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Abstract: The massive Internet of Things (IoT) connecting various types of intelligent sensors for 
goods tracking in logistics, environmental monitoring and smart grid management is a crucial 
future ICT. High-end security and low power consumption are major requirements in scaling up 
the IoT. In this research, we propose an efficient data-hiding scheme to deal with the security 
problems and power saving issues of multimedia communication among IoT devises. Data hiding 
is the practice of hiding secret data into cover images in order to conceal and prevent secret data 
from being intercepted by malicious attackers. One of the established research streams of data-
hiding methods is based on reference matrices (RM). In this study, we propose an efficient data-
hiding scheme based on multidimensional mini-SuDoKu RM. The proposed RM possesses high 
complexity and can effectively improve the security of data hiding. In addition, this study also 
defines a range locator function which can significantly improve the embedding efficiency of 
multidimensional RM. Experimental results show that our data-hiding scheme can not only obtain 
better image quality, but also achieve higher embedding capacity than other related schemes. 
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1. Introduction 

We live in the information age in which no such immense amounts of digital information have 
ever before been consistently transmitted over open communication channels. As a consequence, 
information security has become a research hotspot. Today, there are two types of strategies for 
securing information against unauthorized access during transmission. The first type of methods 
encrypts data by cryptographic algorithms such as RSA [1], DES [2], elliptic-curve signcryption [3] 
and the blockchain-based solution [4]. However, the use of encryption would easily attract the 
attention of malicious attackers, causing them to intercept the encrypted data and subsequently use 
computers of sufficient power to break the encryption [5]. By contrast, the second type of methods 
hides secret data into cover images by steganographic algorithms and therefore conceals the existence 
of secret data [6]. After the recipient obtains the stego images, the secret data can be decoded through 
the corresponding algorithm. Steganographic methods can effectively prevent the interception of the 
secret data because they conceal the very fact that secret data exists. Indeed, this type of methods has 
attracted an increasing amount of research attention. 
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Most data-hiding schemes are performed in the following three domains: frequency domain 
[7,8], compression domain [9–12] and spatial domain [13–16]. Most developers are devoted to devise 
data-hiding schemes in the spatial domain due to its explicitness and convenience for 
implementations [17–19]. For spatial domain-based data-hiding schemes, reference matrices (RM), as 
a means of modifying pixels, can achieve low distortion and high embedding capacity. The concept 
of RM originated from the exploiting modification-direction (EMD) scheme proposed by Zhang and 
Wang [16] in 2006. Kim et al. proposed an improved version called EMD-2, which modifies the value 
of up to two pixels in a unit [14]. Compared to the original EMD scheme, this scheme improves the 
embedding capacity while ensuring the image quality. As another follow-up work, Chang et al. 
utilized SuDoKu tables as the RM [20]. In this scheme, each pixel pair in the cover image can hide a 
9-ary binary secret data, which greatly increases the hiding capacity. Hong et al. [21] proposed a 
scheme that calculates the distance between pixels by the nearest Euclidean distance, which obtained 
even better image quality. Turtle shell-based RM is characterized by hexagon shaped shells and is 
able to hide 3 bits of secret information per pixel [22]. Liu et al. classified the locations on the turtle 
shell matrix into 16 situations to further improve the embedding capacity with the aid of a location 
table [23]. Jin et al. combined the data-hiding schemes of the turtle shell and swarm optimization 
algorithm to improve the visual quality of the image [24]. Our method is inspired by He et al.’s mini-
SuDoKu matrix (MSM) [25]. More details of related works will be presented in the following section. 

In this study, we propose a 3D RM based on the MSM. Using the 3D-MSM for data hiding can 
hide more secret data while ensuring image quality. The main contributions of this study are as 
follows: First, this study proposes a novel 3D reference matrix based on the MSM matrix. Second, it 
achieves good image quality and embedding capacity. Third, an efficient algorithm is devised to 
embed secret data. Finally, the proposed algorithm can be generalized to RM of arbitrary N 
dimensions. 

The rest of this study is organized as follows: Section 2 briefly introduces two data-hiding 
algorithms based on reference matrices. Section 3 introduces the 3D MSM proposed in this study, 
presents the embedding process, and analyzes the time efficiency of the proposed algorithm. Section 
4 compares the proposed scheme with other RM-based data-hiding schemes. 

2. Related Work 

Recent RM-based data-hiding schemes can be characterized into turtle shell-based schemes and 
SuDoKu-based schemes. In order to pave the way for our idea of multidimensional mini-SuDoKu 
RM, these two types of matrices are briefly reviewed. 

2.1. Turtle Shell Matrix Data Hiding 

In the turtle shell-based scheme proposed by Liu et al. [23], the turtle shell matrix 𝑀 =ൣ𝑚(𝑖, 𝑗)௜,௝∈ሼ଴,ଵ,⋯,ଶହହሽ൧ is consisted of a number of hexagons, called turtle shells, with a size of 256 × 256, 
as shown in Figure 1. The RM is filled with 8-ary digits, the incremental value of each row is always 
1, while the incremental value of each column change of 2 and 3 in turn. Hence, each turtle shell 
structure in Figure 1 contains distinct values from 0 to 7. In order to further improve the hiding 
capacity, a location table is constructed as shown in Figure 2. The location table 𝑇 contains all 16 
possible situations of turtle shell in the RM. The 16 situations in the location table can be grouped 
into four categories, as shown in Figure 3. According to the characteristics of the RM, the set of values 
of elements matching location 1 and location 4 is always {1,3,5,7} and matching location 2 and location 
3 is always {0,2,4,6}. Each location in the location table 𝑇 can be represented by 𝑇(𝑠௜ , 𝑠௜ାଵ), where 𝑠௜ 
indicates the i-th row, and 𝑠௜ାଵ indicates the (i+1)-th column, and 𝑠௜ and 𝑠௜ାଵ belong to {00,01,10,11}. 

Next, the process of data hiding is described below. First, the original image is cut into pixel 
pairs (𝑃௜ ,𝑃௜ାଵ), and the binary secret data stream is cut into two sub-streams 𝑠௝  and 𝑠௝ାଵ, each of 
which contains a 2-bit binary number. Second, a pair of cover pixels(𝑃௜ ,𝑃௜ାଵ) is applied to locate an 
element 𝑚(𝑃௜ ,𝑃௜ାଵ) in the RM. After that, employ (𝑠௝ , 𝑠௝ାଵ) as coordinates to find the corresponding 𝑇(𝑠௝ , 𝑠௝ାଵ)  in the location table. Then, find the closest element, making 𝑚(𝑃௜′,𝑃௜ାଵ′) = 𝑇(𝑠௝ , 𝑠௝ାଵ) . 
Finally, modify the values of the pixel pair to embed it. 
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By taking relative location of a number in the turtle shell into account, this data-hiding scheme 
improves the embedding capacity of the original turtle shell scheme from 1.5 to 2. However, the 
image quality is degraded due to increase of embedding area. 

 

Figure 1. Turtle shell reference matrix. 

 

Figure 2. Location table T. 

 

Figure 3. Four locations of elements in M. 

2.2. Mini SuDoKu Matrix-Based Data Hiding 

The SuDoKu is a matrix which contains nine 3 × 3 sub-matrices with numbers from 1 to 9. In 
addition, each number is used only once in each raw and each column. Inspired by the conventional 
SuDoKu, the mini-SuDoKu matrix (MSM) [25] was proposed. 

As shown in Figure 4, the MSM is a matrix that contains 4096 4 × 4 submatrices, and each 
submatrix contains 4 basic structures. Each basic structure is filled with numbers from 0 to 3. In 
addition, the digits from 0 to 3 must occur just once in each row and each column of the submatrix. 
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Figure 4. Mini-SuDoKu reference matrix. 

The data-hiding scheme using MSM is briefly described as follows: First, the original image is 
cut into pixel pairs  (𝑝௞,𝑝௞ାଵ) . The secret data stream is cut into four-bit substreams 𝑠𝑔ௗ =ሼ𝑠ସௗିଷ, 𝑠ସௗିଶ, 𝑠ସௗିଵ, 𝑠ସௗሽ , and then we divide 𝑠𝑔ௗ  into three groups, i.e., 𝐵ଵ = 𝑠ସௗିଷ𝑠ସௗିଶ,𝐵ଶ =𝑠ସௗିଵ,𝐵ଷ = 𝑠ସௗ. Thus, 𝐵ଵ is a quaternary digit from 0 to 3 and 𝐵ଶ/𝐵ଷ is a bit of 0 or 1. Second, take 
the pixel pair as coordinates and locate 𝑀𝑆𝑀(𝑝௞,𝑝௞ାଵ) in the MSM. Then, a 4 × 4 candidate block 𝐺 
is determined by (1). Find the element  𝑀𝑆𝑀(𝑝௞′,𝑝௞ାଵ′)  within 𝐺  satisfying 𝑚(𝑝௞′,𝑝௞ାଵ′) =𝐵ଵ, 𝑚𝑜𝑑(𝑝௞ᇱ , 2) = 𝐵ଶ and 𝑚𝑜𝑑(𝑝௞ାଵᇱ , 2) = 𝐵ଷ. Finally, modify the pair(𝑝௞,𝑝௞ାଵ) to (𝑝௞′,𝑝௞ାଵ′). We can 
embed the secret data and get the stego image by repeating these steps. 

𝐺 =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝑀𝑆𝑀(0: 3,0: 3), if 𝑝௞ ≤ 1 and 𝑝௞ାଵ ≤ 1;𝑀𝑆𝑀(0: 3, 𝑝௞ାଵ − 2: 𝑝௞ାଵ + 1), if 𝑝௞ ≤ 1 and 1 < 𝑝௞ାଵ < 255;𝑀𝑆𝑀(0: 3252: 255), if 𝑝௞ ≤ 1 and 𝑝௞ାଵ = 255;𝑀𝑆𝑀(𝑝௞ − 2: 𝑝௞ + 1,0: 3), if 1 < 𝑝௞ < 255 and 𝑝௞ାଵ ≤ 1;𝑀𝑆𝑀(𝑝௞ − 2: 𝑝௞ + 1, 𝑝௞ାଵ − 2: 𝑝௞ାଵ + 1), if 1 < 𝑝௞ < 255 and 1 < 𝑝௞ାଵ < 255;𝑀𝑆𝑀(𝑝௞ − 2: 𝑝௞ + 1, 𝑝௞ାଵ, 252: 255), if 1 < 𝑝௞ < 255 and 𝑝௞ାଵ = 255;𝑀𝑆𝑀(252: 255,0: 3), if 𝑝௞ = 255 and 𝑝௞ାଵ ≤ 1;𝑀𝑆𝑀(252: 255,𝑝௞ାଵ − 2: 𝑝௞ାଵ + 1), if 𝑝௞ = 255 and 1 < 𝑝௞ାଵ < 255;𝑀𝑆𝑀(252: 255,252: 255), otherwise.

 (1)

The mini-SuDoKu matrix suffers from the problem of low security level. There are too many 
constraints on the construction rules. Each row, each column and each basic structure of size 2 × 2 
must contain distinct values of 0 to 3. To obtain a better PSNR (peak signal to noise ratio) 
performance, the candidate block for a regular element is defined as 𝑀𝑆𝑀(𝑝௞ − 2:𝑝௞ + 1,𝑝௞ାଵ −2:𝑝௞ାଵ + 1). The two axial ranges of the candidate block do not always coincide with an original 4×4 
submatrix. To satisfy the translational invariant requirement for embedding, the whole MSM should 
repeat the same 4 × 4 submatrix. In addition, the candidates of embedding should satisfy 𝑚𝑜𝑑(𝑝௞ᇱ , 2) = 𝐵ଶ  and  𝑚𝑜𝑑(𝑝௞ାଵᇱ , 2) = 𝐵ଷ . An example grouping of embedding candidates for 
different combinations of 𝐵ଶ and 𝐵ଷ is shown in Figure 5. The elements in the same group also 
should contain all values of 0 to 3. These requirements severely restrict the variety of the MSM and 
thus threaten the security of data hiding. 

 

Figure 5. Candidates of embedding for different combinations of 𝐵ଶ and 𝐵ଷ. 



Sensors 2020, 20, 2739 5 of 19 

 

3. The Proposed Scheme 

In this section, we will introduce the proposed cubic mini-SuDoKu matrix and a two-layered 
data-hiding scheme based on the proposed matrix. Then, the matrix and its corresponding data-
embedding and extraction algorithm will be generalized to n-dimensional version. Some mechanisms 
for improving the time efficiency will also be presented. 

3.1. Cubic mini-SuDoKu Matrix (CMSM) 

In this study, we propose a two-layered hiding scheme based on a cubic mini-SuDoKu matrix. 
By leveraging the proposed cubic mini-SuDoKu matrix, the proposed data-hiding scheme can embed 
secret data with an efficient way and produce stego images of good visual quality. 

3.1.1. Construction of the Cubic mini-SuDoKu Matrix 

The cubic mini-SuDoKu matrix is a 256 × 256 × 256 matrix that contains 64 × 64 × 64 sub-cubes of 
size 4 × 4 × 4. Each sub-cube contains eight basic structures of size 2 × 2 × 2. The basic structures are 
labeled with bold Arabic numerals as shown in Figure 6. Elements of each basic structure are 
randomly assigned with distinct values of 0 to 7. The resulting RM is denoted as 𝑀(𝑥,𝑦, 𝑧), 𝑥,𝑦, 𝑧 =0,1, … ,255. 

Before embedding, secret data and cover image should be prepared. Binary secret stream is 
divided into segments of 6 digits each, while the pixels of the cover image are grouped into triplets. 
A set of three pixels in a triplet (𝑝௫௜ ,𝑝௬௜ ,𝑝௭௜) is used to embed a secret segment of 6 digits 𝑠௝ =൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯. First, the values of the three cover pixels are applied as the coordinates to locate a 
reference element in the 3D RM. Then, a two-layered embedding scheme is executed. The outer layer 
is to obtain a matched basic structure by using the three most significant bits (3 MSBs) of secret 
segment 𝑠௝ெ = ൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝൯. Subsequently, the inner layer of embedding is to find an element within the 
obtained basic structure with a value matching the three least significant bits (3 LSBs) 𝑠௝௅ = ൫𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯. 
Finally, the pixel values are modified to the indices of the matched element. 

 

Figure 6. Architecture of cubic matrix. 

To improve the efficiency of outer layer embedding, we define a range locator function 𝐺 to 
identify the precise searching range for each direction of axis. By combining ranges of all axes, the 
basic structure matching the 3 MSBs can be determined. 

Let 𝑝 be the pixel value and 𝑤 = 𝑚𝑜𝑑(𝑝, 4) as shown in Figure 7. We always apply the segment 
[0:1] of 𝑤 to embed secret digit 𝑑 = 0, while apply the segment [2:3] of 𝑤 to embed 𝑑 = 1. To meet 
this constraint and minimize the modification distortion, we choose the nearest formal segment to 
embed. For convenience, we define a range front matrix ∆ to record the offset values from the current 
pixel to the range front of embedding. In the case of 𝑑 = 0, the offset is −2 for 𝑚𝑜𝑑(𝑝, 4) = 2; +1 
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for 𝑚𝑜𝑑(𝑝, 4) = 3; 0 and −1 for 𝑚𝑜𝑑(𝑝, 4) = 0 and 1, respectively. In the case of 𝑑 = 1, the offset 
is −2 for 𝑚𝑜𝑑(𝑝, 4) = 0; +1 for 𝑚𝑜𝑑(𝑝, 4) = 1; 0 and −1 for 𝑚𝑜𝑑(𝑝, 4) = 2 and 3, respectively. 
The resulting offset matrix ∆ and range locator function 𝐺 for the entire axis are given in Equations 
(2) and (3), respectively. 

 

Figure 7. Illustration of incremental value ∆ for different situations. ∆= ቂ 𝟎 −𝟏−𝟐 +𝟏 −𝟐 +𝟏𝟎 −𝟏ቃ  (2)

𝐺(𝑝,𝑑) = ⎩⎪⎨
⎪⎧ ሾ0: 1ሿ, if 𝑝 = 0 and 𝑑 = 0;ሾ2: 3ሿ, if 𝑝 = 0 and 𝑑 = 1;ሾ252: 253ሿ, if 𝑝 = 255 and 𝑑 = 0;ሾ254: 255ሿ, if 𝑝 = 255 and 𝑑 = 1;ሾ𝑝ᇱ:𝑝ᇱ + 1ሿ with 𝑝ᇱ = 𝑝 + ∆(𝑑,𝑚𝑜𝑑(𝑝, 4)), if 1 ≤ 𝑝 ≤ 254.  (3)

Figure 8 illustrates an example of combining ranges of three axes. Assuming the cover triplet is ൫𝑝௫௜ ,𝑝௬௜ ,𝑝௭௜൯ = (2,3,2) and the 3 MSBs of the secret segment to be embedded is 𝑠௝ெ = ൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝൯ =(110)ଶ . By applying the range locater, the embedding range of each axis can be determined 
independently as 𝐺൫𝑝௫௜ ,𝑑ଷ௝൯ = 𝐺(2,0) = ሾ2 + ∆(0,2): 2 + ∆(0,2) + 1ሿ = [0: 1] , 𝐺൫𝑝௬௜ ,𝑑ସ௝൯ = 𝐺(3,1) =[3 + ∆(1,3): 3 + ∆(1,3) + 1] = [2: 3]  and 𝐺൫𝑝௭௜ ,𝑑ହ௝൯ = 𝐺(2,1) = [2 + ∆(1,2): 2 + ∆(1,2) + 1] = [2: 3] . 
As shown in the figure, the basic structure obtained by combining the located ranges is 𝑀(0: 1,2: 3,2: 3). Comparing with Figure 6, the basic structure obtained by applying 𝑠௝ெ = (110)ଶ to 
range locater coincides with the structure labeled 6 = (110)ଶ. This result demonstrates that the range 
locater can be treated as an efficient tool for the outer layer of embedding scheme. 
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Figure 8. Locating the basic structure for embedding by combining ranges of three axes. 

3.1.2. Secret Data Embedding 

As mentioned in the previous subsection, the proposed data-embedding scheme is composed of 
two hiding layers. The outer layer uses the 3 MSBs to locate the nearest formal basic structure for 
embedding. The inner layer seeks to find the element with a value matching the 3 LSBs and embeds 
the 6 digits in total by modifying the pixel values. The details of secret data embedding are as follows: 

The secret data-embedding algorithm based on the cubic mini-SuDoKu matrix (CMSM) 
Input: cover image 𝑃, secret stream 𝑆, secret key K 
Output: stego image 𝑃ᇱ 
Step 1: Construct the CMSM 𝑀 using the secret key K (details are given in Appendix A) 
(a) Apply the secret key K to initialize the random number generator; 
(b) Allocate an empty array of size 256 × 256 × 256 and divide it into blocks of size 2 × 2 × 2; 
(c) Fill in each block with random ordered 0 to 7, consecutively; 
Step 2: Group the cover pixels into triplets 𝑃 = ൛(𝑝௫௜ ,𝑝௬௜ ,𝑝௭௜)ห𝑖 = 1, 2, … , ⌊(𝐻 × 𝑊)/3⌋ൟ; 
Step 3: Segment secret digits 𝑆 = ൛𝑠௝ = ൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯ห𝑗 = 1, 2, … , ⌈𝐿/6⌉ൟ; 
Step 4: Locate 𝑀ቀ𝐺൫𝑝௫௜ ,𝑑ଷ௝൯,𝐺൫𝑝௬௜ ,𝑑ସ௝൯,𝐺൫𝑝௭௜ ,𝑑ହ௝൯ቁ by applying Equations (2) and (3); 
Step 5: Search the matching element in the located basic structure; 𝑀൫𝑝௫௜ᇱ ,𝑝௬௜ᇱ ,𝑝௭௜ᇱ ൯ = ൫2ଶ × 𝑑ଶ௝+2ଵ × 𝑑ଵ௝+2଴ × 𝑑଴௝൯; 
Step 6: Record ൫𝑝௫௜ᇱ ,𝑝௬௜ᇱ ,𝑝௭௜ᇱ ൯ to stego image 𝑃ᇱ; 
Step 7: Repeat Steps 4–6, until all secret digits are embedded. 

In the embedding algorithm, we use a secret key K to initialize the random number generator. 
Each basic structure is stored with a random permutation of 0 to 7. The number of different CMSM 
is (8!)ଵଶ଼×ଵଶ଼×ଵଶ଼ . To reduce the computational load of the matrix, we can produce a randomly 
generated matrix of size, for example, 16 × 16 × 16 and repeat it to obtain a 256 × 256 × 256 CMSM. 
The number of different permutations is (8!)ଵ଺×ଵ଺×ଵ଺, which is still much secure than the 2D mini-
SuDoKu version [23]. By sharing the initialization key for the random number generator, the receiver 
can reconstruct the CMSM using the same rule. 

In the following, three examples are used to further explain the secret data-embedding process 
as shown in Figure 9. Assume the three triplets are {(1,1,2), (1,3,2), (1,5,2)}, which will be used to hide 
the secret segments {(001010)ଶ, (101010)ଶ, (000000)ଶ}. 

For the triplet (1,1,2) as shown by the purple submatrix in Figure 9a, the secret data 𝑠௝ =൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯ = (001010)ଶ is to be hidden. First, use triplet (1,1,2) and 3 MSBs 𝑠௝ெ = (001)ଶ to 
locate the basic structure 𝐺൫𝑝௫௜ ,𝑑ଷ௝൯ = 𝐺(1,1) = [1 + ∆(1,1): 1 + ∆(1,1) + 1] = [2: 3] , 𝐺൫𝑝௬௜ ,𝑑ସ௝൯ =
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𝐺(1,0) = [1 + ∆(0,1): 1 + ∆(0,1) + 1] = [0: 1] , 𝐺൫𝑝௭௜ ,𝑑ହ௝൯ = 𝐺(2,0) = [2 + ∆(0,2): 2 + ∆(0,2) + 1] =[0: 1], and 𝑀൫𝐺൫𝑝௫௜ ,𝑑ଷ௝൯,𝐺൫𝑝௬௜ ,𝑑ସ௝൯,𝐺(𝑝௭௜ ,𝑑ହ௝)൯ = 𝑀(2: 3,0: 1,0: 1). Then, 𝑀(2,1,1) = 2ଶ × 0 + 2ଵ × 1 +2଴ × 0 = 2 can be found in the located basic structure and record (2,1,1) to stego image 𝑃ᇱ. 
For the second example of (1,3,2) as shown by the red submatrix in Figure 9b, the secret data 𝑠௝ = ൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯ = (101010)ଶ is to be hidden. First, use triplet (1,3,2) and 3 MSBs 𝑠௝ெ = (101)ଶ 

to locate the basic structure 𝐺൫𝑝௫௜ ,𝑑ଷ௝൯ = 𝐺(1,1) = [1 + ∆(1,1): 1 + ∆(1,1) + 1] = [2: 3], 𝐺൫𝑝௬௜ ,𝑑ସ௝൯ =𝐺(3,0) = [3 + ∆(0,3): 3 + ∆(0,3) + 1] = [4: 5] , 𝐺൫𝑝௭௜ ,𝑑ହ௝൯ = 𝐺(2,1) = [2 + ∆(1,2): 2 + ∆(1,2) + 1] =[2: 3], and 𝑀൫𝐺൫𝑝௫௜ ,𝑑ଷ௝൯,𝐺൫𝑝௬௜ ,𝑑ସ௝൯,𝐺(𝑝௭௜ ,𝑑ହ௝)൯ = 𝑀(2: 3,4: 5,2: 3). Then, 𝑀(3,4,2) = 2ଶ × 0 + 2ଵ × 1 +2଴ × 0 = 2 can be found in the located basic structure and record (3,4,2) to stego image 𝑃ᇱ. 
For the third triplet (1,5,2) as shown by the green submatrix in Figure 9c, the secret data 𝑠௝ =൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯ = (000000)ଶ is to be hidden. First, use triplet (1,5,2) and 3 MSBs 𝑠௝ெ = (000)ଶ to 

locate the basic structure  𝐺൫𝑝௫௜ ,𝑑ଷ௝൯ = 𝐺(1,0) = [1 + ∆(0,1): 1 + ∆(0,1) + 1] = [0: 1] , 𝐺൫𝑝௬௜ ,𝑑ସ௝൯ =𝐺(5,0) = [5 + ∆(0,5): 5 + ∆(0,5) + 1] = [4: 5] , 𝐺൫𝑝௭௜ ,𝑑ହ௝൯ = 𝐺(2,0) = [2 + ∆(0,2): 2 + ∆(0,2) + 1] =[0: 1], and 𝑀൫𝐺൫𝑝௫௜ ,𝑑ଷ௝൯,𝐺൫𝑝௬௜ ,𝑑ସ௝൯,𝐺(𝑝௭௜ ,𝑑ହ௝)൯ = 𝑀(0: 1,4: 5,0: 1). Then, 𝑀(1,4,1) = 2ଶ × 0 + 2ଵ × 0 +2଴ × 0 = 0 can be found in the located basic structure and record (1,4,1) to stego image 𝑃ᇱ. 

 

(a) 

 

(b) 
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(c) 

Figure 9. Examples of data hiding with cubic mini-SuDoKu matrix (CMSM). (a) Hide (001010)ଶ  into cover triplet (1,1,2) ; (b) Hide (101010)ଶ  into cover triplet (1,3,2) ; (c) 
Hide (000000)ଶ into cover triplet (1,5,2). 

3.1.3. Secret Data Extraction 

After receiving the stego image 𝑃′, the recipient first groups the stego pixels into triplets. Then, 
the secret segments can be obtained by mapping the triplets into the CMSM. For a located element, 
its corresponding secret segment includes the 3 MSBs determined by the label of basic structure it 
belongs to and the 3 LSBs determined by its value. The details of the extraction process are provided 
as follows: 

The secret data extraction algorithm based on the cubic mini-SuDoKu matrix (CMSM) 
Input: stego image 𝑃ᇱ, secret key K 
Output: secret stream 𝑆 
Step 1: Construct the CMSM 𝑀 using the secret key K (details are given in Appendix A) 
(a) Apply the secret key K to initialize the random number generator. 
(b) Allocate an empty array of size 256 × 256 × 256 and divide it into blocks of size 2 × 2 × 2. 
(c) Fill in each block with random ordered 0 to 7, consecutively. 
Step 2: Group the stego pixels into triplets 𝑃 = ൛(𝑝௫௜ᇱ ,𝑝௬௜ᇱ ,𝑝௭௜ᇱ )ห𝑖 = 1, 2, … , ⌊(𝐻 × 𝑊)/3⌋ൟ. 
Step 3: Extract the 3 LSBs by 𝑠௝௅ = ൣ𝑀൫𝑝௫௜ᇱ ,𝑝௬௜ᇱ ,𝑝௭௜ᇱ ൯൧ଶ. 
Step 4: Extract the 3 MSBs by 𝑠௝ெ = ൫𝑑ହ௝ ,𝑑ସ௝ ,𝑑ଷ௝൯ = ൫⌊𝑚𝑜𝑑(𝑝௭௜ᇱ , 4)/2⌋, උ𝑚𝑜𝑑(𝑝௬௜ᇱ , 4)/2ඏ, ⌊𝑚𝑜𝑑(𝑝௫௜ᇱ , 4)/2⌋൯. 
Step 5: Concatenate 𝑠௝ = 𝑠௝ெ𝑠௝௅. 
Step 6: Repeat Steps 3–5, until all secret digits are extracted. 

3.2. N-dimensional MSM (NMSM) 

In this section, we introduce the construction of NMSM and the secret data-embedding and 
extraction algorithm, based on the NMSM. In addition, a fast algorithm for the inner embedding layer 
is proposed to improve the time efficiency. 

3.2.1. The Data-Embedding and Extraction Algorithm 

To boost the efficiency of data embedding and extraction, the proposed secret data-embedding 
scheme can be generalized to an n-dimensional version. In the NMSM, a basic structure consists of 2௡ elements and 2௡ basic structures constitute a submatrix. An n-tuple pixel group can uniquely 
map to an element in the NMSM. Therefore, by applying the same embedding rule, we can hide n 
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MSBs with the label of basic structure and n LSBs with the element value. The pseudo codes for the 
NMSM-based embedding and extraction schemes are given as follows: 

The secret data-embedding algorithm based on the n-dimensional mini-SuDoKu matrix (NMSM) 
Input: cover image 𝑃, secret stream 𝑆, secret key K 
Output: stego image 𝑃ᇱ 
Step 1: Construct the NMSM 𝑀 using the secret key K (details are given in Appendix B); 
(a) Make an n-dimensional array of size 16௡, which consists of 8௡ submatrix; 
(b) Repeat the array to obtain NMSM; 
Step 2: Group the cover pixels into 𝑃 = ൛(𝑝௑(଴)௜ ,𝑝௑(ଵ)௜ , … ,𝑝௑(௡ିଵ)௜)ห𝑖 = 1, 2, … , ⌊(𝐻 × 𝑊)/𝑛⌋ൟ; 
Step 3: Segment secret digits 𝑆 = ൛𝑠௝ = ൫𝑑ଶ௡ିଵ௝ 𝑑ଶ௡ିଶ௝ …𝑑଴௝൯ห𝑗 = 1, 2, … , ⌈𝐿/2𝑛⌉ൟ; 
Step 4: Locate the basic structure 𝑀ቀ𝐺൫𝑝௑(଴)௜ ,𝑑௡௝൯,𝐺൫𝑝௑(ଵ)௜ ,𝑑௡ାଵ௝ ൯, … ,𝐺൫𝑝௑(௡ିଵ)௜ ,𝑑ଶ௡ିଵ௝ ൯ቁ 

by applying Equations (2) and (3); 
Step 5: Search the matching element in the located basic structure 𝑀൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯ = ൫2௡ିଵ × 𝑑௡ିଵ௝ +2௡ିଶ × 𝑑௡ିଶ௝ +⋯+ 2଴ × 𝑑଴௝൯; 
Step 6: Record ൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯ to stego image 𝑃ᇱ; 
Step 7: Repeat Steps 4–6, until all secret digits are embedded. 

The secret data extraction algorithm based on the n-dimensional mini-SuDoKu matrix (NMSM) 
Input: stego image 𝑃ᇱ, secret key K 
Output: secret stream 𝑆 
Step 1: Construct the NMSM by the same process as Step 1 of embedding; 
Step 2: Group the stego pixels into 𝑃ᇱ = ൛(𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ )ห𝑖 = 1, 2, … , ⌊(𝐻 × 𝑊)/𝑛⌋ൟ; 
Step 3: Extract the n LSBs by 𝑠௝௅ = ൣ𝑀൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯൧ଶ; 
Step 4: Extract the n MSBs by 𝑠௝ெ = ൫උ𝑚𝑜𝑑(𝑝௑(௡ିଵ)௜ᇱ , 4)/2ඏ, උ𝑚𝑜𝑑(𝑝௑(௡ିଶ)௜ᇱ , 4)/2ඏ, … , උ𝑚𝑜𝑑(𝑝௑(଴)௜ᇱ , 4)/2ඏ൯; 
Step 5: Concatenate 𝑠௝ = 𝑠௝ெ𝑠௝௅; 
Step 6: Repeat Steps 3–5, until all secret digits are extracted. 

3.2.2. Fast Algorithm for the Inner Layer of Embedding 

As the MSM generalized to n-dimensions, the basic structure for embedding can be efficiently 
determined by the range locator. However, the searching process in the Step 5 of embedding 
algorithm becomes burdensome. To improve time efficiency of the inner embedding layer, we devise 
a fast algorithm to overcome this burden. Its key idea is to leverage the matrix operation supported 
by the MATLAB language. The pseudo code of the fast algorithm is given as follows: More precise 
pseudo code expressed in MATLAB instructions is given in Appendix C. 

Fast Algorithm for the Inner Embedding Layer (details are given in Appendix C) 
Input: n LSBs of secret segment 𝑠௝௅, basic structure for embedding 𝐴 = 𝑀ቀ𝐺൫𝑝௑(଴)௜ ,𝑑௡௝൯,𝐺൫𝑝௑(ଵ)௜ ,𝑑௡ାଵ௝ ൯, … ,𝐺൫𝑝௑(௡ିଵ)௜ ,𝑑ଶ௡ିଵ௝ ൯ቁ 
Output: stego pixel values ൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯ 
(a) Construct an n-dimensional basic structure 𝐵 with all elements valued with 𝑠௝௅; 
(b) Using matrix operation to find the only matched element in both 𝐴 and 𝐵; 
(c) Project the element to all axes and obtain the coordinates for embedding. 

4. Experimental Results 

In the following, the experimental results of the proposed scheme will be presented and 
compared with the related works. As shown in Figure 10, this study uses eight standard 512 × 512 
grayscale images and four standard 512 × 512 true color images as the cover image 𝑃 for secret data 
embedding. All experiments are implemented with MATLAB R2017b. Figure 11 shows the twelve 
stego images obtained by applying the two-layered hiding scheme based on the CMSM. 
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Figure 10. Twelve cover images with size 512 × 512: (a) Lena; (b) peppers; (c) airplane; (d) 
baboon; (e) boat; (f) Elaine; (g) Gledhill; (h) sailboat; (i) baboon (RGB); (j) Lena (RGB); (k) 
peppers (RGB); and (l) Tiffany (RGB). 
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Figure 11. Twelve stego images with size 512 × 512: (a) Lena; (b) peppers; (c) airplane; (d) 
baboon; (e) boat; (f) Elaine; (g) Gledhill; (h) sailboat; (i) baboon (RGB); (j) Lena (RGB); (k) 
peppers (RGB); and (l) Tiffany (RGB). 

The stego images look like the cover images and cannot be distinguished by human eyes. The 
peak signal-to-noise ratio (PSNR) is used to measure the quality of a stego image. Its calculation is 
given by Equation (4). In the equation, 𝑃 and 𝑃ᇱ represent the cover image and the stego image, 
respectively, 𝐻 and 𝑊 represent their height and width and (𝑚,𝑛) represents the coordinate of the 
pixel. 𝑃𝑆𝑁𝑅 = 10 × logଵ଴ 255ଶ × 𝐻 × 𝑊∑ ∑ [𝑃(𝑚,𝑛) − 𝑃ᇱ(𝑚,𝑛)]ଶௐ௡ୀଵு௠ୀଵ . (4)

In addition, we also use structural similarity index (SSIM) to measure the similarity between a 
cover image and its corresponding stego image. Let 𝑃 and 𝑃ᇱ represent the cover image and the 
stego image, respectively, the SSIM of the two images can be obtained according to Equation (5), 
where 𝜇௉ is the average of 𝑃, 𝜇௉ᇲ is the average of 𝑃ᇱ, 𝜎௉ଶ is the variance of 𝑃, 𝜎௉ᇲଶ  is the variance 
of 𝑃ᇱ and 𝜎௉௉ᇲ is the covariance of 𝑃 and 𝑃ᇱ. In addition, 𝑐ଵ and 𝑐ଶ are constants used to maintain 
stability and can be obtained by Equations (6) and (7), respectively, where L is the dynamic range of 
pixel values, 𝑘ଵ = 0.01, 𝑘ଶ = 0.03. 𝑆𝑆𝐼𝑀(𝑃,𝑃ᇱ) = (2𝜇௉𝜇௉ᇲ + 𝑐ଵ)(2𝜎௉௉ᇲ + 𝑐ଶ)(𝜇௉ଶ + 𝜇௉ᇲଶ + 𝑐ଵ)(𝜎௉ଶ + 𝜎௉ᇲଶ + 𝑐ଶ). (5)

𝑐ଵ = (𝑘ଵ𝐿)ଶ. (6)𝑐ଶ = (𝑘ଶ𝐿)ଶ. (7)

Embedding capacity (EC) is another important issue in the image steganography. It is used to 
measure the maximum amount of secret data that can be embedded in an image by a data-hiding 
scheme. Since EC is dependent on the image size, we further define the embedding rate (ER) to 
express the average number of secret bits that each pixel can embed. ER is defined as (8), where ||𝑆|| 
represents the total amount of secret data embedded in the entire stego image. 𝐸𝑅 = ||𝑆||𝑀 × 𝑁. (8)

Table 1 shows the experimental results of the grayscale images. In our hiding scheme, three 
cover pixels are applied to embed a secret segment of six digits. Therefore, the ER measure is 6 bits/3 
pixels = 2 bits/pixel, the embedding capacity for an applied grayscale cover image is therefore  
512 × 512 × 2 = 524,288 bits as shown in the Under full embedding, the proposed scheme achieves a 
high image quality of PSNR = 46.37 dB and SSIM = 0.9923 in average. The quality of stego image is 
irrelevant to features of the cover image. For the true color images, each pixel consists of three 
channels, including red, green and blue. Each of the three channels is represented by one byte. By 
mapping the three bytes (r, g, b) of a pixel into the CMSM, we can hide a secret segment of six bits 
by applying the proposed embedding algorithm. Therefore, the embedding capacity of an applied 
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true color image is 512 × 512 × 6 =1572,864 bits. The PSNR and SSIM of the true color stego images 
are very close to the experimental values of grayscale images as shown in Table 2. 

Table 1. Experimental results for grayscale images. 

Image EC (bits) PSNR (dB) SSIM 

Lena 524,288 46.38 0.9918 

Peppers 524,288 46.37 0.9906 

Airplane 524,288 46.37 0.9883 

Baboon 524,288 46.36 0.9958 

Boat 524,288 46.37 0.9938 

Elaine 524,288 46.38 0.9919 

Gledhill 524,288 46.36 0.9936 

Sailboat 524,288 46.37 0.9929 

Average 524.288 46.37 0.9923 

Table 2. Experimental results for color images. 

Image EC (bits) PSNR (dB) SSIM 

Baboon (RGB) 1,572,864 46.36 0.9930 

Lena (RGB) 1,572,864 46.38 0.9926 

Peppers (RGB) 1,572,864 46.37 0.9908 

Elaine (RGB) 1,572,864 46.37 0.9916 

Average (RGB) 1,572,864 46.37 0.9920 

4.1. EC and PSNR Comparison 

Table 3 compares the PSNR of different reference matrices under the same EC. As shown in 
Table 3, Xie et al.’s scheme has the lowest average PSNR at 41.87 dB. The average PSNR of the 
proposed scheme is 46.37 dB, which is nearly 4 dB higher than the average PSNR of the Xie et al.’s 
scheme. Moreover, compared with the other two schemes, our scheme also achieves the highest 
PSNR with the same EC. It can be seen that the proposed scheme outperforms the related works. 

Table 3. Comparison with related works. 

Image 
Jin et al. [24] Liu et al. [23] Xie et al. [17] Proposed 
EC PSNR EC PSNR EC PSNR EC PSNR 

Lena 524,288 45.57 524,288 45.55 524,288 41.87 524,288 46.38 
Peppers 524,288 45.56 524,288 45.54 524,288 41.86 524,288 46.37 
Airplane 524,288 45.56 524,288 45.58 524,288 41.87 524,288 46.37 
Baboon 524,288 45.57 524,288 45.55 524,288 41.86 524,288 46.36 

Boat 524,288 45.58 524,288 45.54 524,288 41.87 524,288 46.37 
Elaine 524,288 45.56 524,288 45.49 524,288 41.87 524,288 46.38 

Gledhill 524,288 45.49 524,288 45.49 524,288 41.87 524,288 46.36 
Sailboat 524,288 45.58 524,288 45.55 524,288 41.86 524,288 46.37 
Average 524,288 45.56 524,288 45.54 524,288 41.87 524,288 46.37 

In order to further understand the performance of our scheme, it is compared with three other 
schemes [19,22,23] based on the SuDoKu reference matrix. As shown in Table 4, the EC of the Chang 
et al.’s scheme is 393,216 bits, and its average PSNR is 44.83 dB. Regardless of the EC or image quality, 
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the proposed scheme outperforms the Chang et al.’s scheme. Comparing with the other two schemes, 
although their image quality are better than the proposed scheme, their embedding capacity are far 
lower than our scheme. Therefore, it can be concluded that the overall performance of the proposed 
scheme is better than the SuDoKu-based data-hiding schemes. 

Table 4. Comparison among SuDoKu-based data-hiding schemes. 

Image 
Chang et al. [20] Hong et al. [21] Lin et al. [19] Proposed 

EC PSNR EC PSNR EC PSNR EC PSNR 
Lena 393,216 44.96 393,216 48.68 393,216 49.90 524,288 46.38 

Peppers 393,216 44.67 393,216 48.67 393,216 49.91 524,288 46.37 
Airplane 393,216 44.99 393,216 48.68 393,216 49.92 524,288 46.37 
Baboon 393,216 44.68 393,216 48.66 393,216 .49.89 524,288 46.36 

Boat 393,216 44.90 393,216 48.67 393,216 49.91 524,288 46.37 
Elaine 393,216 44.92 393,216 48.68 393,216 49.91 524,288 46.38 

Gledhill 393,216 44.85 393,216 48.67 393,216 49.90 524,288 46.36 
Sailboat 393,216 44.67 393,216 48.67 393,216 49.90 524,288 46.37 
Average 393,216 44.83 393,216 48.67 393,216 49.90 524,288 46.37 

In addition, we also compare the proposed CMSM-based scheme with the 3D SuDoKu-based 
scheme. As shown in Table 5, the average PSNR of the scheme proposed by Xia et al. is 41.31 dB, 
while the average PSNR of our scheme is 5 dB higher than their scheme. Based on the same frame 
structure of using 3D reference matrix, our scheme has a relatively small modification of pixel values 
under the same EC. 

Table 5. Comparison with the 3D SuDoKu matrix-based scheme. 

Image 
Xia et al. [18] Proposed 

EC PSNR EC PSNR 

Lena 524,288 41.31 524,288 46.38 

Peppers 524,288 41.30 524,288 46.37 

Airplane 524,288 41.28 524,288 46.37 

Baboon 524,288 41.25 524,288 46.36 

Boat 524,288 41.23 524,288 46.37 

Elaine 524,288 41.26 524,288 46.38 

Gledhill 524,288 41.29 524,288 46.36 

Sailboat 524,288 41.27 524,288 46.37 

Average 524,288 41.27 524,288 46.37 

Our scheme is inspired by the He et al.’s scheme. Except for expanding the 2D mini-SuDoKu to 
a 3D CMSM, our scheme effectively improved the complexity of reference matrix and efficiently 
reduced the computation time. As shown in Table 6, although our scheme has no advantage over the 
He et al.’s scheme in terms of EC and PSNR. However, the improvement in time consumption (TC) 
is obvious. As discussed in Section 2.2, to achieve a translation invariant property for minimizing the 
distortion of pixel value modification, the mini-SuDoKu has to repeat a same basic 4 × 4 submatrix. 
This severely damages the complexity of a reference matrix. In our scheme, in spite of CMSM or 
NMSM, each basic structure is a completely random permutation of 2௡  distinct numbers. The 
possible combinations of a CMSM is an enormous figure. In the construction of NMSM, referring to 
Section 3.2.1, we even truncate the size of a randomly generated array and make the whole NMSM 
by repetition to reduce computational load. The key difference with the He et al.’s scheme is the 
design of range locator. It releases the constraint on the diversity of reference matrix. An additional 
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benefit of the range locator is that the basic structure for embedding can be efficiently located without 
applying a time-consuming searching process. The cooperation of range locater in the outer 
embedding and the matrix operation in the inner embedding frees the hiding scheme from intensive 
loops of searching. According to the experimental data in Table 6, the required embedding time is 
less than half of the compared scheme. 

Table 6. Comparison with the mini-SuDoKu matrix-based scheme. 

Image 
He et al. [25] Proposed 

EC PSNR TC EC PSNR TC 

Lena 524,288 46.37 2.71 s 524,288 46.38 1.07 s 

Peppers 524,288 46.37 2.72 s 524,288 46.37 1.12 s 

Airplane 524,288 46.37 2.70 s 524,288 46.37 1.10 s 

Baboon 524,288 46.36 2.73 s 524,288 46.36 1.09 s 

Boat 524,288 46.36 2.71 s 524,288 46.37 1.11 s 

Elaine 524,288 46.38 2.71 s 524,288 46.38 1.12 s 

Gledhill 524,288 46.37 2.72 s 524,288 46.36 1.09 s 

Sailboat 524,288 46.35 2.71 s 524,288 46.37 1.12 s 

Average 524,288 46.37 2.71 s 524,288 46.37 1.10 s 

4.2. Time Efficiency Comparison 

To investigate the time efficiency of the proposed algorithm, we try to compare the time 
consumption of the proposed algorithm with the traditional approach. Although we present the 
three-dimensional (3D) CMSM and the n-dimensional (n−D) NMSM, our approach can also be de-
generalized back to two-dimensional (2D) and one-dimensional (1D) version. 

This experiment uses 8 typical grayscale images for testing and compares the proposed 
algorithm with a traditional one. A computer with a Dual i7-920 CPU and 8 GB memory is adopted 
for the experiment. The tic and toc commands in MATLAB are used to record the time cost in seconds. 
As shown in Table 7, due to the large number of loops used in the search step of the traditional 
algorithm, it takes significantly longer time to embed secret data. As the dimension rises, the time 
consumption increases rapidly. On the other hand, our algorithm has consistent performance as the 
dimension rises. Note that, as the dimension rises, the complexity of the reference matrix increases 
and thus the security level raises. 

Table 7. Comparison of time efficiency between the proposed scheme and traditional 
algorithm. 

Image Trad-2D Trad-3D Proposed-2D Proposed-3D Proposed-4D 
Lena 2.80 s 4.48 s 1.09 s 1.07 s 1.11 s 

Peppers 2.81 s 4.51 s 1.11 s 1.12 s 1.13 s 
Airplane 2.83 s 4.52 s 1.10 s 1.10 s 1.12 s 
Baboon 2.82 s 4.49 s 1.11 s 1.09 s 1.11 s 

Boat 2.75 s 4.47 s 1.10 s 1.11 s 1.12 s 
Elaine 2.94 s 4.54 s 1.13 s 1.12 s 1.14 s 

Gledhill 2.86 s 4.54 s 1.08 s 1.09 s 1.11 s 
Sailboat 2.83 s 4.49 s 1.11 s 1.13 s 1.13 s 

5. Conclusions 

This study introduces an efficient multidimensional secret data-embedding scheme based on the 
mini SuDoKu matrix. In the proposed scheme, a CMSM RM with high complexity is first constructed 
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to guarantee the security, and then a range locator function and the matrix operation are adopted to 
enhance the embedding efficiency. The reference matrix is further expanded to multidimension in 
order to obtain even higher embedding capacity and, meanwhile, still preserve good security and 
efficiency. The proposed scheme is compared with state-of-the-art RM-based data-hiding schemes 
and the experimental results show that the proposed scheme achieved higher than 46 dB in terms of 
the image quality and two bits per pixel in terms of the embedding capacity. In addition, the time 
consumption of the proposed algorithm is less than half of the traditional approach and keeps 
consistency as the dimension and security level raises. It is shown that the proposed scheme is 
advantageous in both embedding efficiency and security compared to the original mini-SuDoKu 
matrix. 

We also provide a set of true color test images to demonstrate that the proposed scheme 
performs equal well to multi-channel images. By leveraging CMSM, each pixel of three-color 
channels—i.e., R, G, and B—can exactly match with the requirement of embedding a secret segment 
of data. The flexibility in dimension of RM meets the diverse data structure of cover media in the 
future word of massive IoT. 
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Appendix A 

The pseudo code for constructing the CMSM is provided as follows: 
(a) Apply the secret key to initialize the random number generator. 

rng(K); 
(b) Allocate an empty array of size 256 × 256 × 256 and divide it into blocks of size 2 × 2 × 2. 𝑀 = zero(256,256,256); 
(c) Fill in each block with random ordered 0 to 7, consecutively; 

for 𝑥 = 0: 2: 255, 
for 𝑦 = 0: 2: 255, 
for 𝑧 = 0: 2: 255, 𝑉 = randperm(8) − 1; 𝐴 = [𝑉(0) 𝑉(1);𝑉(2) 𝑉(3)]; 𝐵 = [𝑉(4) 𝑉(5);𝑉(6) 𝑉(7)]; 𝑀(𝑥: 𝑥 + 1,𝑦:𝑦 + 1, 𝑧: 𝑧 + 1) = 𝐴; 
end 
end 
end 
The MATLAB functions rng() and randperm(8) are used to initialize random number generator 

and produce random permutations of 1 to 8, respectively. Although we apply the coding format and 
the functions of MATLAB programming language, the index of an array in the pseudo code follows 
the convention of zero leading value. 

Appendix B 

The pseudo code for constructing the NMSM is provided as follows: 
(a) Make an n-dimensional array of size 16௡ using the secret key K 

rng(K); 
for 𝑋(0) = 0: 2: 15, 
for 𝑋(1) = 0: 2: 15, 
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… 
for 𝑋(𝑛 − 1) = 0: 2: 15, 𝑉 = randperm(2௡) − 1; 𝑘 = 0; 

for 𝑋ᇱ(0) = 0: 1, 
for 𝑋ᇱ(1) = 0: 1, 
… 
for 𝑋ᇱ(𝑛 − 1) = 0: 1, 

M(𝑋ᇱ(0),𝑋ᇱ(1), … ,𝑋ᇱ(𝑛 − 1)) = 𝑉(𝑘); 𝑘 = 𝑘 + 1; 
end 
… 
end 
end 

end 
… 
end 
end 

(b) Repeat the array to obtain NMSM 
for 𝑋(1) = 0: 16: 255, 
for 𝑋(2) = 0: 16: 255, 
… 
for 𝑋(𝑛) = 0: 16: 255, 

M(𝑋(0):𝑋(0) + 15,𝑋(1):𝑋(1) + 15, … ,𝑋(𝑛 − 1):𝑋(𝑛 − 1) + 15) = 𝑀(0: 15,0: 15, … ,0: 15); 
end 
… 
end 

end 

Appendix C 

The pseudo code for fast algorithm of inner embedding is given as follows: 
Input: n LSBs of secret segment 𝑠௝௅, basic structure for embedding 𝐴 = 𝑀ቀ𝐺൫𝑝௑(଴)௜ ,𝑑௡௝൯,𝐺൫𝑝௑(ଵ)௜ ,𝑑௡ାଵ௝ ൯, … ,𝐺൫𝑝௑(௡ିଵ)௜ ,𝑑ଶ௡ିଵ௝ ൯ቁ 
Output: stego pixel values ൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯ 
(a) Construct an n-dimensional basic structure 𝐵 with all elements valued with 𝑠௝௅; 𝐵 = 𝑠௝௅ × 𝑜𝑛𝑒𝑠(2,2, … , 2(௡)); 
(b) Using matrix operation to find the only matched element in both 𝐴 and 𝐵; 𝐶 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝐴,𝐵); 
(c) Project the element to all axes and obtain the coordinates for embedding; 

for 𝑘 = 0:𝑛 − 1, ൣ𝑣,𝑝௑(௞)௜ᇱ ൧ = max෍ C(: , : , … , :(௤) , … , : )௤ஷ௞ ; 
end 
The algorithm utilizes an array of unique value 𝑠௝௅  to compare with the basic structure for 

embedding 𝐴 using the function 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(). As a result, the unique ‘1’ in the array 𝐶 indicates the 
location of 𝑠௝௅  in 𝐴 . By projecting the summations to each axis can obtain the index of the 
corresponding axis. Thus, the values of stego pixels are determined. 
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