterations.

The following corollary follows from the proof of the above theorem.

Corollary 1. For an arbitrary error tolerance ε, Algorithm 1 takes at most dlog2
0.2
ε e iterations. In particular,

when ε = 10−x, where x is a positive integer, Algorithm 1 takes at most d(x− 1) log2 10 + 1e iterations.

Suppose m denotes meters. Algorithm 1 obtains:

• If λ = 0.05, rs = 30m, then r1 for pth = 0.7, 0.8, 0.9 are 15.685m, 12.391m, and 8.749m, respectively.
• If λ = 0.08, rs = 30m, then r1 for pth = 0.7, 0.8, 0.9 are 9.801m, 7.743m, and 5.468m, respectively.

To handle the probabilistic sensing model, Wang and Tseng [7] replace the original rs with
rth = ln pth

−kλ in their deployment. To handle the probabilistic sensing model, we replace the original rs

with r1. The relationship between r1 and rth is given in the following lemma.

Lemma 1. If
√

3r1 < rs and 1− (1− e−λr1)(1− e−λ
√

3r1)(1− e−λ
√

3r1) = pth, then r1 > k · rth.

Proof. Since rth = ln pth
−kλ , it is true that e−λkrth = pth. Now assume that r1 satisfies the assumption of

this lemma. Then,

1− (1− e−λkrth)(1− e−λ
√

3krth)(1− e−λ
√

3krth) > 1− (1− e−λkrth) = e−λkrth = pth

= 1− (1− e−λr1)(1− e−λ
√

3r1)(1− e−λ
√

3r1).

Hence r1 > k · rth.

5. Our k-Layer Coverage Scheme

5.1. The k = 1 Case

Our 1-layer coverage scheme deploys nodes according to a “pseudo” triangular pattern
deployment, in which neighboring nodes will be regularly separated by a distance of

√
3r1 (i.e., r2)

except that some of them will be separated by a distance of ≤
√

3r1
2 or ≤ 3r1

2 and these exceptions only
occur at the boundary of the ROI. See Figure 6 for an illustration.

Let L and H be the length and the height of the ROI, respectively. We assume that the ROI’s
lower left corner is located at coordinate (0, 0). Then, the coordinates (i.e., locations) of nodes will be
calculated row-by-row, with row 1 containing (0, 0), and row ` containing the upper boundary of the
ROI. Our full 1-layer coverage scheme is shown in Algorithm 2. Since all nodes have to be within the
ROI, we may need to adjust the locations of the following nodes:

• the first node in each even-numbered row (handled by line 6 of Algorithm 2),
• the last node in each row (handled by line 9 of Algorithm 2), and
• all nodes in row ` (handled by lines 11–18 of Algorithm 2).
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row 1

row 2

row `-1

row `

the ROI

√
3r1

3
2 r1

√
3r1
2

Figure 6. Sensor placement in 1-layer coverage scheme; notice that only zone 1 of each node is shown
in this figure. This ROI has

√
3r1 | L and 3r1

2 | H and therefore no adjustment for rows 1, 3, . . . , `.

Algorithm 2 sha cheng

Input: The r1 derived by Algorithm 1, the length L of the ROI, and the height H of the ROI.
Output: The designated locations of nodes.

1: r2 ←
√

3r1; `←
⌈

2H
3r1

⌉
+ 1; n1 ←

⌈
L
r2

⌉
+ 1; n2 ←

⌈
2L−r2

2r2

⌉
+ 2;

2: for i = 1 to `− 1 do //row 1, row 2, . . ., row (`− 1)
3: if (i is odd) then
4: output the location (j · r2, 3(i−1)

2 r1) for each j = 0 to n1 − 1;
5: else //i is even
6: output the location (0, 3(i−1)

2 r1); //location of the first node in this row
7: output the location ( 2j+1

2 r2, 3(i−1)
2 r1) for each j = 0 to n2 − 2;

8: end if
9: output the location (L, 3(i−1)

2 r1); //location of the last node in this row
10: end for
11: //row ` (i.e., the last row)
12: if (` is odd) then
13: output the location (j · r2, H) for each j = 0 to n1 − 1;
14: else //` is even
15: output the location (0, H); //location of the first node in row `

16: output the location ( 2j+1
2 r2, H) for each j = 0 to n2 − 2;

17: end if
18: output the location (L, H); //location of the last node in row `

Let `, n1, and n2 denote the number of rows, the number of nodes deployed in an odd-numbered
row, and the number of nodes deployed in an even-numbered row by Algorithm 2, respectively. Three
claims are made.
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Claim 1. ` =
⌈

2H
3r1

⌉
+ 1.

Proof. This claim follows from the fact that the distance between row i and row (i + 1), 1 ≤ i < `− 1,
is exactly 3

2 r1, and the distance between row (`− 1) and row ` is ≤ 3
2 r1.

Claim 2. n1 =
⌈

L
r2

⌉
+ 1.

Proof. Consider an arbitrary odd-numbered row and let node 1, node 2, . . . , node n1 be nodes in this
row. Then, the distance between node i and node (i + 1), 1 ≤ i < n1 − 1, is exactly r2, and the distance
between node (n1 − 1) and node n1 is ≤ r2. Hence the claim.

Claim 3. n2 =
⌈

2L−r2
2r2

⌉
+ 2.

Proof. Consider an arbitrary even-numbered row and let node 1, node 2, . . . , node n2 be nodes in this
row. Then, the distance between node 1 and node 2 is r2

2 , the distance between node i and node (i + 1),
2 ≤ i < n2 − 1, is exactly r2, and that between node (n2 − 1) and node n2 is ≤ r2

2 . Hence the claim.

We now are ready to prove Theorem 1.

Proof. It can be easily observed from Figure 6 that every location inside the ROI is within zone 1 of at
least one node. Thus, to prove this theorem, it suffices to prove that every location inside the ROI is
within zones 1–2 of at least three nodes. This assertion can be easily verified by using Figure 7 and
hence we have this theorem.

row 1

row 2

row `-1

row `

the ROI

Figure 7. Sensor placement in 1-layer coverage scheme; notice that only zone 1–2 of each node is shown
in this figure.

5.2. The General Case

To achieve k-layer coverage for k > 1, we begin with the 1-layer coverage and duplicate k sensor
nodes on each designated location of the 1-layer coverage. See Figure 8 for an illustration. See
also Appendix A and Figure A1 for possible improvements. The following corollary follows from
Claims 1∼3.



Sensors 2020, 20, 1831 13 of 17

Corollary 2. The number N of nodes deployed by our k-layer coverage scheme equals to

N =

 k · (n1 + n2)
⌊
`
2

⌋
+ k · n1 if ` is odd,

k · (n1 + n2)
⌊
`
2

⌋
if ` is even.

(a)

(b)

Figure 8. (a) 2-layer coverage. (b) 3-layer coverage.

6. Experimental Results

Our experimental results are obtained by using Visual C++ programming language under the
environment of a 64-bit personal computer with win 10 operating system. Parameters used in our
experimental results are listed in Table 3.

Table 3. Parameters used: m denote meters.

Size of the ROI 1000 m × 1000 m
sensing range rs 30 m
error tolerance ε used in Algorithm 1 10−6

sensor-dependent parameter λ used in (1) either 0.05 or 0.08

Our experimental results are shown in Tables 4–6. These results demonstrate rth used in
k-threshold coverage [7] and r1 used in our k-layer coverage. Recall that both rth and r1 are served as a
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substitution radius for the original sensing radius rs. As can be observed in Tables 4–6, rth is much
smaller than rs and r1 is more reasonable. Tables 4–6 also demonstrate the number of nodes required
by k-threshold coverage [7] and our k-layer coverage. It is not difficult to see that the number of nodes
required by k-threshold coverage [7] is quite large, especially when k is large. On the other hand,
the number of nodes required by our k-layer coverage is much less.

Table 4. The number of nodes for k = 1 coverage: “# nodes” means “the number of nodes required”.

λ = 0.05 λ = 0.08

k-Threshold [7] Our k-Layer k-Threshold [7] Our k-Layer

pth rth # nodes r1 # nodes rth # nodes r1 # nodes

0.7 7.133 7790 15.685 1672 4.458 19,781 9.803 4200
0.8 4.462 19,781 12.391 2640 2.789 50,369 7.744 6688
0.9 2.107 87,768 8.749 5226 1.317 223,520 5.468 13,161

Table 5. The number of nodes for k = 3 coverage: “# nodes” means “the number of nodes required”.

λ = 0.05 λ = 0.08

k-Threshold [7] Our k-Layer k-Threshold [7] Our k-Layer

pth rth # nodes r1 # nodes rth # nodes r1 # nodes

0.7 2.377 206,424 15.685 5016 1.486 526,500 9.803 12,600
0.8 1.487 526,500 12.391 7920 0.929 1,343,811 7.744 20,064
0.9 0.702 2,350,872 8.749 15,678 0.439 6,005,520 5.468 39,483

Table 6. The number of nodes for k = 5 coverage: “# nodes” means “the number of nodes required”.

λ = 0.05 λ = 0.08

k-Threshold [7] Our k-Layer k-Threshold [7] Our k-Layer

pth rth # nodes r1 # nodes rth # nodes r1 # nodes

0.7 1.426 952,070 15.685 8360 0.891 2,433,750 9.803 21,000
0.8 0.892 2,430,505 12.391 13,200 0.557 6,217,600 7.744 33,440
0.9 0.421 10,881,000 8.749 26,130 0.263 27,857,950 5.468 65,805

7. Concluding Remarks

This paper considers the multilevel (k) coverage problem in WSNs with uncertain properties
(i.e., under the probabilistic sensing model). We find that the nature of the previous k-threshold
coverage [7] makes its substitution radius rth tend to be much smaller than the original sensing range
rs and therefore will use too many nodes. We thus try to propose a more reasonable solution and yield
the k-layer coverage. In k-layer coverage, each node’s sensing region is regarded as the composition
of zone 1, zone 2, and zone 3. Although regarding each node’s sensing region as the composition of
several zones has been proposed in the literature, to the best of our knowledge, we are the first ones
to use the “zone 1 and zone 1–2” strategy to solve the probabilistic multilevel (k) coverage problem.
By using such a “zone 1 and zone 1–2” strategy, our k-layer coverage achieves a better coverage quality
and uses less nodes. A preliminary version of this paper was in [32]; see also [33]. One future work
for this research is to extend k-layer coverage to the probabilistic sensing model in (4) and to more
realistic regions of interest. Another future work is to explore the relationship between coverage and
energy consumption.

Author Contributions: Conceptualization, Y.-N.C. and C.C.; methodology, Y.-N.C. and C.C.; validation, Y.-N.C.,
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version of the manuscript.
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Appendix A. Appendix: Balanced k-Layer Coverage

In Figure 8, some locations in the ROI get a much higher coverage than the other locations. We
show how to obtain a more balanced k-layer coverage. Let L denote the 1-layer coverage obtained by
Algorithm 2. The balanced 1-layer coverage is L. Instead of duplicating each node twice, the balanced
2-layer coverage is L together with a shift L′ of L; see Figure A1a. Instead of duplicating each node
thrice, the balanced 3-layer coverage is L together with two shifts L′ and L′′ of L; see Figure A1b.
Notice that some nodes have to be added to L′ (respectively, L′′) (all of these nodes are close to the
ROI’s boundary) so that L′ (respectively, L′′) can ensure a 1-layer coverage; we omit the details. For
k > 3, let q = b k

3c and r = k % 3. The balanced k-layer coverage is applying the balanced 3-layer
coverage q times and applying the balanced r-layer coverage once. For example, if k = 5, then apply
the balanced 3-layer coverage once and the balanced 2-layer coverage once.

(a)

(b)

Figure A1. (a) The balanced 2-layer coverage. (b) The balanced 3-layer coverage. L consists of all
nodes colored black, L′ consists of all nodes colored yellow, and L′′ consists of all nodes colored green.



Sensors 2020, 20, 1831 16 of 17

References

1. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayichi, E. Wireless sensor network: A survey. Comput. Netw.
2002, 38, 393–422. [CrossRef]

2. Huo, H.; Xu, Y.; Zhang, H.; Chuang, Y.H.; Wu, T.C. Wireless-sensor-networks-based healthcare system:
A survey on the view of communication paradigms. Int. J. Ad Hoc Ubiquitous Comput. 2011, 8, 135–154.
[CrossRef]

3. Farsi, M.; Elhosseini, M.A.; Badawy, M.; Ali, H.A.; Eldin, H.Z. Deployment techniques in wireless sensor
networks, coverage and connectivity: A survey. IEEE Access 2019, 7, 28940–28954. [CrossRef]

4. Wang, B. Coverage problems in sensor networks: A survey. ACM Comput. Surv. 2011, 43, 32. [CrossRef]
5. Mini, S.; Udgata, S.; Sabat, S. Sensor deployment and scheduling for target coverage problem in wireless

sensor networks. IEEE Sens. J. 2014, 14, 636–644. [CrossRef]
6. Rebai, M.; Snoussi, H.; Hnaien, F.; Khoukhi, L. Sensor deployment optimization methods to achieve both

coverage and connectivity in wireless sensor networks. Comput. Oper. Res. 2015, 59, 11–21. [CrossRef]
7. Wang, Y.C.; Tseng, Y.C. Distributed deployment scheme for mobile wireless sensor networks to ensure

multilevel coverage. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 1280–1294. [CrossRef]
8. Dhillon, S.S.; Chakrabarty, K. Sensor placement for effective coverage and surveillance in distributed sensor

networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC’03),
New Orleans, LA, USA, 16–20 March 2003; pp. 1609–1614.

9. Yang, Q.; He, S.; Li, J.; Chen, J.; Sun, Y. Energy-efficient probabilistic area coverage in wireless sensor
networks. IEEE Trans. Veh. Technol. 2015, 64, 367–377. [CrossRef]

10. Yun, Z.; Bai, X.; Xuan, D.; Lai, T.H.; Jia, W. Optimal deployment patterns for full coverage and k-connectivity
wireless sensor networks. IEEE/ACM Trans. Netw. 2010, 18, 934–947.

11. Zou, Y.; Chakrabarty, K. Sensor deployment and target localization based on virtual forces. In Proceedings
of the IEEE Infocom Conference (INFOCOM 2003), San Francisco, CA, USA, 30 March–3 April 2003;
pp. 1293–1303.

12. Wang, Y.; Wu, S.; Chen, Z.; Gao, X.; Chen, G. Coverage problem with uncertain properties in wireless sensor
networks: A survey. Comput. Netw. 2017, 123, 200–232. [CrossRef]

13. Nicules, D.; Nath, B. Ad-hoc positioning system (APS) using AoA. In Proceedings of IEEE International
Conference on Computer Communications (INFOCOM’03), Dallas, TX, USA, 2003; pp. 1734–1743.

14. Klein, L.A. A Boolean algebra approach to multiple sensor voting fusion. IEEE Trans. Aerosp. Electron. Syst.
1993, 29, 317–327. [CrossRef]

15. Sun, T.; Chen, L.J.; Han, C.C.; Gerla, M. Reliable sensor networks for planet exploration. In Proceedings
of the IEEE International Conference on Networking, Sensing, and Control (ICNSC’05), Tucson, AZ, USA,
19–22 March 2005; pp. 816–821.

16. Chakrabarty, K.; Iyengar, S.S.; Qi, H.; Cho, E. Grid coverage for surveillance and target location in distributed
sensor networks. IEEE Trans. Comput. 2002, 51, 1448–1453. [CrossRef]

17. Huang, C.F.; Tseng, Y.C. The coverage problem in a wireless sensor network. Mob. Netw. Appl.
2005, 10, 519–528. [CrossRef]

18. Wang, H.L.; Chung, W.H. The generalized k-coverage under probabilistic sensing model in sensor networks.
In Proceedings of the IEEE Wireless Communications and Networking Conference: Mobile and Wireless
Networks (WCNC), Shanghai, China, 1–4 April 2012; pp. 1737–1742.

19. Zhang, H.; Hou, J.C. Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc Sens.
Wirel. Netw. 2005, 1, 89–124.

20. Kershner, R. The number of circles covering a set. Am. J. Math. 1939, 61, 665–671. [CrossRef]
21. Zou, Y.; Chakrabarty, K. Uncertainty-aware and coverage-oriented deployment for sensor networks. J. Parallel

Distrib. Comput. 2004, 64, 788–798. [CrossRef]
22. Zou, Y.; Chakrabarty, K. A distributed coverage- and connectivity-centric technique for selecting active

nodes in wireless sensor networks. IEEE Trans. Comput. 2005, 54, 978–991. [CrossRef]
23. Senouci, M.R.; Mellouk, A.; Oukhellou, L.; Aissani, A. Uncertainty-aware sensor network deployment.

In Proceedings of the IEEE Globecom, Houston, TX, USA, 5–9 December 2011; pp. 1–5.
24. Senouci, M.R.; Mellouk, A.; Oukhellou, L.; Aissani, A. An evidence-based sensor coverage model.

IEEE Commun. Lett. 2012, 16, 1462–1465. [CrossRef]

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1504/IJAHUC.2011.042348
http://dx.doi.org/10.1109/ACCESS.2019.2902072
http://dx.doi.org/10.1145/1978802.1978811
http://dx.doi.org/10.1109/JSEN.2013.2286332
http://dx.doi.org/10.1016/j.cor.2014.11.002
http://dx.doi.org/10.1109/TPDS.2007.70808
http://dx.doi.org/10.1109/TVT.2014.2300181
http://dx.doi.org/10.1016/j.comnet.2017.05.008
http://dx.doi.org/10.1109/7.210070
http://dx.doi.org/10.1109/TC.2002.1146711
http://dx.doi.org/10.1007/s11036-005-1564-y
http://dx.doi.org/10.2307/2371320
http://dx.doi.org/10.1016/j.jpdc.2004.03.019
http://dx.doi.org/10.1109/TC.2005.123
http://dx.doi.org/10.1109/LCOMM.2012.070512.120999


Sensors 2020, 20, 1831 17 of 17

25. Senouci, M.R.; Mellouk, A.; Oukhellou, L.; Aissani, A. Efficient uncertainty-aware deployment algorithms for
wireless sensor networks, In Proceedings of the IEEE Wireless Communications and Networking Conference:
Mobile and Wireless Networks, Paris, France, 1–4 April 2012; pp. 2163–2167.

26. Senouci, M.R.; Mellouk, A.; Oukhellou, L.; Aissani, A. WSNs deployment framework based on the theory of
belief functions. Comput. Netw. 2015, 88, 12–26. [CrossRef]

27. Ammari, H.M.; Das, S.K. Centralized and clustered k-coverage protocols for wireless sensor networks.
IEEE Trans. Comput. 2012, 61, 118–133. [CrossRef]

28. Elhoseny, M.; Tharwat, A.; Farouk, A.; Hassanien, A.E. K-coverage model based on genetic algorithm to
extend WSN lifetime. IEEE Sens. Lett. 2017, 1, 7500404. [CrossRef]

29. Liu, Q. K-coverage reliability evaluation for wireless sensor networks using 2 dimensional k / r×s / m×n:F
system. In Proceedings of the 2018 12th International Conference on Reliability, Maintainability, and Safety
(ICRMS), Shanghai, China, 17–29 October 2018; pp. 83–87.
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