
sensors

Article

Detection of Atrial Fibrillation Using 1D
Convolutional Neural Network

Chaur-Heh Hsieh 1, Yan-Shuo Li 2, Bor-Jiunn Hwang 2,* and Ching-Hua Hsiao 2

1 College of Artificial Intelligence, Yango University, Fuzhou 350015, China; chxie@ygu.edu.cn
2 Department of Computer and Communication Engineering, Ming Chuan University, Taoyuan 333, Taiwan;

04160275@me.mcu.edu.tw (Y.-S.L.); 04160781@me.mcu.edu.tw (C.-H.H.)
* Correspondence: bjhwang@mail.mcu.edu.tw

Received: 28 February 2020; Accepted: 8 April 2020; Published: 10 April 2020
����������
�������

Abstract: The automatic detection of atrial fibrillation (AF) is crucial for its association with the
risk of embolic stroke. Most of the existing AF detection methods usually convert 1D time-series
electrocardiogram (ECG) signal into 2D spectrogram to train a complex AF detection system, which
results in heavy training computation and high implementation cost. This paper proposes an AF
detection method based on an end-to-end 1D convolutional neural network (CNN) architecture to
raise the detection accuracy and reduce network complexity. By investigating the impact of major
components of a convolutional block on detection accuracy and using grid search to obtain optimal
hyperparameters of the CNN, we develop a simple, yet effective 1D CNN. Since the dataset provided
by PhysioNet Challenge 2017 contains ECG recordings with different lengths, we also propose a
length normalization algorithm to generate equal-length records to meet the requirement of CNN.
Experimental results and analysis indicate that our method of 1D CNN achieves an average F1 score
of 78.2%, which has better detection accuracy with lower network complexity, as compared with the
existing deep learning-based methods.

Keywords: electrocardiogram (ECG); atrial fibrillation (AF); convolutional neural network (CNN);
deep learning

1. Introduction

An arrhythmia is an irregular heart beating problem. A common type of arrhythmia is atrial
fibrillation (AF) caused by abnormal sinus rhythm and irregular heartbeat which could lead to
complications such as heart attack [1]. According to a report from the National Institute of Health, there
are 2.2 million Americans suffering from AF and the possibility of having a stroke increases with age.
A recent investigation [2] showed a 12% increase in the number of people in the UK diagnosed with
heart failure from 2002 to 2014. These increasing heart disease problems lead to a heavy financial burden
among countries. A study [3] showed that the average economic cost of heart failure was estimated
at about USD 108 billion in 197 countries. Due to the increase of atrial fibrillation, development of
an effective automatic detection method for AF from electrocardiogram (ECG) signals is valuable for
healthcare. However, so far it is still a challenging task for computers due to its episodic nature [4,5].

ECG is a medical signal which tests the abnormality of the heart by measuring its electrical
activity. A beat of ECG signals can be observed by five characteristic waves—P, Q, R, S, and T—as
shown in Figure 1 [6]. P wave stands for atrial depolarization; QRS complex corresponds to the
depolarization of the right and left ventricles, and contraction of the ventricular muscles; T wave
represents repolarization of the ventricles.

Sensors 2020, 20, 2136; doi:10.3390/s20072136 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20072136
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/7/2136?type=check_update&version=2

Sensors 2020, 20, 2136 2 of 17Sensors 2020, 20, x FOR PEER REVIEW 2 of 18

Figure 1. Electrocardiogram.

The abnormality of the ECG signal is generally identified by using classification techniques [7],
which are achieved by extracting the features of the ECG that can discriminate the defined categories.
Conventionally, the features are derived from the magnitude, duration, and area of the QRS, T, and
possibly P waves [8].

In order to improve detection and classification performance of ECG signals, several analysis
methods based on conventional machine learning have been developed [8–18]. They first obtain
hand-crafted features through conventional feature extraction and selection algorithms, and then
train a classification model using these features. The typical features such as QRS complex, R-R
interval, R amplitude difference, and heart rate turbulence offset, are extracted from ECG signals.
Various classifiers have been applied to the problem including particle swarm optimization (PSO),
support vector machines (SVM), self-organizing map (SOM), fuzzy c-means (FCM) clustering, rough
sets, k-nearest neighbor (KNN), artificial neural network (ANN) classifier, and quantum neural
network (QNN) [8–19].

The quality of extracted features significantly affects the performance of the
detection/classification. However, the hand-crafted features are not generally robust with respect to
many variations, such as scaling, noise, displacement, etc. Recently, deep learning (DL) has achieved
great success in various problems, especially in computer vision and speech recognition. Several
researchers have applied DL frameworks such as stacked auto-encoder, convolutional neural
networks (CNNs), and long short-term memory (LSTM) for the analysis of ECG signals [20-24].

Luo et al. [20] presents a patient-specific deep neural network (DNN) heartbeat classifier. A
stacked denoising auto-encoder (SDA) is pretrained by a time–frequency spectrogram obtained with
unlabeled modified frequency slice wavelet transform. Then, a deep neural network model is
initialized by the parameters of the trained SDA and then updated with fine-tuning.

In another study [21], the authors apply the approach of Hannun et al. [22] who constructed a
34-layer 1D ResNet for classification of the PhysioNet Challenge dataset. They also slightly modified
the ResNet by reducing the number of filters per convolutional layer and using different input
segment lengths. For simplicity we refer to the two methods as ResNet-1 and ResNet-2, respectively.

Warrick et al. [23] proposed a CL3 (one CNN and three LSTMs) network for ECG classification
that consists of two learning stages: representation learning and sequence learning. The former

Figure 1. Electrocardiogram.

The characteristics of AF can be diagnosed by ECG, including no clear P wave, abnormal pattern
of R-R interval, irregularity of heart beating, and small oscillation (frequency 4–8 Hz) of ECG baseline.

The abnormality of the ECG signal is generally identified by using classification techniques [7],
which are achieved by extracting the features of the ECG that can discriminate the defined categories.
Conventionally, the features are derived from the magnitude, duration, and area of the QRS, T, and
possibly P waves [8].

In order to improve detection and classification performance of ECG signals, several analysis
methods based on conventional machine learning have been developed [8–18]. They first obtain
hand-crafted features through conventional feature extraction and selection algorithms, and then train
a classification model using these features. The typical features such as QRS complex, R-R interval,
R amplitude difference, and heart rate turbulence offset, are extracted from ECG signals. Various
classifiers have been applied to the problem including particle swarm optimization (PSO), support
vector machines (SVM), self-organizing map (SOM), fuzzy c-means (FCM) clustering, rough sets,
k-nearest neighbor (KNN), artificial neural network (ANN) classifier, and quantum neural network
(QNN) [8–19].

The quality of extracted features significantly affects the performance of the detection/classification.
However, the hand-crafted features are not generally robust with respect to many variations, such as
scaling, noise, displacement, etc. Recently, deep learning (DL) has achieved great success in various
problems, especially in computer vision and speech recognition. Several researchers have applied DL
frameworks such as stacked auto-encoder, convolutional neural networks (CNNs), and long short-term
memory (LSTM) for the analysis of ECG signals [20–24].

Luo et al. [20] presents a patient-specific deep neural network (DNN) heartbeat classifier. A stacked
denoising auto-encoder (SDA) is pretrained by a time–frequency spectrogram obtained with unlabeled
modified frequency slice wavelet transform. Then, a deep neural network model is initialized by the
parameters of the trained SDA and then updated with fine-tuning.

In another study [21], the authors apply the approach of Hannun et al. [22] who constructed a
34-layer 1D ResNet for classification of the PhysioNet Challenge dataset. They also slightly modified
the ResNet by reducing the number of filters per convolutional layer and using different input segment
lengths. For simplicity we refer to the two methods as ResNet-1 and ResNet-2, respectively.

Sensors 2020, 20, 2136 3 of 17

Warrick et al. [23] proposed a CL3 (one CNN and three LSTMs) network for ECG classification that
consists of two learning stages: representation learning and sequence learning. The former employs a
1D CNN to extract local and discriminative features of input signals; the latter is implemented with
three stacked LSTM layers to learn long-term features.

Zihlmann and colleagues [24] proposed a method which applies the spectrogram of the ECG
signal to train on a convolutional recurrent neural network (CRNN). This method first transforms
ECG data into a 2D spectrogram using fast Fourier transform. The spectrogram is fed into a stack
of 2D convolutional blocks and then a three-layer bidirectional LSTM network is followed for
feature aggregation. However, the network complexity is rather high with more than 10 million
training parameters.

In summary, the existing ML-based methods utilize expert knowledge to extract features, which
is both time consuming and error-prone. The DL-based methods can be categorized into 1D and 2D
schemes. In the 1D scheme, the time-series 1D data is directly fed into the neural network. On the
contrary, for the 2D scheme, the time-series signal is converted into a 2D form (i.e., a spectrogram)
before inputting the subsequent neural network. Compared to 1D schemes, 2D schemes improve the
classification accuracy by around 3% [21,23,24] but at the cost of overhead of conversion and increasing
the network complexity.

In order to raise the detection accuracy and reduce network complexity, this paper proposes an
AF detection method based on an end-to-end 1D CNN architecture. By investigating the impact of
major components of a convolutional block on detection accuracy and using grid search to obtain
optimal hyperparameters of CNN, we develop a simple, yet effective 1D CNN. The 1D time-series raw
data is fed into the network without any conversion. In addition, this AF detection is data driven, (i.e.,
the features of the ECG signal and classification model are learnt from input data directly). Since the
dataset provided by PhysioNet Challenge 2017 contains ECG recordings with different lengths, we also
propose a length normalization algorithm to generate equal-length records to meet the requirement of
the CNN.

Conventionally, prediction accuracy (detection or classification accuracy) is often used as a metric
for the evaluation of DNN-based classifiers. However, the complexity of DNNs is also important since
it affects the computational load and implementation cost of a system. Thus, in this paper we use
prediction accuracy and network complexity, presented in our previous work [25], as the metrics for
the evaluation and comparison of the deep neural networks. The major contributions of this work are
summarized as follows:

• We propose a simple, yet effective AF detection method based on end-to-end 1D CNN architecture
to classify time-series 1D ECG signal directly without converting it to 2D data. Through exhaustive
evaluation, we prove our method achieves better detection accuracy than the existing DL-based
methods. In addition, the proposed method reduces network complexity significantly, as compared
with the second-ranked method, CRNN.

• We study the effect of the batch normalization and pooling methods on detection accuracy, and
then design the best network by combing the grid search method.

• We present a length normalization algorithm to solve variable length of ECG recordings.

The remainder of this paper is organized as follows. Section 2 first gives an overview of the
proposed method, describes the data pre-processing algorithm, and then the design of 1D CNN.
The numerical analysis and performance comparison are given in Section 3. Finally, the conclusion is
drawn in Section 4.

2. Proposed AF Detection

2.1. System Overview

The proposed AF detection system shown in Figure 2 includes data length normalization, offline
training, and online prediction. The length of ECG recordings of the dataset we used is variable, and

Sensors 2020, 20, 2136 4 of 17

thus not suitable for the deep neural network. Therefore, we developed a pre-processing algorithm to
make each recording fixed in length. The dataset contains four classes of ECG signals: AF, Normal,
Noisy, and Other. The detection of AF is easily formulated as a classification problem. Thus, we
designed a 1D CNN for the classification of the ECG signals. The classifier design consists of training
and inference. In the training phase, the 1D CNN predicts one of the four classes for training
data. The loss (error) between the predicted output and ground truth output is calculated and then
back-propagates to each layer of the network so as to update the parameters of the network iteratively.
An optimal network model is obtained when the iteration process converges. In the inference phase,
the test data is applied to the 1D CNN with the optimal model, and the predicted result is generated.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 18

designed a 1D CNN for the classification of the ECG signals. The classifier design consists of training
and inference. In the training phase, the 1D CNN predicts one of the four classes for training data.
The loss (error) between the predicted output and ground truth output is calculated and then back-
propagates to each layer of the network so as to update the parameters of the network iteratively. An
optimal network model is obtained when the iteration process converges. In the inference phase, the
test data is applied to the 1D CNN with the optimal model, and the predicted result is generated.

Figure 2. Flowchart of the proposed atrial fibrillation (AF) detection method. ECG: electrocardiogram;
CNN: convolutional neural network.

2.2. Data Length Normalization

Due to the difficulty of putting variable-length data into a deep neural network, length
normalization, which makes each recording into a segment with a fixed length, should be performed
first. The length normalization problem is rather common across many domains. In studies by
Andreotti et al. [21] and Zhou et al. [26], the authors manually preset a required length (called length
threshold here), and then cut the original data into segments with the required length. The method
is rather simple, but its major problem is that the setting of the length threshold is done manually,
which does not consider the characteristic of the dataset. Setting length threshold to any value in the
range of the recording lengths (9 s to 61 s) will generate bias. The problem is how to minimize the
bias by generating an appropriate length threshold in an automatic mechanism.

In this work, we develop a histogram-based length normalization algorithm, which
automatically determines the length threshold value using the histogram distribution of the length
of the recordings. The length threshold calculated by this algorithm is 30 s, which corresponds to 9000
samples since the sampling rate is 300 samples per second. The histogram of the lengths of 8528
recordings is shown in Figure 3. It indicates that the length of the majority of data falls in the range
of 30 s. Obviously, our algorithm can adapt the characteristic changes of input data and will create
the least bias in the statistical sense since it considers the most frequent data length as a threshold.

Figure 2. Flowchart of the proposed atrial fibrillation (AF) detection method. ECG: electrocardiogram;
CNN: convolutional neural network.

2.2. Data Length Normalization

Due to the difficulty of putting variable-length data into a deep neural network, length
normalization, which makes each recording into a segment with a fixed length, should be performed
first. The length normalization problem is rather common across many domains. In studies by Andreotti
et al. [21] and Zhou et al. [26], the authors manually preset a required length (called length threshold
here), and then cut the original data into segments with the required length. The method is rather
simple, but its major problem is that the setting of the length threshold is done manually, which does
not consider the characteristic of the dataset. Setting length threshold to any value in the range of
the recording lengths (9 s to 61 s) will generate bias. The problem is how to minimize the bias by
generating an appropriate length threshold in an automatic mechanism.

In this work, we develop a histogram-based length normalization algorithm, which automatically
determines the length threshold value using the histogram distribution of the length of the recordings.
The length threshold calculated by this algorithm is 30 s, which corresponds to 9000 samples since the
sampling rate is 300 samples per second. The histogram of the lengths of 8528 recordings is shown
in Figure 3. It indicates that the length of the majority of data falls in the range of 30 s. Obviously,
our algorithm can adapt the characteristic changes of input data and will create the least bias in the
statistical sense since it considers the most frequent data length as a threshold.

Sensors 2020, 20, 2136 5 of 17
Sensors 2020, 20, x FOR PEER REVIEW 5 of 18

Figure 3. Data length histogram distribution.

The normalization algorithm not only solves the variable length data problem but also generates
more data to train the deep neural network. The pseudocode of the algorithm is shown in Algorithm
1. If the recording contains just 9000 samples (30 s), this recording will be used directly without any
modification. If the recording contains more than 9000 samples, multiple segments will be generated
with 50% overlap between adjacent segments. Each segment from the same recording has 9000
samples and will be assigned the same label. For instance, an AF recording containing 18,600 samples
(61 s) will be replaced by four segments containing 9000 samples and labeled as AF. Finally, if the
length is less than 9000, we concatenate the recording with the same label to reach 9000 samples. After
pre-processing, the number of recordings for AF, Normal, Noisy, and Other is 903, 5959, 299, and
2990, respectively, increasing from 8528 to 10,151 in total.

Algorithm 1. Pseudocode of data length normalization.

1: IF the length of the recording is greater than 9000 samples
2: Chop recording into 9000 samples with 50% overlap between segments
3: IF the length of the recording is less than 9000 samples
4: DATA: = copy the recording
5: Append DATA in the back of the recording
6: DO step 5 until the appended recording reaches 9000 samples
7: IF the length of the recording is equal to 9000 samples
8: Preserve the recording

2.3. 1D CNN Design

2.3.1. CNN Architecture

The design of deep neural network architecture is rather challenging, and involves several
aspects such as performance metric, loss function, optimization algorithm, and hyperparameter
setting [27]. The hyperparameter setting includes the settings of the number of hidden layers, number
of neurons and number of channels for every layer, learning rate, batch size, batch normalization,
pooling, and so forth. Transfer learning has been widely used in 2D images. Several excellent pre-
trained 2D networks such as LeNet, AlexNet, VGG, Inception, and ResNet can be applied to other
image processing tasks just with simple fine-tuning [28,29]. However, there are very few pre-trained
networks in one dimension, hence we designed the network from scratch. Based on our experiences
and utilizing the grid search [27], we obtained a 10-layer architecture through the process of trial and
error.

Figure 3. Data length histogram distribution.

The normalization algorithm not only solves the variable length data problem but also generates
more data to train the deep neural network. The pseudocode of the algorithm is shown in Algorithm 1.
If the recording contains just 9000 samples (30 s), this recording will be used directly without any
modification. If the recording contains more than 9000 samples, multiple segments will be generated
with 50% overlap between adjacent segments. Each segment from the same recording has 9000 samples
and will be assigned the same label. For instance, an AF recording containing 18,600 samples (61 s)
will be replaced by four segments containing 9000 samples and labeled as AF. Finally, if the length
is less than 9000, we concatenate the recording with the same label to reach 9000 samples. After
pre-processing, the number of recordings for AF, Normal, Noisy, and Other is 903, 5959, 299, and 2990,
respectively, increasing from 8528 to 10,151 in total.

Algorithm 1. Pseudocode of data length normalization.

1: IF the length of the recording is greater than 9000 samples
2: Chop recording into 9000 samples with 50% overlap between segments
3: IF the length of the recording is less than 9000 samples
4: DATA: = copy the recording
5: Append DATA in the back of the recording
6: DO step 5 until the appended recording reaches 9000 samples
7: IF the length of the recording is equal to 9000 samples
8: Preserve the recording

2.3. 1D CNN Design

2.3.1. CNN Architecture

The design of deep neural network architecture is rather challenging, and involves several aspects
such as performance metric, loss function, optimization algorithm, and hyperparameter setting [27].
The hyperparameter setting includes the settings of the number of hidden layers, number of neurons
and number of channels for every layer, learning rate, batch size, batch normalization, pooling, and so
forth. Transfer learning has been widely used in 2D images. Several excellent pre-trained 2D networks
such as LeNet, AlexNet, VGG, Inception, and ResNet can be applied to other image processing
tasks just with simple fine-tuning [28,29]. However, there are very few pre-trained networks in one
dimension, hence we designed the network from scratch. Based on our experiences and utilizing the
grid search [27], we obtained a 10-layer architecture through the process of trial and error.

Sensors 2020, 20, 2136 6 of 17

The proposed architecture contains 10 convolutional blocks, 2 fully-connected layers, and a
Softmax layer as the output prediction, as shown in Table 1. The convolutional block consists of
a convolutional layer, a Rectified Linear Unit (ReLU) layer, and a Maxpooling layer. We added a
batch normalization (BN) layer [30] after ReLU activation only in the first convolutional block to
normalize the input layer by adjusting and scaling the activations. BN normalizes the input to zero
mean and unit variance, which improves the performance and stability of the deep neural network [27].
Five convolutional blocks are then followed with a dropout layer. The next convolutional blocks share
the same structure and then apply a dropout layer. In the last block, we only applied a convolutional
layer and a ReLU layer. The arrangements of batch normalization and pooling methods affect the
prediction accuracy, which will be discussed in the following section.

Table 1. Parameters of each layer of proposed 1D convolutional neural network (CNN).

Layers Parameters Activation

Conv1D Filter 32/kernel
5 ReLU

BN
Maxpooling 2

Conv1D Filter 32/kernel
5 ReLU

Maxpooling 2

Conv1D Filter 64/kernel
5 ReLU

Maxpooling 2

Conv1D Filter 64/kernel
5 ReLU

Maxpooling 2

Conv1D Filter 128/kernel
5 ReLU

Maxpooling 2

Conv1D Filter 128/kernel
5 ReLU

Maxpooling 2
Dropout 0.5

Conv1D Filter 256/kernel
5 ReLU

Maxpooling 2

Conv1D Filter 256/kernel
5 ReLU

Maxpooling 2
Dropout 0.5

Conv1D Filter 512/kernel
5 ReLU

Maxpooling 2
Dropout 0.5

Conv1D Filter 512/kernel
5 ReLU

Flatten
Dense 128 ReLU

Dropout 0.5
Dense 32 ReLU
Dense 4 Softmax

As shown in Table 1, the filter size of the convolutional layer starts with 32, meaning 32 kernels
will convolve with input data and output 32 feature maps. The filter size is increased by multiplication
of 2 every 2 blocks in order to retrieve more combinatory features. The kernel size in all layers is set to
five for the reduction of computational load.

Sensors 2020, 20, 2136 7 of 17

We downsampled each convolutional output by means of a pooling layer with a kernel size of two
and used the Softmax function in the last layer to produce prediction probability over the four output
classes. The Softmax function, defined in Equation (1), maps the real-valued input into prediction
probability. Ground truth labels are transformed into one-hot encoding vector. In our case, we have
four labels: AF, Normal, Noisy, and Other. Each label is a vector, containing either 1 or 0. If the label is
“AF,” the one-hot encoding vector will be [1, 0, 0, 0], giving the probability of each label.

WeSo f tmax(z j) =
ez j∑K

k=1 ezk
, j = 1, . . .K, (1)

2.3.2. CNN Learning

The CNN model is obtained by training with the adaptive moment estimation (Adam) [31], which
is a variant of the stochastic gradient descent (SGD) optimization algorithm. The Adam utilizes the
backpropagation (BP) method to learn the parameter set of the neural network by minimizing the loss
function which corresponds to the difference between network prediction and the ground truth.

In this CNN, we choose the cross-entropy as loss function, J(x, y, θ) defined in Equation (2).
The learning of the network is to minimize J(x, y, θ) with respect to network parameter set θ.

J(x, y,θ) = −
∑K

i=1
xilogyi, (2)

where x and y denote the ground truth and the predicted output of the CNN, respectively, and K is the
minibatch size.

In backpropagation training, the parameter set θ of the CNN is obtained by an iterative update
as [32]:

θt ← θt−1 −
ηm̂t
√

v̂t + ε
, (3)

where η is a fixed learning rate; ε is a very small constant; m̂t and v̂t are the bias-corrected first
moment estimate and the biased-corrected second moment estimate, respectively, which are defined
elsewhere [32].

Adam is an adaptive learning rate method, which computes individual learning rates for different
parameters. The default learning rate is 0.001 [32]. Generally, a large learning rate will make a model
learn faster while a small learning rate will maintain better stability in the learning process. In the 1D
CNN, the dropout layer is also employed between the two convolutional blocks to avoid overfitting.
The dropout layer will randomly choose a percentage of neurons and update only the weights of the
remaining neurons during training. [27]. We set the dropout parameter to be 0.5, which means half of
the neurons will not be updated.

3. Numerical Analysis

3.1. Dataset

The dataset we used is provided by PhysioNet Challenge 2017, containing 8528 single lead
variable-length ECG recordings lasting from 9 s to 61 s. The recordings are sampled at 300 Hz and
have been bandpass filtered by the AliveCor KardiaMobile device, which generates lead I (LA-RA, i.e.,
when electrodes are placed on the subject’s left arm and right arm) equivalent ECG recordings [7]. ECG
recordings are transmitted over the air using 19 kHz carrier frequency, digitized at 44.1 kHz and 24-bit
resolution, and stored as 300 Hz and 16-bit files with a bandwidth of 0.5–40 Hz and a ±5 mV dynamic
range [7]. The dataset is composed of four classes, including 771 AF (atrial fibrillation), 5154 Normal
(normal sinus rhythm), 46 Noisy (too noisy to be recognized), and 2557 Other (other rhythm), which
were annotated by experienced experts. The waveforms of examples of the four classes are shown in
Figure 4. The “Other” represents recordings that can be clearly classified but do not belong to any of the
other three classes (i.e., AF, Normal or Noisy). After data length normalization, the number of recordings
becomes 10,151. The increase of data samples is beneficial for training in avoidance of overfitting.

Sensors 2020, 20, 2136 8 of 17
Sensors 2020, 20, x FOR PEER REVIEW 8 of 18

Figure 4. ECG examples of four classes: Normal, AF, Other, and Noisy.

3.2. Evaluation Metrics

As stated before, the proposed system predicts the input ECG record as one of the four classes.
We adopt F1 score to evaluate the prediction (detection) performance, which is calculated as

() ,100
RecallPrecision

RecallPrecision2%1 ∗

+
∗∗=F (4)

Precision and recall metrics can be derived from the confusion matrix, which shows the
performance of a classification algorithm. Each row of the matrix stands for a predicted class while
each column represents a ground truth class. The subscript indicates the number of classifications.
For example, A represents AF as ground truth but predicted noisy as the outcome. A confusion matrix
of four classes [33] is shown in Table 2.

Table 2. Confusion matrix of four classes.

 Ground Truth

 AF
(A)

Normal
(N)

Noisy
(~)

Other
(O)

Pr
ed

ic
te

d

AF (a) Aa Na ~a Oa

Normal
(n)

An Nn ~n On

Noisy
(~) A~ N~ ~~ O~

Other
(o) Ao No ~o Oo

Figure 4. ECG examples of four classes: Normal, AF, Other, and Noisy.

3.2. Evaluation Metrics

As stated before, the proposed system predicts the input ECG record as one of the four classes.
We adopt F1 score to evaluate the prediction (detection) performance, which is calculated as

F1(%) =
(2 ∗ Precision ∗Recall

Precision + Recall

)
∗ 100, (4)

Precision and recall metrics can be derived from the confusion matrix, which shows the performance
of a classification algorithm. Each row of the matrix stands for a predicted class while each column
represents a ground truth class. The subscript indicates the number of classifications. For example,
A represents AF as ground truth but predicted noisy as the outcome. A confusion matrix of four
classes [33] is shown in Table 2.

Table 2. Confusion matrix of four classes.

Ground Truth

AF
(A)

Normal
(N)

Noisy
(~)

Other
(O)

Pr
ed

ic
te

d AF (a) Aa Na ~a Oa
Normal

(n) An Nn ~n On

Noisy
(~) A~ N~ ~~ O~

Other
(o) Ao No ~o Oo

To calculate F1 of each class, we transform the confusion matrix of size 4 × 4 into that of size 2 × 2.
Each row and column contain two classes: target label and remaining label. A 2 × 2 confusion matrix
of AF is shown in Table 3. “Non-AF” includes Normal, Noisy, and Other classes.

Sensors 2020, 20, 2136 9 of 17

Table 3. Confusion matrix of two classes.

Ground Truth

AF (A) Non-AF
(NA)

Pr
ed

ic
te

d AF (a) Aa NAa

Non-AF
(na) Ana NAna

Precision, recall, and accuracy of AF are calculated as follows:

Precision =
Aa

Aa + NAa
, (5)

Recall =
Aa

Aa + Ana
, (6)

Accuracy =
Aa + NAna

Aa + NAa + Ana + NAna
, (7)

Accuracy is used in most cases in terms of evaluating how good the classification is. However,
accuracy is inadequate for an unbalanced dataset due to the majority of negative class. Therefore, we
use F1 score as an alternative measure since it is a balance of precision and recall metrics and is useful
when dealing with uneven class distribution [32].

F1 scores for the other classes (i.e., Normal (F1N), Noise (F1~), and Other (F1O)), are calculated in
the same way as AF (F1A). The overall detection performance of the proposed method is evaluated by
the average of F1 scores of the four classes [33] as follows:

Average F1 =
F1N + F1∼ + F1A + F1O

4
, (8)

3.3. K-Fold Cross-Validation

K-fold cross-validation (K-fold CV) is the most popular method in various applications of machine
learning [27,34,35]. Stratified K-fold CV is a stratified-sampling version of K-fold which returns
stratified folds: each set contains approximately the same percentage of samples of each target class
as the complete set. It is superior to regular K-fold CV, especially for imbalanced classifications.
As mentioned in the previous section, the sample distribution of the four classes in the pre-processed
dataset which contains 10,151 segments (AF = 903, Normal = 5959, Noisy, = 299 and Other = 2990) is
imbalanced. Therefore, we utilize stratified K-fold CV rather than regular K-fold CV.

In order to find the best K value, we divided the pre-processed dataset into training and test
subsets with different size ratios, and then did training and testing for each size ratio. The results are
shown in Table 4. It indicates that the train/test ratio of 80:20 achieves the best detection performance,
which corresponds to K = 5. Therefore, we used a stratified five-fold CV in our work. The average F1

score of a class is calculated by averaging F1 of all folds, and the results are 79.1%, 90.7%, 65.3%, and
76% for AF, Normal, Noisy, and Other, respectively.

Table 4. F1 scores using different train/test ratio.

Train/Test AF Normal Noisy Other Average

60:40 72.0 90.0 60.0 69.0 72.75
70:30 76.0 90.0 60.0 70.0 74.00
80:20 77.0 89.0 67.0 74.0 76.75
90:10 76.9 90.0 62.1 72.8 75.45

Sensors 2020, 20, 2136 10 of 17

3.4. Hyperparameter Optimization

We performed a grid search algorithm over number of layers, kernel size, batch size, and learning
rate, for hyperparameter optimization in training. Given a set of parameters for training, grid search
yields an optimal model which maximizes accuracy on independent datasets. The suggested learning
rate of 0.001 in Adam optimizer [31] is used as a base. In order to find the best accuracy around the
base learning rate, we chose one parameter greater than the base and three more less than the base to
form a set for learning rate as Lr ∈ {0.00005, 0.0001, 0.0005, 0.001, 0.005}. We selected five elements to
form a batch-size set which started from 30 and increased by 20; i.e., Bs ∈ {30, 50, 70, 90, 110}. Three
kinds of kernel sizes were selected as Ks ∈ {3, 5, 7}. As for number of layers in our case, the upper
limit was 12 since we decreased the dimensionality of feature map after every convolutional layer.
We define the set of number of layers as N ∈ {8, 9, 10, 11}. The combination of the above parameter sets
yields 300 neural network architectures. We applied the grid search to obtain an optimal architecture
and used four Graphics Processing Units (GPUs) (Nvidia GTX 1080 Ti) to speed up training.

3.5. Results and Analysis

3.5.1. Prediction Accuracy

Each recording is assigned a label as AF, Normal, Noisy, or Other. The proposed 1D CNN model
will infer the label on the test set. Using the grid search, we can obtain the best model and evaluate the
average F1 score, which is the average of the four classes.

Applying the grid search to the dataset, we obtained the results demonstrated in Table 5. The table
shows the best average F1 score and standard deviation σ under various combinations of network
hyperparameters including number of convolutional layers, filter kernel size, batch size, and learning
rate. For instance, for the CNN with eight convolutional layers, the first row of the table lists the best
F1 scores of kernel sizes of 3, 5, and 7 with corresponding optimal batch sizes of 50, 50, and 70 and
learning rates of 0.001, 0.001, and 0.0005, respectively. It is noted that for 11 convolutional layers, there
is no output when kernel size is greater than 3. This is because there was no sufficient data to perform
convolution in the last convolutional layer since the feature maps are downsampled using pooling
at every convolutional layer. This table also shows the total number of network parameters for each
architecture combination.

Table 5. The best average F1 under various combinations of hyperparameters.

Layer Kernel
Size

Batch
Size

Learning
Rate Average F1 σ

Total Number of
Parameters

8
3 50 0.001 69.4 12.5 2,558,340
5 50 0.001 72.2 12.9 2,687,428
7 70 0.0005 73.6 11.4 2,816,516

9
3 50 0.001 76.6 9.6 1,608,324
5 50 0.0001 77.2 9.9 1,868,484
7 30 0.0005 76.8 11.4 2,128,644

10
3 90 0.0005 77.0 9.4 2,428,292
5 30 0.0001 77.8 9.1 3,212,740
7 50 0.001 76.4 10.6 3,997,188

11
3 50 0.0005 77.1 9.9 2,625,412
5 N/A N/A N/A N/A N/A
7 N/A N/A N/A N/A N/A

Table 5 indicates that the best combination is: number of layers = 10, kernel size = 5,
learning rate = 0.0001, batch size = 30. The combination reaches average F1 score of 77.8%. Since
the batch size of 30 is the searching lower bound, we further ran a small grid search with batch sizes
of 10 and 20. The results show that the average F1 score of batch size of 10 and 20 is 76.4 and 77.1,
respectively. This proves batch size of 30 is the best parameter.

Sensors 2020, 20, 2136 11 of 17

Figure 5 shows the normalized average confusion matrix of five folds. The diagonal shows
the number of correctly predicted records for each class. The off-diagonals display the number of
misclassifications for each class. It is seen that 21 AF records are misclassified as other. This is because
some AF records contain characteristics of the class “Other.” An example of an AF record which is
misclassified as other is shown in Figure 6. In this figure, the orange rectangle shows that the ECG
waveform has AF characteristics, which are affected by the abnormal mode of the R-R interval, while
the yellow rectangle indicates that the ECG waveform does not have the characteristics of AF, Noisy,
or Normal.

Figure 5 also indicates imbalanced dataset problem. For the test set, the total number of records
of the Normal class is 1215, and the total number of the records of the remaining classes is only 816.
In other words, the Normal class dominates the training, and it is possible the learned model will tilt to
the normal class.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 18

7 50 0.001 76.4 10.6 3,997,188

11
3 50 0.0005 77.1 9.9 2,625,412
5 N/A N/A N/A N/A N/A
7 N/A N/A N/A N/A N/A

Table 5 indicates that the best combination is: number of layers = 10, kernel size = 5, learning rate
= 0.0001, batch size = 30. The combination reaches average F1 score of 77.8%. Since the batch size of 30
is the searching lower bound, we further ran a small grid search with batch sizes of 10 and 20. The
results show that the average F1 score of batch size of 10 and 20 is 76.4 and 77.1, respectively. This
proves batch size of 30 is the best parameter.

Figure 5 shows the normalized average confusion matrix of five folds. The diagonal shows the
number of correctly predicted records for each class. The off-diagonals display the number of
misclassifications for each class. It is seen that 21 AF records are misclassified as other. This is because
some AF records contain characteristics of the class “Other.” An example of an AF record which is
misclassified as other is shown in Figure 6. In this figure, the orange rectangle shows that the ECG
waveform has AF characteristics, which are affected by the abnormal mode of the R-R interval, while
the yellow rectangle indicates that the ECG waveform does not have the characteristics of AF, Noisy,
or Normal.

Figure 5 also indicates imbalanced dataset problem. For the test set, the total number of records
of the Normal class is 1215, and the total number of the records of the remaining classes is only 816.
In other words, the Normal class dominates the training, and it is possible the learned model will tilt
to the normal class.

Figure 5. Normalized average confusion matrix of five folds.
Figure 5. Normalized average confusion matrix of five folds.Sensors 2020, 20, x FOR PEER REVIEW 12 of 18

Figure 6. AF record which is misclassified as other.

3.5.2. Network Architecture Analysis

Batch normalization is a renowned regularization technique that accelerates training [30] and is
widely used in modern network architecture [22]. Maxpooling is a strategy that downsamples feature
maps and is mostly placed after the convolutional layer for feature reduction [36]. Although these
strategies proven to be robust and useful in several application domains, we conducted an
experiment to look into the performance changes under various arrangements of batch normalization
and Maxpooling. The proposed 1D CNN architecture shown in Table 1 contains only one batch
normalization layer placed after the first convolutional layer, and one Maxpooling layer for every
convolutional layer, except the last convolution layer. For convenience, the architecture is denoted as
Proposed-1. Moreover, we replace every Maxpooling layer of Proposed-1 with average pooling, and
denote this as Proposed-2.

We also designed four variants of Proposed-1 and one variant of Proposed-2 as follows. The
variants of Proposed-1 include (a) All-BN: add one batch normalization layer after every
convolutional layer; (b) No-BN: no batch normalization layer in the network; (c) Maxpooling: add the
Proposed-1 with one Maxpooling layer before the flatten layer; (d) Max-average pooling: add
Proposed-1 with one average pooling layer before the flatten layer, which combines Maxpooling and
average pooling. The variant of Proposed-2 is to add one average pooling layer before the flatten
layer into the Proposed-2 network, which is denoted as Extra-Average.

Table 6. Average F1 scores of proposed networks and their variants.

Neural Networks Average F1 Score
Total Number
of Parameters

Proposed-1 77.8 3,212,740
All-BN 69.2 3,216,644
No-BN 76.2 3,212,676

Maxpooling 67.7 2,885,060
Max-Average pooling 75.6 2,885,060

Proposed-2 78.2 3,212,740

Extra-Average 77.4 2,885,060

Table 6 shows the average F1 scores of the four labels for the two proposed networks and their
variants. The detection performance of All-BN degrades significantly, as compared to No-BN or our
Proposed-1 architecture. This is due to gradient explosion [37] in deep layer that makes the network
hard to train. Furthermore, batch normalization leads to instability of training [37].
Training/validation accuracy of the models All-BN and No-BN are depicted in Figures 7 and 8,

Figure 6. AF record which is misclassified as other.

3.5.2. Network Architecture Analysis

Batch normalization is a renowned regularization technique that accelerates training [30] and
is widely used in modern network architecture [22]. Maxpooling is a strategy that downsamples
feature maps and is mostly placed after the convolutional layer for feature reduction [36]. Although
these strategies proven to be robust and useful in several application domains, we conducted an
experiment to look into the performance changes under various arrangements of batch normalization

Sensors 2020, 20, 2136 12 of 17

and Maxpooling. The proposed 1D CNN architecture shown in Table 1 contains only one batch
normalization layer placed after the first convolutional layer, and one Maxpooling layer for every
convolutional layer, except the last convolution layer. For convenience, the architecture is denoted as
Proposed-1. Moreover, we replace every Maxpooling layer of Proposed-1 with average pooling, and
denote this as Proposed-2.

We also designed four variants of Proposed-1 and one variant of Proposed-2 as follows. The variants
of Proposed-1 include (a) All-BN: add one batch normalization layer after every convolutional layer;
(b) No-BN: no batch normalization layer in the network; (c) Maxpooling: add the Proposed-1 with one
Maxpooling layer before the flatten layer; (d) Max-average pooling: add Proposed-1 with one average
pooling layer before the flatten layer, which combines Maxpooling and average pooling. The variant of
Proposed-2 is to add one average pooling layer before the flatten layer into the Proposed-2 network,
which is denoted as Extra-Average.

Table 6 shows the average F1 scores of the four labels for the two proposed networks and their
variants. The detection performance of All-BN degrades significantly, as compared to No-BN or our
Proposed-1 architecture. This is due to gradient explosion [37] in deep layer that makes the network
hard to train. Furthermore, batch normalization leads to instability of training [37]. Training/validation
accuracy of the models All-BN and No-BN are depicted in Figures 7 and 8, respectively. It is seen that
the accuracy curve on the validation set fluctuates drastically for All-BN (Figure 7) while the accuracy
curve for No-BN (Figure 8) is relatively smooth.

Table 6. Average F1 scores of proposed networks and their variants.

Neural Networks Average F1 Score Total Number of Parameters

Proposed-1 77.8 3,212,740
All-BN 69.2 3,216,644
No-BN 76.2 3,212,676

Maxpooling 67.7 2,885,060
Max-Average pooling 75.6 2,885,060

Proposed-2 78.2 3,212,740
Extra-Average 77.4 2,885,060

Sensors 2020, 20, x FOR PEER REVIEW 13 of 18

respectively. It is seen that the accuracy curve on the validation set fluctuates drastically for All-BN
(Figure 7) while the accuracy curve for No-BN (Figure 8) is relatively smooth.

Figure 7. Training accuracy of All-BN.

Figure 8. Training accuracy of No-BN.

A vanilla CNN usually combines the convolutional layer and Maxpooling layer as a block and
repeats this before the flatten layer [36]. We investigated how the Maxpooling layer placed before the
flatten layer affects accuracy. The result shown as “Maxpooling” in Table 6 reflects that the accuracy
degrades significantly, and this variant yields the worst accuracy. The reason can be traced back to
the characteristics of Maxpooling. In Maxpooling operation, it only keeps the maximum element and
removes the others. This method may not preserve the originality of the data and is likely to eliminate
the distinguishing features in the same pooling region [38].

In order to investigate the effect of pooling methods, we replace Maxpooling in Proposed-1 with
average pooling, and the result is shown as Proposed-2 in Table 6. It is obvious that Proposed-2
outperforms Proposed-1 and its variants. This may be due to the effect that average pooling keeps

Figure 7. Training accuracy of All-BN.

Sensors 2020, 20, 2136 13 of 17

Sensors 2020, 20, x FOR PEER REVIEW 13 of 18

respectively. It is seen that the accuracy curve on the validation set fluctuates drastically for All-BN
(Figure 7) while the accuracy curve for No-BN (Figure 8) is relatively smooth.

Figure 7. Training accuracy of All-BN.

Figure 8. Training accuracy of No-BN.

A vanilla CNN usually combines the convolutional layer and Maxpooling layer as a block and
repeats this before the flatten layer [36]. We investigated how the Maxpooling layer placed before the
flatten layer affects accuracy. The result shown as “Maxpooling” in Table 6 reflects that the accuracy
degrades significantly, and this variant yields the worst accuracy. The reason can be traced back to
the characteristics of Maxpooling. In Maxpooling operation, it only keeps the maximum element and
removes the others. This method may not preserve the originality of the data and is likely to eliminate
the distinguishing features in the same pooling region [38].

In order to investigate the effect of pooling methods, we replace Maxpooling in Proposed-1 with
average pooling, and the result is shown as Proposed-2 in Table 6. It is obvious that Proposed-2
outperforms Proposed-1 and its variants. This may be due to the effect that average pooling keeps

Figure 8. Training accuracy of No-BN.

A vanilla CNN usually combines the convolutional layer and Maxpooling layer as a block and
repeats this before the flatten layer [36]. We investigated how the Maxpooling layer placed before the
flatten layer affects accuracy. The result shown as “Maxpooling” in Table 6 reflects that the accuracy
degrades significantly, and this variant yields the worst accuracy. The reason can be traced back to
the characteristics of Maxpooling. In Maxpooling operation, it only keeps the maximum element and
removes the others. This method may not preserve the originality of the data and is likely to eliminate
the distinguishing features in the same pooling region [38].

In order to investigate the effect of pooling methods, we replace Maxpooling in Proposed-1 with
average pooling, and the result is shown as Proposed-2 in Table 6. It is obvious that Proposed-2
outperforms Proposed-1 and its variants. This may be due to the effect that average pooling keeps
most information from previous layer and is able to pass this down layer by layer. In addition, the
performance of Proposed-2 slightly degrades if we add one average pooling layer before flatten layer
(Extra-Average in Table 6). However, the F1 score drops by 10% if we add one Maxpooling layer before
the flatten layer in Proposed-1. The experiment shows that using average pooling is more stable than
using Maxpooling.

3.5.3. Network Complexity Analysis

To evaluate the network complexity, we estimated the total number of network training parameters
using the deep learning platform Keras. The parameters of each layer, excluding non-trainable layers
such as the pooling layer, dropout, and flatten layer, are shown in Table 7. The total number of network
training parameters of the proposed 1D CNN is approximately 3 million.

For comparison, we also built up the CRNN using Keras and calculated the total number of
network training parameters of the CRNN. The CRNN architecture mainly consists of two networks:
2D CNN and LSTM. The 2D CNN uses four convolutional blocks. Each block is made up of six 2D
convolutional layers, followed by batch normalization and ReLU activation. The last layer of a block
applies Maxpooling with a kernel size of 2. Feature maps from the Maxpooling layer are flattened
before feeding into a three-layer bidirectional LSTM network. The total number of training parameters
of CRNN is 10,149,440, which is three times more than ours and requires huge computation in training.
Note that the transformation of 1D ECG signal to 2D spectrogram is not taken into account. In addition,
2D convolution of 24 layers and three-layer LSTM dominate the network complexity of the CRNN.

Sensors 2020, 20, 2136 14 of 17

Table 7. Training parameters of the proposed 1D CNN.

Layer Type Output Shape Parameters

Conv1D 8996 × 32 192
Batch Normalization 8996 × 32 128

Conv1D 4494 × 32 5152
Conv1D 2243 × 64 10,304
Conv1D 1117 × 64 20,544
Conv1D 554 × 128 41,088
Conv1D 273 × 128 82,048
Conv1D 132 × 256 164,096
Conv1D 62 × 256 327,936
Conv1D 27 × 512 655,872
Conv1D 9 × 512 1,311,232
Dense 128 589,952
Dense 32 4128
Dense 4 132

Total number of network training parameters: 3,212,740

3.5.4. Comparison of Various Methods

To prove the effectiveness of our AF detection system, we compared it with the existing DL-based
methods [21,23,24]. The DL-based methods include 1D schemes: ResNet-1, ResNet-2, and CL3-I (CL3
experiment I [23]), and 2D scheme: CRNN, as mentioned in Section 1. The comparison metrics include
detection accuracy of cross-validation and total number of network training parameters.

A detection accuracy comparison of our model with the existing DL-based methods for each class
is summarized in Table 8. It indicates that our proposed method achieves better prediction accuracy
for all classes. In addition, the detection performance of AF of this method is more than 4% higher
than the second best CRNN.

Table 8. Comparison of prediction accuracy of various methods.

Methods AF (A) Normal (N) Noisy (~) Other (O)

Proposed-1 79.1 90.7 65.3 76.0
Proposed-2 80.8 90.4 66.2 75.3

CRNN 76.4 88.8 64.5 72.6
ResNet-1 65.7 90.2 64.0 69.8
ResNet-2 67.7 88.5 65.6 66.6

CL3-I 76.0 90.1 47.1 75.2

Table 9 shows the comparison using the metrics of average F1 score of four classes and average F1

score of three classes (excluding Noisy), and the total number of parameters. The results indicate that
the proposed networks achieve an average F1 score higher than the existing networks. The existing
1D schemes, ResNet-1, ResNet-2 and CL3-I, perform much worse than our networks and CRNN in
average F1 score of four classes. In addition, our network outperforms the CRNN with much lower
network complexity (less than 1/3). This implies that both training cost and implementation cost of the
proposed deep neural network are significantly lower than those of the CRNN.

Table 9. Comparison of average F1 score and total number of parameters of various methods.

Methods Average F1 Score of
A, N, ~, and O

Average F1 Score of
A, N, and O

Total Number of
Parameters

Proposed-1 77.8 81.9 3,212,740
Proposed-2 78.2 82.2 3,212,740

CRNN 75.6 79.3 10,149,440
ResNet-1 72.4 75.2 10,466,148
ResNet-2 72.1 74.3 1,219,508

CL3-I 72.1 80.4 206,334

Sensors 2020, 20, 2136 15 of 17

4. Conclusions

This paper developed an end-to-end 1D CNN for the AF detection from time-series ECG data.
By studying the impact of the BN and pooling methods on detection accuracy and combing the grid
search method to obtain optimal hyperparameters, we designed a simple, yet effective 1D CNN
network. We also developed a length normalization algorithm, which automatically determines the
length threshold value. The algorithm made variable-length ECG records, fixed-length ones, and
augmented training data. The algorithm adapted the characteristic change of data by using the
histogram information of the input data.

In the literatre, BN is widely used to improve performance. However, in our application, when
the BN layer was added subsequently to every convolutional layer (All-BN), F1 score dropped 7%,
as compared to the case without BN (No-BN). When the BN layer was added only subsequently to
the first convolutional layer (our Proposed-1 architecture), F1 score was further improved by 1.6%, as
compared to No-BN. Although BN was able to speed up learning, our experiment indicated that it
could lead to instability in training. As for pooling methods, we found that average pooling is able
to keep information from the previous layer and pass to a latter layer, while Maxpooling only keeps
the maximum value, which may lose important information sometimes. The experimental results
showed that average pooling achieved a slightly higher F1 score than Maxpooling, and it was more
stable in training.

Through exhaustive evaluation, we proved our 1D CNN method achieved better cross-validation
detection accuracy than the existing methods. In addition, the proposed method reduced network
complexity significantly, as compared with the second-ranked method, CRNN. Applying spatial
pyramid pooling [39], which does not require fixed input size, in replacement of the flatten layer,
and investigating a better way to solve the problem of extremely imbalanced dataset will be the
future directions.

Author Contributions: Conceptualization, C.-H.H.; Data curation, C.-H.H., Y.-S.L. and B.-J.H.; Formal analysis,
C.-H.H.; Methodology, C.-H.H. and B.-J.H.; Software, Y.-S.L. and C.-H.H.; Validation, C.-H.H. and Y.-S.L.;
Writing—original draft, Y.-S.L.; Writing—review & editing, C.-H.H. and B.-J.H. All authors have read and agreed
to the published version of the manuscript.

Conflicts of Interest: No conflicts of interest.

References

1. Atrial Fibrillation. Available online: https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/

symptoms-causes/syc-20350624 (accessed on 18 October 2019).
2. Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.;

Cleland, J.G.; McMurray, J.J.V. Temporal trends and patterns in heart failure incidence: A population-based
study of 4 million individuals. Lancet 2018, 391, 572–580. [CrossRef]

3. Cook, C.; Cole, G.; Asaria, P.; Jabbour, R.; Francis, D.P. The annual global economic burden of heart failure.
Int. J. Cardiol. 2014, 171, 368–376. [CrossRef] [PubMed]

4. Mathew, S.T.; Patel, J.; Joseph, S. Atrial fibrillation: mechanistic insights and treatment options. Eur. J.
Intern. Med. 2009, 20, 672–681. [CrossRef] [PubMed]

5. Zhou, X.; Ding, H.; Ung, B.; Emma, P.M.; Zhang, Y. Automatic online detection of atrial fibrillation based on
symbolic dynamics and Shannon entropy. Biomed. Eng. Online 2014, 13, 18. [CrossRef]

6. Zheng, J.; Zhang, J.; Danioko, S.; Yao, H.; Guo, H.; Rakovski, C. A 12-lead electrocardiogram database for
arrhythmia research covering more than 10,000 patients. Sci. Data 2020, 7, 48. [CrossRef]

7. Clifford, G.D.; Liu, C.; Moody, B.; Lehman, L.H.; Silva, I.; Li, Q.; Johnson, A.E.; Mark, R.G. AF classification from
a short single lead ECG recording: The PhysioNet Computing in Cardiology Challenge 2017. In Proceedings
of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; Volume 44, pp. 1–4.

8. Tang, X.; Shu, L. Classification of electrocardiogram signals with RS and quantum neural networks. Int. J.
Multimed. Ubiquitous Eng. 2014, 9, 363–372. [CrossRef]

https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/symptoms-causes/syc-20350624
https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/symptoms-causes/syc-20350624
http://dx.doi.org/10.1016/S0140-6736(17)32520-5
http://dx.doi.org/10.1016/j.ijcard.2013.12.028
http://www.ncbi.nlm.nih.gov/pubmed/24398230
http://dx.doi.org/10.1016/j.ejim.2009.07.011
http://www.ncbi.nlm.nih.gov/pubmed/19818285
http://dx.doi.org/10.1186/1475-925X-13-18
http://dx.doi.org/10.1038/s41597-020-0386-x
http://dx.doi.org/10.14257/ijmue.2014.9.2.37

Sensors 2020, 20, 2136 16 of 17

9. Osowski, S.; Linh, T.H. ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng.
2001, 48, 1265–1271. [CrossRef]

10. Linh, T.H.; Osowski, S.; Stodolski, M. On-line heartbeat recognition using Hermite polynomials and
neuron-fuzzy network. IEEE Trans. Instrum. Meas. 2003, 52, 1224–1231. [CrossRef]

11. Mitra, S.; Mitra, M.; Chaudhuri, B.B. A rough set-based inference engine for ECG classification. IEEE Trans.
Instrum. Meas. 2006, 55, 2198–2206. [CrossRef]

12. Melgani, F.; Bazi, Y. Classification of electrocardiogram signals with support vector machines and particle
swarm optimization. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 667–677. [CrossRef]

13. Llamedo, M.; Martínez, J.P. Heartbeat classification using feature selection driven by database generalization
criteria. IEEE Trans. Biomed. Eng. 2011, 58, 616–625. [CrossRef] [PubMed]

14. Homaeinezhad, M.R.; Atyabi, S.A.; Tavakkoli, E.; Toosi, H.N.; Ghaffari, A.; Ebrahimpour, R. ECG arrhythmia
recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features.
Expert Syst. Appl. 2012, 39, 2047–2058. [CrossRef]

15. Rai, H.M.; Trivedi, A.; Shukla, S. ECG signal processing for abnormalities detection using multi-resolution
wavelet transform and artificial neural network classifier. Measurement 2013, 46, 3238–3246. [CrossRef]

16. Yeh, Y.C.; Wang, W.J.; Chiou, C.W. A novel fuzzy c-means method for classifying heartbeat cases from ECG
signals. Measurement 2010, 43, 1542–1555. [CrossRef]

17. Tantawi, M.M.; Revett, K.; Salem, A.B.M.; Tolba, M.F. Fiducial feature reduction analysis for electrocardiogram
(ECG) based biometric recognition. J. Intell. Inf. Syst. 2013, 40, 17–39. [CrossRef]

18. Gaetano, A.D.; Panunzi, S.; Rinaldi, F.; Risi, A.; Sciandrone, M. A patient adaptable ECG beat classifier based
on neural networks. Appl. Math. Comput. 2009, 213, 243–249. [CrossRef]

19. Datta, S.; Puri, C.; Mukherjee, A.; Banerjee, R.; Choudhury, A.D.; Singh, R.; Ukil, A.; Bandyopadhyay, S.;
Pal, A.; Khandelwal, S. Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary
classifier. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September
2017; Volume 44, pp. 1–4.

20. Luo, K.; Li, J.; Wang, Z.; Cuschieri, A. Patient-specific deep architectural model for ECG classification.
J. Healthc. Eng. 2017, 2017, 4108720. [CrossRef]

21. Andreotti, F.; Carr, O.; Pimentel, M.A.F.; Mahdi, A.; Vos, M.D. Comparing feature-based classifiers and
convolutional neural networks to detect arrhythmia from short segments of ECG. In Proceedings of the 2017
Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; Volume 44, pp. 1–4.

22. Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-
Level Arrhythmia Detection with Convolutional Neural Networks. Nat. Med. 2019, 25, 65–69. [CrossRef]

23. Warrick, P.; Homsi, M.N. Cardiac arrhythmia detection from ECG combining convolutional and long
short-term memory networks. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France,
24–27 September 2017; Volume 44, pp. 1–4.

24. Zihlmann, M.; Perekrestenko, D.; Tschannen, M. Convolutional recurrent neural networks for
electrocardiogram classification. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes,
France, 24–27 September 2017; Volume 44, pp. 1–4.

25. Hsieh, C.H.; Chen, J.Y.; Nien, B.H. Deep learning-based indoor localization using received signal strength
and channel state information. IEEE Access 2019, 7, 33256–33267. [CrossRef]

26. Zhou, Z.; Lin, Y.; Zhang, Z.; Wu, Y.; Johnson, P. Earthquake detection in 1-D time series data with feature
selection and dictionary learning. Seismol. Res. Lett. 2019, 90, 563–572. [CrossRef]

27. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
28. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
29. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Proceedings of

the 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018, Part III; Springer:
Cham, Switzerland, 2018. [CrossRef]

30. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. arXiv 2015, arXiv:1502.03167.

31. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
32. Sasaki, Y. The truth of the f-measure. In Teaching Tutorial Materials; University of Manchester: Manchester,

UK, 2007.

http://dx.doi.org/10.1109/10.959322
http://dx.doi.org/10.1109/TIM.2003.816841
http://dx.doi.org/10.1109/TIM.2006.884279
http://dx.doi.org/10.1109/TITB.2008.923147
http://dx.doi.org/10.1109/TBME.2010.2068048
http://www.ncbi.nlm.nih.gov/pubmed/20729162
http://dx.doi.org/10.1016/j.eswa.2011.08.025
http://dx.doi.org/10.1016/j.measurement.2013.05.021
http://dx.doi.org/10.1016/j.measurement.2010.08.019
http://dx.doi.org/10.1007/s10844-012-0214-7
http://dx.doi.org/10.1016/j.amc.2009.03.013
http://dx.doi.org/10.1155/2017/4108720
http://dx.doi.org/10.1038/s41591-018-0268-3
http://dx.doi.org/10.1109/ACCESS.2019.2903487
http://dx.doi.org/10.1785/0220180315
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1007/978-3-030-01424-7_27

Sensors 2020, 20, 2136 17 of 17

33. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.;
Peng, C.K.; Stanley, H.E. Components of a New Research Resource for Complex Physiologic Signals.
Physiobank Physiotoolkit Physionet 2003, 101, 23.

34. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2008.
35. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning, 7th ed.; Springer:

New York, NY, USA, 2017.
36. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv

2019, arXiv:1409.1556.
37. Yang, G.; Pennington, J.; Rao, V.; Sohl-Dickstein, J.; Schoenholz, S.S. A Mean Field Theory of Batch

Normalization. arXiv 2019, arXiv:1902.08129.
38. Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed pooling for convolutional neural networks. In Rough Sets and

Knowledge Technology: 9th International Conference; Springer: Cham, Switzerland, 2014; pp. 364–375.
39. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual

Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed AF Detection
	System Overview
	Data Length Normalization
	1D CNN Design
	CNN Architecture
	CNN Learning

	Numerical Analysis
	Dataset
	Evaluation Metrics
	K-Fold Cross-Validation
	Hyperparameter Optimization
	Results and Analysis
	Prediction Accuracy
	Network Architecture Analysis
	Network Complexity Analysis
	Comparison of Various Methods

	Conclusions
	References

