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Abstract: The rapid and non-destructive detection of mechanical damage to fruit during postharvest
supply chains is important for monitoring fruit deterioration in time and optimizing freshness
preservation and packaging strategies. As fruit is usually packed during supply chain operations, it
is difficult to detect whether it has suffered mechanical damage by visual observation and spectral
imaging technologies. In this study, based on the volatile substances (VOCs) in yellow peaches, the
electronic nose (e-nose) technology was applied to non-destructively predict the levels of compression
damage in yellow peaches, discriminate the damaged fruit and predict the time after the damage. A
comparison of the models, established based on the samples at different times after damage, was
also carried out. The results show that, at 24 h after damage, the correct answer rate for identifying
the damaged fruit was 93.33%, and the residual predictive deviation in predicting the levels of
compression damage and the time after the damage, was 2.139 and 2.114, respectively. The results of
e-nose and gas chromatography-mass spectrophotometry (GC–MS) showed that the VOCs changed
after being compressed—this was the basis of the e-nose detection. Therefore, the e-nose is a promising
candidate for the detection of compression damage in yellow peach.
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1. Introduction

Peach (Prunus persica L. Batsch) is one of the major fruits worldwide and has an important
economic value. Peaches were domesticated in China and are now widely cultivated in the Americas,
Europe, and Asia [1]. According to the color of the flesh, peach can be divided into three varieties:
white flesh, yellow flesh and red flesh peach. Due to its attractive color, taste, and aroma, yellow peach
is very competitive in fruit markets. In comparing the total carotenoid content of yellow flesh and
white flesh peach, the former is much higher than the latter. In particular, yellow peaches at harvest
have higher β-cryptoxanthin and β-carotene contents [2–4].

Fruit ripens and softens quickly after harvest, resulting in a short shelf life [5]. After harvest, the
fruit’s metabolism continues, which can cause quality deterioration. Besides this, fruit is susceptible
to mechanical damage during the postharvest supply chain, accelerating the deterioration of fruit
quality and affecting the commercial value of the fruit [6]. Mechanical wounding during transport
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and storage can cause fruits such as apples, bananas, and tomatoes to produce large amounts of C2H4,
which, in turn, accelerates fruit ripening and causes quality deterioration [5]. Polashock, et al. [7]
found that tomatoes that were mechanically damaged by compression force were less firm, higher in
pectin methylesterase (PME) activity, and had greater juice consistency. Li et al. [6] showed that pears
with bruise damage were less firm, had a lower the ratio of sugar to acid, and had a higher water loss
and disease incidence rate. Mechanical damage also increased the probability of infection with fungi
for blueberries, and changed its volatile compounds, e.g., the damaged fruit had higher contents of
aldehydes [7].

A major challenge in the fruit supply chain is the rapid detection of fruit damage or decay that
occurs during the supply chain steps, such as in the storage room and on the truck. A lack of data on
fruit decay causes delays in making the right decisions in a timely manner along the supply chain,
such as changing transportation or sale strategies. Acquiring timely information as to whether the
fruit has suffered mechanical damage is the key to enhancing information transparency in the fruit
supply chain.

During the whole supply chain of fruits, growers, distributors, sellers, and consumers usually
observe fruit decay directly with the naked eye. However, visual observation has disadvantages,
such as being subjective, time-consuming, and tedious. The traditional measurement methods for
fruit quality are mainly destructive physical/chemical methods, and the measurement process is
time-consuming and labor-intensive. Moreover, these methods are based on sampling measurement,
which means that only a few samples can be measured, and they so cannot meet the needs of the fruit
supply chain industry. Therefore, it is necessary to develop a detection technology that can quickly
detect any quality deterioration in the postharvest fruit supply chain.

Currently, the research and application of non-destructive detection methods of fruit freshness
and mechanical damage mainly use computer vision, visible and near-infrared spectroscopy, and
hyperspectral imaging techniques [8,9]. However, during the supply chain, fruit is usually packed in
corrugated fiberboard boxes or plastic containers, and may be covered by additional inner packaging,
making it difficult to detect whether the fruit has suffered quality deterioration during the supply chain
by visual observation and spectral imaging technologies. In addition, during the fruit supply chain,
the environment is usually dark, such as cold storage rooms, carriages, and packages, which makes it
difficult to carry out spectral imaging detection. Therefore, there is a need to develop a technology
that can detect deterioration in the quality of packaged fruits in a dark environment during the fruit
supply chain.

Volatile substances (VOCs) are important indicators in evaluating fruit quality, especially when
consumers buy peach fruits and the aroma of the fruit is an important consideration. VOCs, including
aldehydes, esters, lactones, terpenes and other substances are abundant in fruits. Fruits produce VOCs
during metabolism [10,11], including the postharvest period [12–14]. Studies show that the VOCs
of fruit have relationships with the fruit quality [15–17]. Migliori, et al. [18] found that the VOCs
of healthy and decayed tomato fruits were different. Therefore, VOCs are sensitive to the quality
deterioration of fruit, and can be used as a characteristic to detect whether the fruit is mechanically
damaged or not.

Electronic nose (e-nose) is a bionic olfactory system that can mimic a human olfactory sensor for
VOC recognition [19]. An e-nose system is mainly composed of a sampling system, a gas sensor array
and a signal processing system. The sensor array is the core component of the e-nose system that directly
affects its sensitivity and accuracy. Metal oxide sensors are widely used in e-nose systems due to their
low cost and high sensitivity [20–22]. E-nose has been used to detect the early spoilage and deterioration
of blueberries [23], citrus [24], and apple juice [25] as well as the maturity of persimmon [26] and
citrus [27]. Sanaeifar at al. [11] used an e-nose to predict the total soluble solids, titratable acidity, pH,
and the firmness of banana at different shelf-life stages. Hui, et al. [28] successfully used an e-nose
system with eight metal oxide semiconductors to distinguish fresh, medium, and aged apples. Di
Natale et al. [29] predicted the presence of mealiness and skin damage of apple and storage days of
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oranges based on the variations in their aromas using e-nose. E-nose has also been used in practical
applications, such as the space shuttle [30–32]. Feature extraction, measurement denoising, and pattern
classification are important for e-nose analysis [33–35]. The use of both the steady-state output and
temporal or transient information from tin-oxide sensors operating at different temperatures showed
its capability of distinguishing various reducing chemicals [36]. In recent years, fluctuation enhanced
sensing (FES) was developed to detect gas-phase chemicals [37,38]. Different from conventional
approaches that mainly focus on steady-state values of the data that result from the interaction between
a chemical sensor and the molecules it detects, FES exploits microfluctuations, which also contain
characteristics of different agents, to increase the probability of detection and improve sensitivity and
selectivity [39]. FES with a single chemiresistive microsensor has been used for the detection and
classification of different gases [40]. In another study, a high-performance chemical and biological
agent classification system was proposed to improve the commercial-off-the-shelf (COTS) sensors
and other future nanosensors [41]. Currently, the e-nose technology has not been applied to detect
compression damage in yellow peach.

For this reason, the aim of this study is to demonstrate the feasibility of applying the e-nose
technology to the VOC analysis to predict the levels of compression damage of yellow peach, to
discriminate the damaged fruit, and to predict the time after the damage. Multivariate statistical
analysis was carried out for data calculation. Moreover, a gas chromatography-mass spectrophotometry
(GC–MS) method was used to characterize the possible pattern of VOCs related to compression damage.

2. Materials and Methods

2.1. Sample Preparation

Yellow-fleshed peaches (Prunus persica L. Batsch cv. Jinxiu) at commercial maturity were harvested
from an orchard in Jiaxing (Zhejiang Province, China) on August 10, 2019, and transported to the
laboratory in Hangzhou (Zhejiang Province, China) on the same day of harvest. Yellow peach fruit,
uniform in size, color, and maturity without mechanical injuries and pests, was selected for the
experiments. The selected fruit was divided into three groups, namely, the group of fruit without
compression damage (Group 0), the group of fruit compressed by 5 mm (Group I), and the group
of fruit compressed by 15 mm (Group II). The compression test to obtain Group I and Group II was
performed by the TA.XT Plus Texture Analyzer (Stable Micro Systems, Godalming, UK). A flat-end
aluminum round disk probe, 10 mm in diameter, was used, and the compression depths were held
constant at 5 mm and 15 mm for Group I and Group II, respectively. The compression speed was 2
mm/s. For Group I and Group II, the e-nose signals of the fruits were collected at 4, 8, and 24 h after
the fruit was compressed. The e-nose measurement for Group 0 was at the same time as Group I and
Group II. There were 30 fruits for each sampling time, resulting in 90 samples in each group. Before the
acquisition of e-nose signal of the fruit, the fruit was sealed in a plastic box for 0.5 h to generate VOCs,
and then 10 mL of gas was extracted with a syringe for the e-nose measurement. The used syringe was
valve type airtight glass syringe with polytetrafluoroethylene (PTFE) switch (10 mL capacity).

2.2. E-Nose Instrument and Data Acquisition

The e-nose instrument used was developed in-house, and is an updated version of the instrument
mentioned in our previous work [42]. Similar to that work [42], this instrument had a gas sensor
array, a gas filter and a data acquisition system (Figure 1). In contrast to that work, where the e-nose
instrument had 10 sensors in the gas sensor array, this instrument had 14 Figaro TGS series sensors.
Their properties are shown in Table 1. Some sensors were selected as their sensitive substances are
related to fruit, such as VOC, organic vapors, and organic solvents. These sensors include TGS 2602
(S8), TGS 2620 (S12), TGS 822 (S4) and MQ-138 (S5). Other sensors were selected as they can provide
stable signals and are available in the market. The response area of each sensor was used for further
data analysis, resulting in 14 variables for each sample. For the parameters of e-nose acquisition, the
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detection temperature was 40 ◦C, the acquisition time was 200 s, and the detection and washing flow
rates were 0.6 L/min and 2 L/min, respectively.Sensors 2020, 20, x FOR PEER REVIEW 4 of 17 
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Figure 1. Schematic of the e-nose system.

Table 1. Gas sensor array and its properties.

Sensor Number Sensor Model Sensitive Substances

S1 TGS 826 Ammonia, amines
S2 MQ-136 Hydrogen sulfide, sulfide
S3 TGS 821 Hydrogen
S4 TGS 822 Alcohol, organic solvents
S5 MQ-138 Toluene, acetone, ethanol, formaldehyde, hydrogen, and other organic vapors
S6 MQ-4 Methane, biogas, natural gas
S7 TGS 813 Methane, propane, isobutane, natural gas, liquefied gas
S8 TGS 2602 Cigarette smoke, cooking odor, VOC, ammonia, hydrogen sulfide, alcohol
S9 MQ-5 Butane, propane, methane, liquefied gas, natural gas, gas

S10 TGS 2610 Liquefied petroleum gas, combustible gas, propane, butane
S11 MQ-2 Propane, smoke, combustible gas
S12 TGS 2620 Carbon monoxide, ethanol, organic solvents, other volatile gases
S13 TGS 2600 Smoke, cooking odor, hydrogen, carbon monoxide, air pollutants
S14 TGS 2611 Methane, natural gas

2.3. Multivariate Data Analysis

The acquisition process of e-nose data did not need to separate the VOCs into individual chemicals,
but collected rather the VOCs as a whole. Therefore, the acquired e-nose signals represented the overall
situation of the VOCs of the fruit. However, this also made it impossible to determine which e-nose
sensors were functioning for the data analysis. Therefore, the e-nose signal needed to be processed by
multivariate analysis algorithms to extract key information in the signal for modeling. Partial least
squares regression (PLSR) is a widely used multivariate analysis method that is mainly used to build
qualitative or quantitative models with discriminative or predictive functions [43]. PLSR finds the
fundamental relationships between the variable matrix Y (the target attribute) and the variable matrix
X (the e-nose data). During the calculation of PLSR, latent factors are extracted from the X matrix, and
then the optimal functions are determined in order to reach the error sum squares. The least squares
support vector machine (LS-SVM) is another classic multivariate analysis method with the capability of
both linear and non-linear multivariate calibrations. The LS-SVM can solve the multivariate calibration
problems in a relatively fast way. To obtain the support vectors, a linear set of equations is used in
the LS-SVM instead of a quadratic programming problem [44]. The optimal values of the two main
parameters in the LS-SVM model, namely the regularization parameter γ and the RBF kernel function
parameter σ2, were determined using the grid-search technique with leave-one-out cross-validation.

Variable selection is an important step in multivariate data analysis. Among the 14 input variables
obtained from the 14 sensors of the e-nose system, not all of them were useful in establishing the
model. In this study, two classic variable selection algorithms were considered, namely the successive
projections algorithm (SPA) and uninformative variable elimination (UVE). SPA selects variables with
minimal redundancy through a projection operation in order to select variables with the minimum
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collinearity [45,46]. UVE eliminates the variables, in the modeling, with no more information other
than noise by calculating the reliability of each variable [47].

The established model needed to be evaluated for accuracy and robustness. This process is
usually performed using an independent sample set that distinguishes itself from the calibration
sample set. When establishing each model in this study, two-thirds of the samples were selected
for modeling, and the remaining one-third of the samples were used for verification of the model.
The performances of the models, in predicting the levels of compression damage and the time after
the damage, were based on the correlation coefficient of calibration (Rc), correlation coefficient of
prediction (Rp), root-mean-square error of calibration (RMSEC), root-mean-square error of prediction
(RMSEP), residual predictive deviation (RPD), and the absolute difference between the RMSEC and
RMSEP (AB_RMSE). The performances of the models in distinguishing the damaged fruit were based
on the correct answer rate (CAR), which is the ratio of the number of correctly identified samples to the
total number of samples in the model. All calculation for the multivariate data analysis were carried
out on MATLAB 2017b software (The MathWorks Inc., Natick, MA, USA).

2.4. GC–MS Non-Destructive Measurement

The VOCs from yellow peaches, as a whole, in all three groups at 4, 8, and 24 h after the fruit
was compressed were non-destructively acquired and a GC–MS measurement was carried out using a
7860N-5973-C system (Agilent, Wilmington, DE, USA). Tests of each group at each timepoint were
repeated four times. The detection procedure was as follows: a single whole fruit was placed in a
beaker and sealed with Parafilm for 30 min; then, a SPME fiber (PDMS/DVB, 65 µm, capillary column,
Supelco Co., Bellefonte, PA, USA) was used to extract the VOCs of the fruit in the beaker; after 30
min extraction, the fiber that adsorbed VOCs was inserted into the inlet and desorbed at 240 ◦C for 5
min for the GC–MS analysis. The main parameters of GC–MS were as follows: high-purity helium
was used as carrier gas at a flow rate of 1.0 mL/min, and the column model was the DB-WAX quartz
capillary column (30 m, 0.25 mm, 0.25 µm); the initial column temperature was 40 ◦C, and rose to 100
◦C at a rate of 3 ◦C/min and 245 ◦C at a rate of 5 ◦C/min. The mass spectrometry parameters were: The
ion source was an EI source, ionized at 70 eV of electron energy, the transfer temperature was 250 ◦C,
and the ion source temperature was 230 ◦C.

3. Results

3.1. E-Nose Response of Peach Fruit

Table 2 shows the average response of the e-nose signal for samples with different levels of
compression damage (0, 5, and 15 mm) and different times after compression (4, 8, and 24 h). It can be
seen that different levels of compression damage and different time after compression made the e-nose
signals different. When the e-nose signal was acquired at 4 h after the compression, the signal of the
samples with different levels of compression damage was similar (Figure S1). When the time was 24 h,
there were obvious differences in the e-nose signal between the different levels of compression damage,
especially for sensors 1, 2, 5, 6, 8, 9, and 11, whose e-nose signals were positively correlated with the
level of damage that the samples suffered (Figure S1). However, it can be seen from Table 2 that it
was difficult to clearly distinguish between different levels of compression damage or the time after
damage through a particular sensor. In particular, due to the differences among individual peach fruit
samples, even if they suffered the same compression damage and were stored for the same time after
being compressed, there was a large difference between their e-nose signals, such as the variance of the
signal being large, which is very normal. Due to the positioning of the tree that each peach fruit was
picked from, the location of the tree, the cultivation method, and the soil and other environmental
conditions are different for different fruits, resulting in differences in the VOCs after each fruit suffered
compression damage. Therefore, it is necessary to use multivariate data analysis to analyze the signals
of all 14 sensors together and to establish chemometric models.
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Table 2. Mean values and standard deviations of electronic nose (e-nose) responses of yellow peach
from three groups at 4, 8, and 24 h after the fruit was compressed. Fruits without compression damage
were in Group 0. Fruits compressed by 5 mm were in Group I. Fruits compressed by 15 mm were in
Group II.

Sensor Number
0 mm 5 mm 15 mm

Mean Value Standard
Deviation Mean Value Standard

Deviation Mean Value Standard
Deviation

1
4 h 1.389 1.125 1.240 0.697 1.293 0.686

8 h 2.122 1.308 1.641 0.834 1.293 0.686

24 h 1.303 0.495 1.544 0.971 2.539 1.083

2
4 h 1.410 1.288 1.462 0.991 1.310 0.949

8 h 2.040 1.634 1.332 1.004 1.310 0.949

24 h 1.235 0.603 1.613 1.273 2.299 1.447

3
4 h 0.126 0.078 0.085 0.069 0.101 0.070

8 h 0.088 0.056 0.108 0.081 0.101 0.070

24 h 0.106 0.076 0.106 0.091 0.111 0.083

4
4 h 0.868 0.423 0.712 0.294 0.720 0.271

8 h 0.803 0.277 0.739 0.418 0.720 0.271

24 h 1.059 0.952 0.892 0.367 1.223 0.504

5
4 h 0.207 0.114 0.257 0.178 0.248 0.151

8 h 0.290 0.238 0.265 0.188 0.248 0.151

24 h 0.229 0.127 0.304 0.196 0.462 0.243

6
4 h 1.752 0.536 1.650 0.377 1.628 0.313

8 h 1.804 0.748 1.641 0.423 1.628 0.313

24 h 1.388 0.206 1.607 0.359 1.897 0.467

7
4 h 0.576 0.315 0.474 0.082 0.504 0.078

8 h 0.564 0.394 0.521 0.167 0.504 0.078

24 h 0.612 0.564 0.599 0.426 0.713 0.247

8
4 h 0.749 0.728 0.570 0.403 0.885 0.659

8 h 1.635 1.418 1.108 0.540 0.885 0.659

24 h 1.079 1.002 1.116 0.960 2.366 1.503

9
4 h 1.577 0.977 1.493 0.649 1.362 0.560

8 h 1.844 1.188 1.390 0.629 1.362 0.560

24 h 1.199 0.283 1.418 0.614 1.793 0.751

10
4 h 0.939 0.294 0.836 0.190 0.855 0.201

8 h 0.937 0.325 0.968 0.360 0.855 0.201

24 h 1.040 0.864 0.937 0.231 1.240 0.331

11
4 h 1.028 0.876 0.949 0.506 0.921 0.509

8 h 1.299 0.922 0.978 0.544 0.921 0.509

24 h 0.780 0.288 1.076 0.679 1.706 0.801

12
4 h 1.621 0.840 1.358 0.545 1.431 0.517

8 h 1.466 0.567 1.549 0.892 1.431 0.517

24 h 1.795 1.442 1.645 0.617 2.260 0.980

13
4 h 1.866 0.938 1.493 0.554 1.579 0.491

8 h 1.612 0.586 1.682 0.899 1.579 0.491

24 h 2.139 1.858 1.821 0.645 2.429 0.993

14
4 h 1.423 0.442 1.242 0.301 1.325 0.300

8 h 1.428 0.618 1.457 0.564 1.325 0.300

24 h 1.542 1.377 1.410 0.371 1.884 0.563
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3.2. Detection of Levels of Compression Damage

In order to study whether the e-nose technology can be used to detect the levels of compression
damage to peach fruits, the e-nose signals of all 14 sensors were used as independent variables in the
model, the level of compression damage was used as a dependent variable, and PLSR and LS-SVM
models were established, respectively. There were 30 samples for each compression level and each
time after the compression; there were three levels of compression damage (0, 5, and 15 mm) and three
kinds of time (4, 8, and 24 h), resulting in a total of 270 samples (30 samples × 3 levels × 3 times).
Among them, 180 samples were selected by a sample set partitioning based on the joint X-Y distance
(SPXY) algorithm [48] for the model calibration and the remaining 90 samples as the independent
samples for prediction. Besides this, only the models for the samples stored for 4, 8, and 24 h after
compression were established, respectively. For these models, 90 samples were used to establish the
model (30 samples × 3 levels), and among them, 60 samples were selected by SPXY for calibration and
the remaining 30 samples for prediction. The results of these models are shown in Table 3.

Table 3. Detection of levels of compression damage.

Time Variable Calibration
Calibration Prediction

AB_RMSE
Rc Rc2 RMSEC Rp Rp2 RMSEP RPD

all all PLSR 0.367 0.135 6.068 0.301 0.078 5.424 1.041 0.644
4 h all PLSR 0.205 0.042 6.184 0.023 −0.069 6.255 1.000 0.071
8 h all PLSR 0.171 0.029 6.497 −0.139 −0.011 5.690 0.995 0.807

24 h all PLSR 0.384 0.147 5.907 0.790 0.162 5.485 1.099 0.422
all all LS-SVM 0.611 0.354 5.243 0.430 0.157 5.154 1.096 0.089
4 h all LS-SVM 1.000 1.000 0.005 0.565 0.267 5.167 1.210 5.162
8 h all LS-SVM 0.915 0.775 3.128 0.373 0.049 5.308 1.067 2.180

24 h all LS-SVM 0.853 0.651 3.778 0.822 0.670 3.455 1.745 0.323
24 h UVE PLSR 0.394 0.155 5.881 0.820 0.230 5.285 1.141 0.596
24 h UVE LS-SVM 0.966 0.922 1.790 0.888 0.768 2.819 2.139 1.029
24 h SPA PLSR 0.642 0.412 4.907 0.832 0.637 3.525 1.710 1.382
24 h SPA LS-SVM 0.660 0.434 4.813 0.839 0.675 3.404 1.771 1.409

When samples from all three kinds of time were used for modeling, neither the PLSR nor the
LS-SVM model could predict the level of compression damage suffered by the fruit. Only the fruit
at 4 or 8 h after compression damage occurred was used for modeling, and still neither of the two
modeling algorithms could obtain effective models. Only when the fruit at 24 h after compression
damage occurred was used for modeling did, the LS-SVM algorithm obtain a good model, with an
RPD value reaching 1.745 and a Rp value of 0.822. However, the corresponding PLSR model still
could not obtain good prediction results. This shows that, after the yellow peach suffered compression
damage, in a short period of time, such as 4 or 8 h, the changes in its VOCs were not enough to be
reflected by the e-nose signal. At 24 h after damage, the VOCs of the yellow peach fruit could be used
to establish an e-nose detection model, but the LS-SVM algorithm, capable of being used for nonlinear
modeling, must also be used. Only the PLSR algorithm, which can be used for linear modeling, was
still unable to predict the level of compression damage suffered by the peach fruit.

Two variable selection algorithms were further used to improve the prediction accuracy of the
models. The variable selection calculation was performed for 24 h samples first. This is because when
full variables were considered for modeling, only the LS-SVM model based on 24 h samples obtained
good results. Two algorithms, UVE and SPA, were used for variable selection, and ten variables and
two variables were obtained from all 14 variables, respectively. The selected variables were used for
modeling, and the results are shown in Table 3.

Through the calculation of UVE, the established UVE-LS-SVM model has better prediction
accuracy than the full-variable LS-SVM model, in which the RPD value increased by 22.58%, while
the RMSEP value decreased by 18.41%. However, the PLSR model, based on the variables selected
by UVE, could not improve the accuracy of the model. When the variables selected by SPA were
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used to establish the models, the accuracy of the prediction sample set was similar to that of the
full-variable LS-SVM model, but the calibration sample set was significantly worse. It shows that
although the calculation of SPA reduced the number of variables from 14 to 2, which is significant,
these two variables were not enough to represent the overall VOCs in order to detect the level of
compression damage. Besides the 24 h samples, UVE and SPA were also calculated for the 4 and 8 h
samples, but no improvement was achieved.

3.3. Discrimination of Damaged Fruit

The levels of compression damage detection results show that the best UVE-LS-SVM model had
the highest RPD, at 2.139, indicating that the model is usable for screening [49]. Besides the detection of
the damage level, the discrimination of the damaged fruit is also important for the industry. Similar to
Section 3.2, all 14 sensors were used for modeling, based on four kinds of sample sets, namely, all-time
samples, 4 h samples, 8 h samples, and 24 h samples, and the results are shown in Table 4. When PLSR
was used for modeling, all four kinds of sample sets failed to discriminate between samples, aalthough,
from the perspective of overall accuracy, these models had a certain ability to distinguish the samples
from the calibration sample set and the prediction sample set. However, looking specifically at the
discrimination results for the healthy fruit and the damaged fruit, most samples from the calibration
sample set and all the samples from the prediction sample set for the healthy fruit were judged to
be the damaged samples. This shows that, in fact, these PLSR models had no ability to distinguish
fruit damage. When the LS-SVM algorithm was used for modeling, the results of the LS-SVM models
based on the all-time samples, 4 h samples, and 8 h samples were not good, which was similar to
the results of the detection of levels of compression damage. Most healthy samples in the prediction
sample set were judged to be damaged samples. When the 24 h samples were used for modeling, good
discrimination results were obtained, not only from the overall discrimination results, in which the
CARs of the calibration sample set and prediction sample set were 96.67% and 86.67%, respectively, but
also from the healthy and damaged fruits, with most samples being correctly distinguished. Although
looking at the overall discrimination results, the LS-SVM model established, based on the 24 h samples,
had not improved much, as compared to the PLSR and LS-SVM models that were established based on
other sample sets (CARS improved from between 60% and 80% to over 80%), but the discrimination
results of healthy samples and damaged samples were much better. The feasibility of improving the
accuracy of damage discrimination through variable selection was further evaluated. The results are
shown in Table 4. Only the UVE-LS-SVM model achieved better discrimination accuracy. Among
them, the calibration sample set reached 100% CAR, and the prediction sample set reached more than
90% CAR. Moreover, all damaged fruits were distinguished 100% of the time. The above results show
that, when the compression damage occurred for 24 h, the VOCs of the yellow peach fruit could be
used to determine whether the fruit had suffered compression damage.

Table 4. Discrimination of damaged fruit.

Time Variable Calibration
All Health Damaged

Calibration Prediction Calibration Prediction Calibration Prediction

all all PLSR 63.89% 74.44% 3.00% 0.00% 100.00% 100.00%
4 h all PLSR 63.33% 76.67% 34.78% 0.00% 91.89% 100.00%
8 h all PLSR 60.00% 80.00% 37.50% 0.00% 88.89% 79.17%

24 h all PLSR 71.67% 63.33% 26.32% 0.00% 97.56% 100.00%
all all LS-SVM 87.22% 77.78% 38.81% 84.96% 65.22% 46.27%
4 h all LS-SVM 95.00% 66.67% 91.30% 28.57% 97.30% 78.26%
8 h all LS-SVM 100.00% 76.67% 100.00% 33.33% 100.00% 87.50%

24 h all LS-SVM 96.67% 86.67% 94.74% 100.00% 97.56% 78.95%
24 h UVE PLSR 71.67% 63.33% 10.53% 0.00% 100.00% 100.00%
24 h UVE LS-SVM 100.00% 93.33% 100.00% 81.81% 100.00% 100.00%
24 h SPA PLSR 68.33% 70.00% 5.3% 97.56% 18.18% 100.00%
24 h SPA LS-SVM 76.67% 73.33% 47.37% 81.82% 90.24% 68.42%



Sensors 2020, 20, 1866 9 of 17

3.4. Prediction of Time after Compression Damage

Predicting when compression damage occurred is very important in order to discover the cause
of the compression damage and to optimize solutions for the fruit supply chain. Based on three
samples sets, namely, the two sample sets of fruits compressed by 5 and 15 mm, respectively, and
their combined sample set, the prediction models for the occurrence time of compression damage (4, 8,
and 24 h) were established, respectively. The former two sample sets had 90 samples (30 samples × 3
times), respectively; 60 of them were selected by SPXY for calibration and the remaining 30 samples for
prediction. The combined sample set had 180 samples, in which 120 of them were selected by SPXY
for calibration and the remaining 60 samples for prediction. The results are shown in Table 5. When
the fruit compressed by 5 mm was used for modeling, neither the PLSR algorithm nor the LS-SVM
algorithm could establish a model that could be used to predict the occurrence time of compression
damage. On the contrary, when the fruit compressed by 15 mm was used for modeling, both the
PLSR and LS-SVM models obtained good prediction with RPD values of 1.959 and 2.114, respectively.
Nevertheless, the PLSR model had a poorer calibration result than the LS-SVM model. When the fruits
with two levels of compression damage were used for modeling together, both the PLSR and LS-SVM
models had poor results. The variable selection of the e-nose data from the fruit compressed by 15 mm
was further performed, and the results are shown in Table 5. It can be seen that neither the UVE nor
the SPA algorithm could improve the prediction accuracy of the models. The above results show that,
when the fruit suffered severe compression damage, such as 15 mm, the differences in the VOCs could
be used to predict when the compression damage occurred. On the contrary, if the fruit suffered only
light compression damage, such as 5 mm, the change in the VOCs of the fruit might not be enough to
be detected by the e-nose system. Moreover, when the fruit suffered light mechanical damage, the fruit
had the ability to heal itself [50,51], resulting in less difference of VOCs between the damaged fruit and
healthy fruit, making it more difficult to detect whether the fruit had suffered mechanical damage.

Table 5. Prediction of time after compression damage.

Damage
Level Variable Calibration

Calibration Prediction
AB_RMSE

Rc Rc2 RMSEC Rp Rp2 RMSEP RPD

all all PLSR 0.687 0.472 6.504 0.364 0.030 6.834 1.073 0.330
5 mm all PLSR 0.491 0.242 7.932 0.401 −0.066 6.628 1.062 1.304

15 mm all PLSR 0.731 0.534 6.038 0.868 0.715 3.985 1.959 2.053
all all LS-SVM 0.786 0.598 5.671 0.467 0.170 6.532 1.122 0.861

5 mm all LS-SVM 0.888 0.755 4.512 0.193 −0.215 7.306 0.964 2.794
15 mm all LS-SVM 0.923 0.832 3.622 0.890 0.753 3.693 2.114 0.071
15 mm UVE PLSR 0.761 0.579 5.740 0.798 0.580 4.918 1.587 0.822
15 mm UVE LS-SVM 0.880 0.745 4.461 0.898 0.770 3.655 2.136 0.806
15 mm SPA PLSR 0.621 0.386 6.929 0.860 0.618 4.451 1.754 2.478
15 mm SPA LS-SVM 0.681 0.459 6.501 0.867 0.653 4.095 1.907 2.406

3.5. GC–MS Analysis

GC–MS technology was used to analyze the changes of VOCs in the whole yellow peach fruit
after compression damage. By analyzing the GC–MS results of yellow peach fruit in nine sample sets
with three levels of compression damage and three kinds of time after compression, the VOCs of fruit
were mainly esters, alkanes, benzene rings, phenols, and terpenes. Among them, esters were the most
dominant, and their relative content was also the highest, accounting for 32.60–81.39%. After 4 h of
compression damage, a total of 35 VOCs were detected, including esters (13), alkanes (10), benzene
rings (5), terpenes (3), alcohol (1), phenol (1), ether (1), and ketone (1). After 8 h of compression
damage, a total of 33 VOCs were detected, including esters (17), alkane (9), benzene rings (3), phenol
(1), alcohol (1), thiazole (1), and pyrimidine (1). After 24 h of compression damage, a total of 34 VOCs
were detected, including esters (19), alkane (9), terpene (1), benzene ring (1), phenol (1), alcohol (1),
ether (1), and ketone (1).
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Further analysis of the change in the content of each VOC was performed. It can be seen that
there was a certain change between the content of some VOCs from the samples with different levels
of compression damage and different times after damage. Among them, the relative content of
three VOCs decreased with the increase in the level of compression damage (Figure 2). As shown in
Figure 2a, for 5-hexyldihydro-2(3H)-furanone, 4 h after compression damage, its relative content was
not significantly different from the samples with different compression damages. At 8 h, its content
in the damaged samples was lower than that of the samples without compression damage, and the
greater the compression damage, the lower the content; however, there was no significant difference
between them. At 24 h, there was significant differences between the three compression treatments. In
addition, when the fruit was subjected to 15 mm compression, its content decreased with time. For
tetrahydro-6-pentyl-2H-pyran-2-one, as shown in Figure 2b, as the level and time of compression
damage increased, its relative content decreased. While there was no significant difference between
the samples of different compression treatments at 4 and 8 h, there was a significant difference between
the samples of three compression treatments at 24 h. For Pentadecane, as shown in Figure 2c, as the
level and time of compression damage increased, its relative content also decreased, and at 8 and 24 h,
there was a significant difference between the healthy and damaged samples.
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Figure 2. (a–c) Relative content of three volatile substances (VOCs) decreased with the increase of the
level of compression damage.

There were another three VOCs, whose relative content increased with the increase in the level of
compression damage (Figure 3). For ethyl caproate, as shown in Figure 3a, nothing was detected in all
three compression treatments at 4 h. Over time, the content of this VOC in the damaged fruit increased
continuously, and there was a significant difference between the samples compressed by 5 and 15 mm.
This VOC was never detected in the samples without compression damage at all storage times. For
ethyl acetate, as shown in Figure 3b, nothing was detected in all three compression treatments at 4 h.
As time increased, its content in healthy samples gradually increased, but its content in the samples
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that suffered compression damage increased more rapidly, and the more severe the compression, the
higher the content increased. At 8 and 24 h, there was a significant difference between the healthy
samples and the samples compressed by 15 mm. For ethyl trans-4-decenoate, as shown in Figure 3c,
nothing was detected in all three compression treatments at 4 h. For healthy samples, only a small
amount was detected at 24 h. For the samples compressed by 5 mm, only a small amount was detected
at 8 h, and the content was more obvious at 24 h. For the samples compressed by 15 mm, the content
was already evident at 8 h and significantly increased at 24 h.
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In addition, as shown in Figure 4, after 4 h of compression damage, 4-(Z)-octenoic acid methyl
ester was produced in the fruit, and its content was related to the level of compression damage. The
more severe the compression, the higher its content. Its content in the fruit without compression
damage was very low.

However, no 4-(Z)-octenoic acid methyl ester was detected after 8 h of compression damage, and
the content was also very low at 24 h. This shows that a large amount of 4-(Z)-octenoic acid methyl
ester was produced shortly after compression damage occurred, resulting in a significant increase in its
content; however, with the increase of time after damage, its content decreased. This may be due to the
metabolic process of degradation in 4-(Z)-octenoic acid methyl ester, in the fruit.

To show which of the 14 e-nose sensors responds best to a given volatile compound in the case of
yellow peach, the relative contents of seven volatile compounds determined by GC-MS and shown
in Figure 2, Figure 3, and Figure 4 were correlated with the responses of the e-nose sensors by PLSR
calculation. The contents of these volatile compounds changed after being compressed. Therefore,
these compounds were selected for calculation. The regression coefficients of PLSR models show that
sensors 10, 8 and 6 were important to predict the content of 5-hexyldihydro-2(3H)-furanone, sensors
8, 9 and 13 were important to predict the content of tetrahydro-6-pentyl-2H-pyran-2-one, sensors 8,
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13 and4 were important to predict the content of pentadecane, sensors 8, 2 and 11 were important to
predict the content of ethyl caproate, sensors 8 and 2 were important to predict the content of ethyl
acetate, sensors 8 and 2 were also important to predict the content of ethyl trans-4-decenoate, and
sensors 13, 8 and 4 were important to predict the content of 4-(Z)-octenoic acid methyl ester.
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4. Discussion

Previous studies found that the VOCs of fruit changed during its development and ripening [15,52].
Besada et al. [15] identified VOCs associated with immature stages, intermediate maturity stages and
ripening and correlated VOCs with loquat aroma/flavor. Song et al. [52] characterized VOCs of jujube
fruits at different ripening stages. Other studies also found that postharvest treatments can affect VOC
production in fruit [53,54]. According to Lu et al. [53], although the aroma production of apple fruit
during storage was significantly inhibited by 1-MCP treatment of 1.0 µL L−1, (1-MCP 0.6 +Ca) treatment
promoted VOC production by improving the enzyme activities of alcohol dehydrogenase (ADH),
pyruvate decarboxylase (PDC) and aromatase-related acyltransferase (AAT). The results of Echeverría
et al.’s [54] work show that VOCs of Fuji apples kept under different storage conditions were different.
In addition, pathogenic fungal diseases and pests were found to affect the VOCs of fruit [55–57]. Pan
et al. [55] identified several key VOCs for infection treatment of strawberry fruit on day 2. According
to Wen et al. [56], the VOCs of citrus fruits infested by Bactrocera dorsalis (Hendel) were different. Liu et
al. [57] found that changes in VOCs in fungi-inoculated peaches were correlated with total amounts
and species of fungi. In our work, the e-nose and GC–MS results showed that the VOCs of yellow
peach fruit changed after being compressed. The difference of VOCs and their content in samples with
different compression levels and time was the reason that the e-nose technology could be used for the
rapid and non-destructive detection of compression damage in yellow peach. Considering that fruit is
usually stored in packaging boxes during supply chain, the detection of mechanical damage, based on
VOCs, will be more suitable than optical detection technology for application in the fruit supply chain.

By using an array of sensors to simulate olfactory, e-nose systems have been used to detect fruit
quality. Li et al. [58] used e-nose to predict quality of Chinese bayberry, resulting in an accuracy of
95%. Zhang et al. [26] assessed soluble solids content of persimmon fruit picked on different dates
using e-nose technique. An average prediction accuracy of 91.36% was obtained by support vector
machine models. Our previous study found that the VOCs of peach fruit could be used to rapidly and
non-destructively detect fruit decay [59]. The CAR value of the best model to classify decayed fruit
was 95.83% (94.64% for healthy samples and 100.00% for decayed samples). The RPD value of the best
model to predict the storage days of peach fruit was 9.283. Other studies were also carried out using
e-nose to detect plant quality. Rusinek et al. [21] used an e-nose technique to identify the loss in the
rapeseed quality during storage. A new three-parameter method based on the impregnation time,
cleaning time, and maximum response was proposed to electronic fingerprints, which could distinguish
the rapeseed samples infected with microflora. In another study, this three-parameter method was
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used to assess the quality of cold-pressed rapeseed oil and then to determine the pre-pressing treatment
of rapeseed [22]. The above studies show that e-nose was an efficient, rapid and non-destructive
method to analyze the VOCs of samples and to determine the quality of samples. Especially for the
mechanical damage of fruit, previous works have been carried out to detect impact damage using
e-nose technique. Demir et al. [60] classified fresh blueberries with impact damage, based on their
VOCs during storage. E-nose data of blueberries were acquired on days 0, 2, 10, 17 and 24 after the
impact treatment. Discriminant function analysis was used to classify samples, resulting in correct
classification rates of 0, 100, 100, 100 and 100% for days 0, 2, 10, 17 and 24, respectively. Volatiles of
fruit on day 0 had no significant difference. In another study, Ren et al. [61] determined the damage
degree of apples dropped from different heights using e-nose, coupled with multivariate statistical
analyses. Back-propagation neural network model obtained good classification of damaged apples.
In our study, based on the variation of VOCs in yellow peach fruits, the non-destructive detection of
compression damage was performed using e-nose technology. It should be noted that, among the
various mechanical damages that the fruit suffered during the postharvest supply chain, compared
to the impact and vibration damages, compression damage usually causes less damage to the fruit,
and so it is more difficult to carry out the detection of compression damage through the VOCs in
fruit. Moreover, besides the classification of damaged fruits like previous work did, the levels of
compression damage were also detected based on the e-nose data of peach fruit in this work. The
detection of damage levels can provide more detailed information on the damage, which is important
for the fruit industry.

In addition, previous works on the detection of mechanical damage of fruit mainly focused on
the classification of damaged fruit or detection of damage levels [60,61]. As it is impossible to know
when the compression damage occurred in the fruit supply chain, and because the fruit continues to
undergo metabolism after compression damage, there are continuous changes in the VOCs of fruit.
Therefore, this study also carried out a comparative study of models established based on the samples
at different times after compression damage, so that the established models are more in line with the
actual situation.

To further develop a dedicated e-nose detection instrument, it is necessary to analyze the changing
rules and mechanisms of the VOCs in the fruit, as a whole, caused by mechanical damage. This study
performed a non-destructive GC–MS analysis of the VOCs of yellow peach, and the results show that
the compression damage did cause changes in the VOCs of the fruit. Previous studies also used GC–MS
technology to find differences in the VOCs of fresh-cut broccoli with different freshness levels [62],
and found that the VOCs of strawberry fruit also changed after being infected with the disease [55].
However, in these studies, the fruit was cut and blended for VOC extraction and GC–MS analysis.
Nevertheless, the VOCs released after the fruit is damaged during the supply chain are from the whole
fruit, not the blended pulp. Therefore, the acquisition of both the e-nose signal and the GC–MS data in
this study was from the whole fruit, not the pulp.

Chemometric analysis is an important step for e-nose study and application. For the two
multivariate analysis algorithms used in this study, the results of the LS-SVM models were better than
the PLSR models. This is similar to previous research [59,63], indicating that the nonlinear modeling
algorithm is more suitable for the data analysis of the e-nose instruments based on metal oxide sensors.

Before the practical application, some other issues need to be solved based on this primary study.
First, this study only simulated the compression damage of yellow peach fruit. During the supply
chain, the fruit suffers from a variety of mechanical damages. These mechanical damages can also
cause a combination change in the VOCs of the fruit. Therefore, further research is needed for these
mechanical damages. Second, in this study, the ambient temperature for e-nose signal collection was
20 ◦C. Nevertheless, a cold chain environment was commonly considered during the fruit supply
chain, and the released VOCs of fruit at different temperatures were different. Therefore, in further
research, the effect of different temperatures on the detection of fruit mechanical damage needs to
be considered. Thirdly, more fruit samples from different harvest years, orchards, varieties, planting
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pattern and climates are required to make the models more practically applicable. In addition, the
small size and low cost of e-nose instruments are important. The former will facilitate the installation
in transport boxes, cold storage rooms, refrigerators, and carriages, while the latter will facilitate the
industrialization of the instruments.

5. Conclusions

This study investigated the feasibility of using the e-nose technology for the rapid and
non-destructive detection of the compression damage of yellow peach. The results show that,
at 24 h after the compression damage, the levels of compression damage could be predicted, and the
best UVE-LS-SVM model had the highest RPD of 2.139, whereas the models established based on the
e-nose data, collected at 4 and 8 h after the damage were not good. The results of the discrimination of
damaged fruit also show that the VOCs of the yellow peach fruit could be used to determine whether
the fruit has suffered compression damage when the compression damage occurred for 24 h. The
CAR for prediction was 93.33%, and all damaged fruit was correctly identified. The time when the
compression damage occurred could be predicted when the fruit suffered severe compression damage,
such as 15 mm (which is used in this study). Light compression damage, such as 5 mm (which is used
in this study) could not cause a sufficiently large change of VOCs to be used to predict the time after
damage using e-nose technology. The results of GC–MS identified that three VOCs decreased, and three
other VOCs increased, with the increase of the level of compression damage, showing that the VOCs
of yellow peach fruit changed after being compressed, which was the basis for e-nose to detect the
compression damage of yellow peach. This study opens up an attractive prospect for using the e-nose
technology in the non-destructive detection of fruit damage during the postharvest supply chain.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/7/1866/s1,
Figure S1: Electronic nose (e-nose) and gas chromatography-mass spectrophotometry (GC–MS) spectral examples
of yellow peach from three groups at 4, 8, and 24 h after the fruit was compressed. 0 mm: fruits without
compression damage (Group 0), 5 mm: fruits compressed by 5 mm (Group I), 15 mm: fruits compressed by 15
mm (Group II).
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