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Abstract: This paper is concerned with the distributed full- and reduced-order l2-l∞ state estimation
issue for a class of discrete time-invariant systems subjected to both randomly occurring switching
topologies and deception attacks over wireless sensor networks. Firstly, a switching topology
model is proposed which uses homogeneous Markov chain to reflect the change of filtering networks
communication modes. Then, the sector-bound deception attacks among the communication channels
are taken into consideration, which could better characterize the filtering network communication
security. Additionally, a random variable obeying the Bernoulli distribution is used to describe the
phenomenon of the randomly occurring deception attacks. Furthermore, through an adjustable
parameter E, we can obtain full- and reduced-order l2-l∞ state estimator over sensor networks,
respectively. Sufficient conditions are established for the solvability of the addressed switching
topology-dependent distributed filtering design in terms of certain convex optimization problem.
The purpose of solving the problem is to design a distributed full- and reduced-order filter such
that, in the presence of deception attacks, stochastic external interference and switching topologies,
the resulting filtering dynamic system is exponentially mean-square stable with prescribed l2-l∞
performance index. Finally, a simulation example is provided to show the effectiveness and flexibility
of the designed approach.

Keywords: wireless sensor network; switching topology; deception attack; distributed filtering;
linear matrix inequality

1. Introduction

In the past few decades, wireless sensor networks (WSNs) have received widespread attention
due to their enormous application potential in military installations, environmental monitoring,
information collection, and power grids, see [1–10]. Unlike a single sensor in a traditional system, a
sensor node in WSNs can collaborate with other sensors in a given topology based on information
measured by itself and output information of adjacent sensors. Therefore, some initiatives have been
taken to address the problems of distributed filtering based on WSNs in recent years, see [11–20].
For example, in [12], the filtering problem of nonlinear stochastic systems affected by sensor saturation
in unstable communication channels has been solved. By using standard Kalman filter updating and
consistency updating, a two-stage Kalman consistency filtering method has been proposed in [14].
Additionally in [18], the distributed robust filtering problem has been solved for a class of discrete
T-S fuzzy systems with immeasurable premise variables and Sigma-Delta quantiser over WSNs.
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Besides, a distributed non-linear Kalman filter with a more general communication scheme has been
presented in [19], which processed the additive white Gaussian noise in the system, measurement and
communication. Furthermore, the developed algorithm has been applied to estimate the unknown
information distribution in a certain area of the optimal coverage control problem over sensor networks.
Based on the piecewise Lyapunov function approach and the concept of average dwell time, a convex
optimization method has been used to deal with the distributed H∞ filtering problem for a stochastic
switching system with a fixed delay and a fading measurement over the sensor network in [20].

One of the important requirements of those applications over WSNs is high level of security while
transferring information. Deception attacks, denial of service attacks and false information injection
attacks are the mostly frequently occurred phenomena over WSNs. These attacks should be adequately
considered during system analysis/synthesis to prevent undesired behavior (e.g., degradation,
divergence, and instability), thus have attracted considerable attention during the past few years,
see [21–23]. In addition, in practical applications, many factors may cause random changes in the
topology of communication networks. For example, instability of communication link between filters,
obstacle blocking, network-induced factors, adding new nodes due to application requirements, etc.
In recent years, many achievements have been made on this issue, see [24–27]. As such, a seemingly
natural question is that, when the WSNs are subject to both switching topologies and deception attacks,
we need to design the distributed robust filter to realize system state estimation.

1.1. Related Work

There are several techniques including linear matrix inequality (LMI) approach,
parameter-dependent/recursive LMI method, and Riccati difference equation method for distributed
filtering or estimation problems, see [28–33]. For example, by using the LMI technology, a desired
sampled data-based distributed filter has been constructed in [32] for stochastic nonlinear systems over
WSNs with multiple bounded time-delays, the distributed filtering problem has been investigated
in [33] for a class of discrete-time stochastic systems over WSNs with randomly missing measurements
and varying nonlinearities, and the distributed state estimators have been designed in [28,31] for
nonlinear systems with multiple network-induced phenomena. Besides, in order to reflect a more
realistic situation, in [29,30], randomly packet dropouts, randomly occurring uncertainties and
nonlinearities have been considered during designing event-triggered distributed filters.

More recently, surveys on deception attacks began to appear, see [34–39]. For instance, in [34],
the most general model of sensor attack resilient has been proposed, which can allow any signal
to be injected through the compromised sensor. Based on this model, the attack resilient state
estimation problem has been studied under bounded noise. The effect of stealthy integrity attacks on
Networked physical systems has been analyzed in [36], where the target system was a Stochastic
Linear Time-Invariant (LTI) system with a linear estimator, a linear feedback controller and a χ2 fault
detector. In [35,37,38], the distributed state estimator, which was used to defend against false data
injection attacks over sensor networks, has been embedded with event-triggering transmission scheme.
Based on clustering technology, which can remove bad data and/or inaccurate estimates, a distributed
Kalman filtering approach with trust-based dynamic combination strategy has been proposed in [39]
to enhance the robustness against cyber attacks.

The corresponding research on switching topologies has been received preliminary attention
due to its engineering insights, see [13,40–46]. For example, in [40], the distributed filtering
problem of network topology with limited switching frequency has been investigated. In [41,42],
a novel distributed H∞ state estimation framework for discrete-time partial information exchange
has been proposed by modeling time-varying network topologies with non-homogeneous Markov
chains. In [43–45], the designed distributed robust filtering has been considered both Markov
switching communication topologies and event triggering mechanism. Considering the two types of
network-induced communication constraints that occur during sensor measurement and transmission
between filters, i.e., channel fading and random packet dropouts, the distributed H∞-consensus
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problem with communication topology switching has been solved in [46] under those constraints.
Up to now, the stability analysis and control, filtering and fault detection of Markov jump systems
have been investigated in [47–51].

1.2. Main Contribution

It should be noted that, most existing design methods have been focused on distributed full-order
filering, while little effort has been devoted to design distributed reduced-order filering, not to mention
that both types of filters can be obtained simultaneously. As we all know, the distributed reduced-order
filters can reduce the complexity of the filtering network and facilitate engineering application.
In order to defend the effects of randomly deception attacks, switching communication topologies
and external interference for WSNs, the design of distributed l-order robust filters is important
and challenging. However, the current research results are not abundant in the l-order distributed
state estimation over WSNs subjected to randomly deception attacks and switching communication
topologies. Therefore, we aim to design a distributed full- and reduced-order filtering algorithm for
a class of discrete time-invariant systems over WSNs, all possible unknown disturbances, deception
attacks and switching topologies, the following design objectives are achieved simultaneously: (i)
the distributed filtering dynamic system is exponentially stable in the mean square sense and (ii) a
prescribed l2-l∞ performance index is guaranteed.

The main contributions of this paper are summarized as follows:
(1) Through an adjustable parameter E, we can obtain full- and reduced-order l2-l∞ state

estimationer over sensor networks, respectively;
(2) The sector-bound deception attacks among the communication channels are taken into

consideration, which could better characterize the filtering network communication security;
(3) Sufficient conditions are established for the solvability of the addressed switching

topology-dependent distributed filtering design in terms of certain convex optimization problem.
The remainder of this paper is organized as follows: In Section 2, the studied issues and basic

definitions are formulated. In Section 3 and 4 mainly introduces the performance analysis and the
l-order filter design method, respectively. The effectiveness and flexibility of designed distributed filter
is verified in Section 5. Finally, we conclude this paper in Section 6.

Notation. In this paper, Rn and Rn×m denote the n dimensional Euclidean space and the set of
n×m all real matrices, respectively. ‖ · ‖ refers to the Euclidean norm. The notation X > 0 means that
matrix X is real positive definite symmetric matrix. The superscript T stands for matrix transposition.
I denotes the identity matrix of compatible dimension. diagn {Ai} stands for the block-diagonal
matrix diag {A1, A2, . . . , An}, and diagn {A}means the N-block-diagonal matrix diag {A, A, · · · , A}.
diagi

n{A} represents the N-bolck-diagonal matrix with its i-th block A and the others zero matrices.
vecn {xi} denotes row vector

[
x1, x2, · · · , xn

]
. E{x} stands for the mathematical expectation of the

stochastic variable x. The symbol “∗”describes the symmetric part in a symmetric block matrix.

2. Problem Statement

2.1. Preliminaries

Consider a G=(V , E ,A) sensor network whose topology is represented by a given digraph G of
order n with the set of nodes V={1, 2, · · · , n}, set of edges E ⊆ V × V , and a weighted adjacency
matrix A =

[
aij
]

n×n

(
aij ≥ 0

)
with nonnegative adjacency elements aij. An edge of G is denoted by

the ordered pair (i, j). The adjacency elements associated with the edges of the graph are positive, i.e.,
aij > 0. Also, we assume aii = 1 for all i ∈ V , and therefore (i, i) can be regarded as an additional edge.
The set of neighbors of node i ∈ V plus the node itself are denoted by Ni = {j ∈ V : (i, j) ∈ E}.
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2.2. System Model

In this paper, the target plant is a system whose state is estimated by distributed sensors. Consider
the following discrete-time linear networked system:{

x(k + 1) = Ax(k) + Bw(k), x(0)=x0

z(k) = Mx(k)
(1)

where x(k) ∈ Rnx is the system state vector, z(k) ∈ Rnz the signal to be estimated, and w (k) ∈ Rnw

is the exogenous disturbance input that belongs to l2 [0, ∞). A, B, and M in system (1) are known
matrices with proper dimensions.

As shown in Figure 1, this paper studies the design of dynamic target state estimation in sensor
networks under random attacks. The considered attack type is deception information injection.
The attack strategy is to randomly inject malicious vectors into the transmitted measurements of sensor
nodes via wireless channel between sensor network and filtering network.

Plant
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Sensor n

1( )y k

( )iy k

( )ny k

ATTACK

ATTACK

ATTACK

Filter 1

Filter i Filter i+1

Filter n
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( )iy kii

( )ny knn
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( )nv k
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Figure 1. Distributed filtering network with deception attacks.

Consider the following sensor measurement models and attack models:
yi(k) = Cix(k)

ỹi(k) = yi(k) + θi(k)ςi(k) + Divi(k)

ςi(k) = −yi(k) + φi(yi(k))

(2)

where yi(k) ∈ Rny is the measurement output received by sensor i from system (1). ỹi(k) is the
transmitted measurement values via the network subject to deception attacks, the signal ςi(k), vi(k)
is the random channel noise belonging to l2 [0, ∞), and φi(yi(k)) is a malicious signal injected by the
attacker, which is inaccessible to the defenders. Ci and Di are known matrices with proper dimensions.
In addition, we assume that φi(yi(k)) satisfies the nonlinear vector-valued function φi(·) : Rnỹ → Rnỹ .

The nonlinear function φi(·) is continuous and bounded, and satisfies the following inequality:

[φi(yi(k))− K1yi(k)]
T [φi(yi(k))− K2yi(k)] ≤ 0 (3)

for all ỹi(k) ∈ Rnỹ , where K1 and K2 are real matrices with appropriate dimensions.
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The random variable θi(k) is Bernoulli distributed white sequence, mutually independent and
not equired to be equal to each other, satisfying the following probability distribution:

Prob {θi(k) = 1} = E {θi(k)} = βi, Prob {θi(k) = 0} = E {1− θi(k)} = 1− βi,

E
{
(θi(k)− βi)

2
}
= αi, E

{
(θi(k)− βi)

(
θj(k)− β j

)}
= 0, (i 6= j),

(4)

where βi is a known nonnegative constant.
Due to the topology of the sensor networks, for each sensor node, the filter to be designed is

assumed to be of the following form:
x̂i(k + 1) = ∑

j∈N r(k)
i

ar(k)
ij Wr(k)

ij
x̂j(k) + ∑

j∈N r(k)
i

ar(k)
ij Hr(k)

ij
ỹj(k)

ẑi(k) = Lr(k)
i x̂i(k)

(5)

where x̂i ∈ Rl is the filter state, ẑi(k) ∈ Rnz is the estimated output. In addition, we assume that l
represents the order of the filter. If l = m, the filter belongs to a full-order filter. Accordingly, it is a
reduced-order filter when 1 ≤ l < m.

The Markov chain r(·) take values in a finite set S= {1, 2, · · · , n0}, Π = [πst]n0×n0 represents the
probability of jumping from topology s to topology t, which can be expressed as:

πst = Prob(r(k + 1) = t|r(k) = s). ∀s, t ∈ S (6)

where πst ≥ 0, ∑n0
t=1 πst = 1. Here, matrices Wr(k)

ij , Hr(k)
ij , Lr(k)

i (j ∈ N r(k)
i ) in (5) are filtering parameters

to be determined.

2.3. Augmented Filtering Error System Model

For the sake of convenience, we define

x̂(k) = vecT
n
{

x̂T
i (k)

}
, x̄(k) = vecT

n
{

xT(k)
}

, φ(y(k)) = vecT
n
{

φT
i (yi(k))

}
,

v(k) = vecT
n
{

vT
i (k)

}
, e(k) = vecT

n
{

eT
i (k)

}
, ỹ(k) = vecT

n
{

ỹT
i (k)

}
,

B̄ = vecT{BT}, Ā = diagn{A}, M̄ = diagn{M}, D̄ = diagn {Di} ,

C̄1−β = diagn {(1− βi)Ci} , L̄r(k) = diagn
{

Lr(k)
i
}

, C̃ =
[
C̄ 0

]
,

C̄i
n = diagi

n {Ci} , K̄1 = diagn {K1} , K̄2 = diagn {K2} ,

Ēi
n = diagi

n {I} , C̄ = diagn {Ci} , αi = βi (1− βi) , β̄ = diagn {βi} .

(7)

Defining η(k) =
[
x̄T x̂T]T , w̄(k) =

[
wT(k) vT(k)

]T , e(k) = z(k) − ẑ(k). Then, it is easy to
obtain the augmented filtering error system as follows:η(k + 1) =

[
As +

n
∑

i=1
(θi(k)− βi)F s

1i

]
η(k) +

[
Bs

1 +
n
∑

i=1
(θi(k)− βi)F s

2i

]
φ(y(k)) + Bs

2w̄(k)

e(k) =Msη(k)
(8)

where

As =

[
Ā 0

H̄sC̄1−β W̄s

]
, F s

1i =

[
0 0

−H̄sC̄i
n 0

]
, F s

2i =

[
0

H̄sĒi
n

]
,

Bs
1 =

[
0

H̄s β̄

]
, Bs

2 =

[
B̄ 0
0 H̄sD̄

]
, Ms =

[
M̄ −L̄s

]
,

(9)
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with
W̄s =

[
Oij
]s

n×n
, Oij = as

ij
Ws

ij,

H̄s =
[
Ōij
]s

n×n
, Ōij = as

ij
Hs

ij.
(10)

Clearly, since aij = 0 when j /∈N s
i , W̄s and H̄s are two sparse matrices which can be described as:

W̄s ∈ Wnx×nx , H̄s ∈ Wnx×ny (11)

where
Wp×q =

{
U = [Uij]Rnp×nq|Uij ∈ Rp×q, Uij = 0, i f j /∈Ns

i
}

. (12)

Furthermore, it follows from (3) that[
φ(y(k))− K̄1C̃η(k)

]T [
φ(y(k))− K̄2C̃η(k)

]
< 0. (13)

Definition 1. For a given disturbance attenuation level γ > 0, the estimation error e(k) from (8) is said to
satisfy the l2-l∞ performance constraint if the following inequalities (a) and (b) holds simultaneously:

(a) For all η(0), the augmented system (8) with w̄(k) = 0 is exponentially mean-square stable if there exist
scalars λ ≥ 1 and 0 < τ < 1 such that

{‖η(k)‖} ≤ λτk {‖η(0)‖} . (14)

(b) Under the zero-initial condition, for all nonzero w̄(k), the filter error e(k) satisfies

E
{
‖e(k)‖2

∞

}
< γ2 ‖w̄(k)‖2

2 (15)

where
‖e(k)‖2

∞ = sup
k
{eT(k)e(k)},

‖w̄(k)‖2
2 =

∞

∑
k=0

w̄T(k)w̄(k).
(16)

Remark 1. The l2-l∞ performance index used in this paper is the constraint of the total output estimation error
peak of all filter nodes at a certain time k for the whole filter network, which is less than the constraint of the
estimated error peak of each filter node output.

Lemma 1. (See the work of Yang et al. [52]) Assume that V(η(k)) = ηT(k)Pη(k) is a Lyapunov function. If
there are scalars λ ≥ 0, µ > 0, v > 0 and 0 < ψ < 1, such that

µ‖η(k)‖2 ≤ V(η(k)) ≤ v‖η(k)‖2 (17)

and
E {V(η(k + 1)|η(k)} −V(η(k)) ≤ λ− ψV(η(k)) (18)

then
E
{
‖η(k)‖2

}
≤ v

µ
(1− ψ)kE

{
‖η(0)‖2

}
+

λ

µψ
. (19)

Lemma 2. (See the work of De et al. [53]) For matrices A, Q = QT and P > 0 , the following matrix inequality

AT PA−Q < 0 (20)
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holds if and only if there exists a matrix T of appropriate dimensions such that[
−Q ∗
TT A P− T − TT

]
< 0. (21)

Lemma 3. (See the work of Yang et al. [16]) Let Q = diag{Q1, Q2, · · · , Qn} with Qi ∈ Rp×p(1 ≤ i ≤ n)
being invertible matrices. For W ∈ Rnp×nq if X = QW, then we can obtain W ∈ Wp×q ⇔ X ∈ Wp×q.

3. Distributed Filtering Performance Analysis

In this section, the stochastic stability condition in the mean square sense for augmented system
(8) with switching topologies and deception attacks will be discussed, and the l2-l∞ performance index
is achieved.

Theorem 1. For given scalars γ > 0. Assume that there exist matrices L̄s = diagn
{

Ls
i
}

, P(s) > 0, and two
families of matrices W̄s, H̄s satisfying the constraints

W̄s ∈ Wnx×nx , H̄s ∈ Wnx×ny , s = 1, 2, · · · , n0 (22)

and the following set of LMIs 
Γs

11 ∗ ∗ ∗ ∗
Γs

21 −I ∗ ∗ ∗
0 0 −I ∗ ∗

Γs
41 Γs

42 Γs
43 Γs

44 ∗
Γs

51 Γs
52 0 0 Γs

55

 < 0 (23)

[
−P(s) ∗
Ms −γ2 I

]
< 0 (24)

where
Γs

11 = −P(s)− C̃TK̄T
1 K̄2C̃, Γs

21 = 0.5 (K̄1 + K̄2) C̃,

Γs
41 = P̄(s)As, Γs

42 = P̄(s)Bs
1, Γs

43 = P̄(s)Bs
2, Γs

44 = −P̄(s),

Γs
51 = vecn {

√
αi P̄(s)F s

1i} , Γs
52 = vecn {

√
αi P̄(s)F s

2i} , Γs
55 = diagn {−P̄(s)} .

(25)

Proof of Theorem 1. In order to prove the stability of the augmented system (8) (with w̄(k) = 0), we
choose the Lyapunov function candidate as follows:

V(η(k), s) = ηT(k)P(s)η(k). (26)

Defining P̄(s) =
n0
∑

t=1
πstP(t) and recalling the facts of (4), one has

∆V(η(k), s) = E {V(η(k + 1), t)|η(k), s} −V(η(k), s)

= E
{

ηT(k + 1)P(t)η(k + 1)
}
− ηT(k)P(s)η(k)

= ηT(k)AsT P̄(s)Asη(k) + ηT(k)AsT P̄(s)Bs
1φ(y(k))

+ ηT(k)
n

∑
i=1

αiF sT
1i P̄(s)F s

1iη(k) + ηT(k)
n

∑
i=1

αiF sT
1i P̄(s)F s

2iφ(y(k))

+ φT(y(k))BsT
1 P̄(s)Asη(k) + φT(y(k))BsT

1 P̄(s)Bs
1φ(y(k))

+ φT(y(k))
n

∑
i=1

αiF sT
2i P̄(s)F s

1iη(k) + φT(y(k))
n

∑
i=1

αiF sT
2i P̄(s)F s

2iφ(y(k))

− ηT(k)P(s)η(k).

(27)
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Denoting ξ(k) =
[
ηT(k) φT(y(k))

]T , and Combining (13), then we have

∆V(η(k), s) ≤ ξT(k)Λsξ(k) (28)

where

Λs =

[
Λs

11 ∗
Λs

21 Λs
22

]
(29)

and

Λs
11 = AsT P̄(s)As +

n

∑
i=1

αiF sT
1i P̄(s)F s

1i − P(s)− C̃TK̄T
1 K̄2C̃

Λs
21 = BsT

1 P̄(s)As +
n

∑
i=1

αiF sT
2i P̄(s)F s

1i + 0.5 (K̄1 + K̄2) C̃

Λs
22 =

n

∑
i=1

αiF sT
2i P̄(s)F s

2i − I.

(30)

Subsequently, using Schur complement to (23), it is obvious that matrix Λs < 0, thus

∆V(η(k), s) ≤ ξT(k)Λsξ(k) ≤ −min {λmin(−Λs)|s = 1, 2, · · · , n0} ξT(k)ξ(k) ≤ −σξT(k)ξ(k) (31)

where 0 < σ ≤ min {λmin(−Λs)| s = 1, 2, · · · , n0} .
Considering continuity, one can find a constant satisfying 0 < ∂ < v, v =

max {λmax(P(s))|s = 1, 2, · · · , n0} . Such that

V(η(k), s) ≤ vξT(k)ξ(k). (32)

The formulas (31) and (32) yield that

∆V(η(k), s) ≤ −σ

v
V(η(k), s) = λ− ψV(η(k), s) (33)

where 0 < ψ = σ
v < 1.

On the other hand,

µ‖η(k)‖2 ≤ V(η(k), s) ≤ v‖η(k)‖2µ = min {λmin(P(s))|s = 1, 2, · · · , n0} . (34)

Taking Lemma 1 into consideration, and selecting λ = 0, it can be derived that

E
{
‖η(k)‖2

}
≤ v

µ
(1− ψ)kE

{
‖η(0)‖2

}
. (35)

Consequently, we can conclude from Theorem 1 that the augmented system (8) is exponentially
stable in the mean square sense.

Define the following performance functions

J = E {V(k)} −E
{k−1

∑
i=0

w̄T(i)w̄(i)
}

. (36)

Under the zero-initial condition,

J = E {V(k)} −E {V(0)} −E
{k−1

∑
i=0

w̄T(i)w̄(i)
}
=

k−1

∑
i=0

(
∆V(i)− w̄T(i)w̄(i)

)
. (37)
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One can obtain immediately that

∆V(k) ≤ ξT(k)Λsξ(k) + 2w̄T(k)BsT
2 P̄(s)Asη(k)

+ 2w̄T(k)BsT
2 P̄(s)Bs

1φ(y(k)) + w̄T(k)BsT
2 P̄(s)Bs

2w̄(k).
(38)

From (37) and (38), it follows that

J =
k−1

∑
i=0

(
∆V(i)− w̄T(i)w̄(i)

)
≤

k−1

∑
i=0

([
ξT(i) w̄T(i)

] [ Λs ∗
Ωs

21 Ωs
22

] [
ξ(i)
w̄(i)

])
(39)

where
Ωs

21 =
[
BsT

2 P̄(s)As BsT
2 P̄(s)Bs

1

]
, Ωs

22 =
[
BsT

2 P̄(s)Bs
2 −I

]
(40)

and Λs has been defined in (29).
Applying Schur complement to (23), it guarantees J < 0, then

E
{

ηT(k)P(s)η(k)
}
<

k−1

∑
i=0

w̄T(i)w̄(i). (41)

Meanwhile, by using Schur complement to (24), we obtain

MsTMs < γ2P(s). (42)

By noting k > 0, it is easy to be found that

E
{

z̃T(k)z̃(k)
}
= ηT(k)MsTMsη(k)

< γ2ηT(k)P(s)η(k) = γ2E
{

ηT(k)P(s)η(k)
}

< γ2
k−1

∑
i=0

w̄T(i)w̄(i) ≤ γ2
∞

∑
i=0

w̄T(i)w̄(i).

(43)

According to (43), we have

sup
k

{
E
{

eT(k)e(k)
}}

< γ2
∞

∑
i=0

w̄T(i)w̄(i). (44)

Hence,
E
{
‖e(k)‖2

∞

}
< γ2 ‖w̄(k)‖2

2 . (45)

Consequently, the proof of Theorem 1 is completed.

4. Distributed l2-l∞ Filter Design

In this section, based on these established conditions, the design method of full- and reduced-
order estimators is obtained.

Theorem 2. For given a prescribed disturbance attenuation level γ > 0. System (8) is exponentially
mean-square stable with energy-to-peak performance constraint, if there exist matrices P2(s), Vs

1 , Vs
2 =

diagn
{

Ss
i
}

, Vs
3 , L̄s

f = diagn
{

Ls
i
}

, P1(s) > 0, P3(s) > 0, and two families of matrices W̄s
f , H̄s

f satisfying the
constraints

W̄s
f ∈ Wnx×nx , H̄s

f ∈ Wnx×ny , s = 1, 2, · · · , n0 (46)
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and the following set of LMIs

Θs
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Θs
21 Θs

22 ∗ ∗ ∗ ∗ ∗ ∗
Θs

31 0 −I ∗ ∗ ∗ ∗ ∗
0 0 0 −I ∗ ∗ ∗ ∗
0 0 0 0 −I ∗ ∗ ∗

Θs
61 Θs

62 Θs
63 Θs

64 Θs
65 Θs

66 ∗ ∗
Θs

71 Θs
72 Θs

73 Θs
74 Θs

75 Θs
76 Θs

77 ∗
Θs

81 0 Θs
83 0 0 0 0 Θs

88


< 0 (47)

 −P1(s) ∗ ∗
−P2(s) −P3(s) ∗

M̄ −L̄s −γ2 I

 < 0 (48)

where

Θs
11 = −P1(s)− C̄TK̄T

1 K̄2C̄, Θs
21 = −P2(s), Θs

22 = −P3(s), Θs
31 = 0.5 (K̄1 + K̄2) C̄,

Θs
61 = VsT

1 Ā + EH̄s
f C̄1−β, Θs

62 = EW̄s
f , Θs

63 = EH̄s
f β̄, Θs

64 = VsT
1 B̄, Θs

65 = EH̄s
f D̄,

Θs
66 = P̄1(s)−Vs

1 −VsT
1 , Θs

71 = VsT
3 Ā + H̄s

f C̄1−β, Θs
72 = W̄s

f , Θs
73 = H̄s

f β̄,

Θs
74 = VsT

3 B̄, Θs
75 = H̄s

f D̄, Θs
76 = P̄2(s)−VsT

3 −VsT
2 ET , Θs

77 = P̄3(s)−Vs
2 −VsT

2 ,

Θs
81 = vecn

{[
−√αiEH̄s

f C̄i
n

−√αi H̄s
f C̄i

n

]}
, Θs

83 = vecn

{[ √
αiEH̄s

f Ēi
n√

αi H̄s
f Ēi

n

]}
,

Θs
88 = diagn

{[
P̄1(s)−Vs

1 −VsT
1 ∗

P̄2(s)−VsT
3 −VsT

2 ET P̄3(s)−Vs
2 −VsT

2

]}
.

(49)

The filter parameters can be expressed as follows:

W̄s = VsT−1

2 W̄s
f , H̄s = VsT−1

2 H̄s
f , L̄s = L̄s

f . (50)

Proof of Theorem 2. By choosing

Gs =

[
Vs

1 Vs
3 Qs−1

Fs

QsET Fs

]
(51)

where

E =

[
Inl∗nl

0n(m−l)∗nl

]
, Vs

1 ∈ Rnm∗nm, Vs
3 ∈ Rnm∗nl , Qs ∈ Rnl∗nl , Fs ∈ Rnl∗nl . (52)

In light of Lemma 2, it can be derived that
Φs

11 ∗ ∗ ∗ ∗
Φs

21 −I ∗ ∗ ∗
0 0 −I ∗ ∗

Φs
41 Φs

42 Φs
43 Φs

44 ∗
Φs

51 Φs
52 0 0 Φs

55

 < 0 (53)
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where
Φs

11 = −P(s)− C̃TK̄T
1 K̄2C̃, Φs

21 = 0.5 (K̄1 + K̄2) C̃,

Φs
41 = GsTAs, Φs

42 = GsTBs
1, Φs

43 = GsTBs
2,

Φs
44 = P̄(s)− Gs − GsT , Φs

51 = vecn

{√
αiGT(s)F s

1i

}
,

Φs
52 = vecn

{√
αiGT(s)F s

2i

}
, Φs

55 = diagn

{
P̄(s)− Gs − GsT

}
.

(54)

Denote

Vs
2 = QsT Fs−1

Qs, Js =

[
I 0
0 Fs−1

Qs

]
,

JsT P(s)Js =

[
P1(s) PT

2 (s)
P2(s) P3(s)

]
, JsT P̄(s)Js =

[
P̄1(s) P̄T

2 (s)
P̄2(s) P̄3(s)

]
.

(55)

Pre- and post-multiplying (24) and (53) by Ts
1 = diag {Js, I, I, Js, Js} and Ts

2 = diag {Js, I},
respectively. Further define W̄s

f = QsTW̄sFs−1
Qs, H̄s

f = QsT H̄s, L̄s
f = L̄sFs−1

Qs, Vs
2 = QsT Fs−1

Qs,
then the inequality (47) and (48) can be obtained readily.

Now, denoting the filter transfer function from ỹ(k) to x̂(k) by

TzFy(z) = L̄s(zI − W̄s)
−1H̄s. (56)

Considering

W̄s = QsT−1
W̄s

f Qs−1
Fs, H̄s = QsT−1

H̄s
f , L̄s = L̄s

f Qs−1
Fs (57)

we have
TzFy(z) = L̄s

f Qs−1
Fs
(

zI −QsT−1
W̄s

f Qs−1
Fs
)−1

QsT−1
H̄s

f

= L̄s
f

(
zQs−1

Fs −QsT−1
W̄s

f

)−1
QsT−1

H̄s
f

= L̄s
f

(
zI −Qs−1

FsQsT
−1

W̄s
f

)−1
Qs−1

FsQsT−1
H̄s

f

= L̄s
f

(
zI −Vs−1

2 W̄s
f

)−1
Vs−1

2 H̄s
f .

(58)

Then, the distributed full- and reduced-order filter parameters are given by

W̄s = Vs−1

2 W̄s
f , H̄s = Vs−1

2 H̄s
f , L̄s = L̄s

f . (59)

Moreover, it follows from Lemma 3 that W̄s ∈ Wnx×nx , H̄s ∈ Wnx×ny . The proof of Theorem 2 is
now complete.

Remark 2. Eliminating the coupling term between Lyapunov matrix P(s) and system matrices by introducing
additional slack variables Gs. Then, it is found that (23) and (53) are equivalent, which helps us to easily obtain
the filter (5).

Remark 3. The order of the filter is controlled by the column dimension nl of matrix E (Where n, m, l represent
the number of filter nodes, the order of full- and reduced- order filter, respectively). If the column dimension
number nl = nm of matrix E, that is, matrix E is a unit matrix. Then the order of each local filter node is m,
which means that it is a full order filter. Similarly, if 1 ≤ nl < nm, we will get the l-order filter, which is the
reduced-order filter.
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Remark 4. In Theorem 2, the design approach of distributed l-order filters with non-Gauss interference input
and deception attak is given. Then, the problem can be transformed into a feasible solution of linear matrix
inequality (46)–(48), which is solved by the following convex optimization problem, where δ = γ2

min
P1(s),P2(s),P3(s),Vs

1 ,Vs
2 ,Vs

3 ,W̄s
f ,H̄s

f ,L̄s
f

s.t. (46)–(48)

δ. (60)

In the next section, we will validate the design scheme of distributed state estimator by a numerical
simulation example.

5. Simulation Example

In order to illustrate the effectiveness of the proposed distributed filtering design approach in this
paper, consider discrete-time system (1) with the following parameters:

x(k + 1) =

[
0 0.3

−0.5 0.6

]
x(k) +

[
0

1

]
w(k)

z(k) =
[

0.4 0.1
]

x(k).

Consider a distributed filtering network with 4 sensor nodes with the following corresponding
parameters:

C1 =
[

0.1 0.5
]

, C2 =
[

0.1 −0.2
]

, C3 =
[
−0.5 0.5

]
, C4 =

[
0.1 −0.4

]
,

D1 = 0.11, D2 = 0.15, D3 = 0.14, D4 = 0.21, K1 = 0.1, K2 = −1, vi(k) = N
(

0,
1
k2

)
,

w(k) = e−0.2k sin(k), φi(yi(k)) = sin(−0.7Cix(k)), i = 1, 2, 3, 4.

The probability of deception attacks are taken as:

β1 = E {θ1(k)} = 0.1, β2 = E {θ2(k)} = 0.2,
β3 = E {θ3(k)} = 0.4, β4 = E {θ4(k)} = 0.1.

The filtering network communication topology shown in Figure 2 is represented by three
directed graphs G = (V , E ,A) with the set of nodes V = 1, 2, 3, 4, the set of edges E r(1) =

{(1, 1), (1, 4), (2, 2), (2, 3), (3, 1), (3, 3), (4, 2), (4, 4)} , E r(2) = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 3), (4, 3) ,
(4, 4)} , E r(3) = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4)}. Let the initial topology
of the filtering network be r0 = 1, and the filter initial states x̂i(0) are all set to be zeros.

Sensor 1 Sensor 2

Sensor 3 Sensor 4

( ) 1r k

Sensor 1 Sensor 2

Sensor 3 Sensor 4

( ) 2r k

Sensor 1 Sensor 2

Sensor 3 Sensor 4

( ) 3r k

Figure 2. Filtering network topology.
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Consider the following probability transmission matrix of Markov chain:

Π =

 0.6 0.2 0.2
0.2 0.7 0.1
0.1 0.1 0.8

 .

In order to obtain full-order filters, we choose order control parameter

E =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

By solving the LMIs in Theorem 2, we solve the switching topology-dependent optimal problem
(60) subject to (46)–(48), and obtain the optimal l2-l∞ disturbance rejection attenuation level γ = 0.2450

Then, we consider a reduced-order case where the order control parameter

E =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Keep other parameters the same as the full-order filtering. Simultaneously, we obtain γ = 0.4731
of reduced-order filter.

From Figures 3–7, the corresponding simulation results between the full- and reduced-order
filtering can be obtained. The evolution of the Markov chain is depicted in Figure 3. The attack instants
of each communication channel is shown in Figure 4, where θi(k) = 1 means that the local sensor
node is under malicious attacks and the communication channel is injected with false information.
Correspondingly, the sensor node works normally at θi(k) = 0.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Time(k)

r(
k

)

Figure 3. Evolution of r(k).
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Figure 4. Evolution of attack variable θi(k), i = 1, 2, 3, 4.
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Figure 5. Evolution of full- and reduced-order filtering e(k).
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Figure 6. Evolution of full-order filtering ẑi(k), i = 1, 2, 3, 4.
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Figure 7. Evolution of reduced-order filtering ẑi(k), i = 1, 2, 3, 4.



Sensors 2020, 20, 1948 15 of 18

Figure 5 shows the dynamics of the filtering error norm of full- and reduced- order estimators,

where e(k) =
4
∑

i=1
‖e(i)‖, respectively. This confirms that the designed distributed full-order and

distributed reduced-order filtering are both feasible and effective. Figures 6 and 7 describe in detail
the evolution of z(k) and its estimation from full-and reduced- filter for each sensor node 1, 2 , 3 and 4,
respectively. It can be easily seen that the filter estimation error is relatively large at the beginning, and
then the accuracy of the estimation is gradually improved. By comparing Figures 5–7, we can observe
that (i) The overall estimation error of the distributed reduced-order filter slightly higher than that of
the distributed full-order filter (ii) Malicious attacks do cause filter performance degradation, whether
it is a full or reduced-order filter. Specifically, although the full-order filter performs better than the
reduced-order filter, the distributed reduced-order filter is easier to apply to engineering.

It should be noted that, for the problem solved in this paper, (i) External interference in sensor
networks does not require known statistical properties, and (ii) The order of the distributed filter is
controlled by a parameter, and distributed full-order and distributed reduced-order filters can be
obtained for each node of the sensor networks, respectively. Unfortunately, the first factor prevents
existing methods (Kalman filtering, extended Kalman filtering, see [11,14,19,39]) from being applied to
distributed state estimation problems for sensor networked systems with unknown interference. On
the other hand, the second factor is ignored by many existing H∞ methods, see [16,38,42,43], which
often focus on designing distributed full-order filters over WSNs.

6. Conclusions and Future Work

In this paper, the problem of l-order distributed l2-l∞ state estimation problem for a class
of discrete time-invariant systems has been investigated. Through an adjustable parameter E, a
distributed full-order filter and a distributed reduced-order filter can be obtained respectively. During
the design of the filter, the random deception attacks, time-varying communication topology, stochastic
noises are simultaneously considered to reflect more practical dynamic behavior of WSNs. By
utilizing the Markovian switched Lyapunov functional method and the LMI technique, sufficient
conditions on the designed distributed estimator have been obtained to ensure the prescribed
energy-to-peak performance with given filter parameters. The filtering parameters can be determined
and characterized with the explicit expressions by solving some LMIs. Finally, the validity of the design
approach was verified by numerical simulation. In the future, we will concentrate on how to extend the
achieved approachs to deal with filtering problems over WSNs with time-varying switching topologies
under different communication protocols, such as round-robin protocol, stochastic communication
protocol and weighted try-once-discard protocol, would be of interest.
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