

Sensors 2020, 20, 2739; doi:10.3390/s20092739 www.mdpi.com/journal/sensors

Article

An Efficient Data-Hiding Scheme Based on
Multidimensional Mini-SuDoKu
Ji-Hwei Horng 1, Shuying Xu 2,*, Ching-Chun Chang 3 and Chin-Chen Chang 2,4

1 Department of Electronic Engineering, National Quemoy University, Kinmen 89250, Taiwan;
horng@email.nqu.edu.tw

2 Department of Information Engineering and Computer Science, Feng Chia University, Taichung
40724, Taiwan; alan3c@gmail.com

3 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
c.c.chang.phd@gmail.com

4 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018,
China

* Correspondence: sy15160082345@gmail.com

Received: 16 April 2020; Accepted: 9 May 2020; Published: 11 May 2020

Abstract: The massive Internet of Things (IoT) connecting various types of intelligent sensors for
goods tracking in logistics, environmental monitoring and smart grid management is a crucial
future ICT. High-end security and low power consumption are major requirements in scaling up
the IoT. In this research, we propose an efficient data-hiding scheme to deal with the security
problems and power saving issues of multimedia communication among IoT devises. Data hiding
is the practice of hiding secret data into cover images in order to conceal and prevent secret data
from being intercepted by malicious attackers. One of the established research streams of data-
hiding methods is based on reference matrices (RM). In this study, we propose an efficient data-
hiding scheme based on multidimensional mini-SuDoKu RM. The proposed RM possesses high
complexity and can effectively improve the security of data hiding. In addition, this study also
defines a range locator function which can significantly improve the embedding efficiency of
multidimensional RM. Experimental results show that our data-hiding scheme can not only obtain
better image quality, but also achieve higher embedding capacity than other related schemes.

Keywords: data hiding; multidimensional; embedding efficiency; mini-SuDoKu; security

1. Introduction

We live in the information age in which no such immense amounts of digital information have
ever before been consistently transmitted over open communication channels. As a consequence,
information security has become a research hotspot. Today, there are two types of strategies for
securing information against unauthorized access during transmission. The first type of methods
encrypts data by cryptographic algorithms such as RSA [1], DES [2], elliptic-curve signcryption [3]
and the blockchain-based solution [4]. However, the use of encryption would easily attract the
attention of malicious attackers, causing them to intercept the encrypted data and subsequently use
computers of sufficient power to break the encryption [5]. By contrast, the second type of methods
hides secret data into cover images by steganographic algorithms and therefore conceals the existence
of secret data [6]. After the recipient obtains the stego images, the secret data can be decoded through
the corresponding algorithm. Steganographic methods can effectively prevent the interception of the
secret data because they conceal the very fact that secret data exists. Indeed, this type of methods has
attracted an increasing amount of research attention.

Sensors 2020, 20, 2739 2 of 19

Most data-hiding schemes are performed in the following three domains: frequency domain
[7,8], compression domain [9–12] and spatial domain [13–16]. Most developers are devoted to devise
data-hiding schemes in the spatial domain due to its explicitness and convenience for
implementations [17–19]. For spatial domain-based data-hiding schemes, reference matrices (RM), as
a means of modifying pixels, can achieve low distortion and high embedding capacity. The concept
of RM originated from the exploiting modification-direction (EMD) scheme proposed by Zhang and
Wang [16] in 2006. Kim et al. proposed an improved version called EMD-2, which modifies the value
of up to two pixels in a unit [14]. Compared to the original EMD scheme, this scheme improves the
embedding capacity while ensuring the image quality. As another follow-up work, Chang et al.
utilized SuDoKu tables as the RM [20]. In this scheme, each pixel pair in the cover image can hide a
9-ary binary secret data, which greatly increases the hiding capacity. Hong et al. [21] proposed a
scheme that calculates the distance between pixels by the nearest Euclidean distance, which obtained
even better image quality. Turtle shell-based RM is characterized by hexagon shaped shells and is
able to hide 3 bits of secret information per pixel [22]. Liu et al. classified the locations on the turtle
shell matrix into 16 situations to further improve the embedding capacity with the aid of a location
table [23]. Jin et al. combined the data-hiding schemes of the turtle shell and swarm optimization
algorithm to improve the visual quality of the image [24]. Our method is inspired by He et al.’s mini-
SuDoKu matrix (MSM) [25]. More details of related works will be presented in the following section.

In this study, we propose a 3D RM based on the MSM. Using the 3D-MSM for data hiding can
hide more secret data while ensuring image quality. The main contributions of this study are as
follows: First, this study proposes a novel 3D reference matrix based on the MSM matrix. Second, it
achieves good image quality and embedding capacity. Third, an efficient algorithm is devised to
embed secret data. Finally, the proposed algorithm can be generalized to RM of arbitrary N
dimensions.

The rest of this study is organized as follows: Section 2 briefly introduces two data-hiding
algorithms based on reference matrices. Section 3 introduces the 3D MSM proposed in this study,
presents the embedding process, and analyzes the time efficiency of the proposed algorithm. Section
4 compares the proposed scheme with other RM-based data-hiding schemes.

2. Related Work

Recent RM-based data-hiding schemes can be characterized into turtle shell-based schemes and
SuDoKu-based schemes. In order to pave the way for our idea of multidimensional mini-SuDoKu
RM, these two types of matrices are briefly reviewed.

2.1. Turtle Shell Matrix Data Hiding

In the turtle shell-based scheme proposed by Liu et al. [23], the turtle shell matrix 𝑀 =ൣ𝑚(𝑖, 𝑗)௜,௝∈ሼ଴,ଵ,⋯,ଶହହሽ൧ is consisted of a number of hexagons, called turtle shells, with a size of 256 × 256,
as shown in Figure 1. The RM is filled with 8-ary digits, the incremental value of each row is always
1, while the incremental value of each column change of 2 and 3 in turn. Hence, each turtle shell
structure in Figure 1 contains distinct values from 0 to 7. In order to further improve the hiding
capacity, a location table is constructed as shown in Figure 2. The location table 𝑇 contains all 16
possible situations of turtle shell in the RM. The 16 situations in the location table can be grouped
into four categories, as shown in Figure 3. According to the characteristics of the RM, the set of values
of elements matching location 1 and location 4 is always {1,3,5,7} and matching location 2 and location
3 is always {0,2,4,6}. Each location in the location table 𝑇 can be represented by 𝑇(𝑠௜ , 𝑠௜ାଵ), where 𝑠௜
indicates the i-th row, and 𝑠௜ାଵ indicates the (i+1)-th column, and 𝑠௜ and 𝑠௜ାଵ belong to {00,01,10,11}.

Next, the process of data hiding is described below. First, the original image is cut into pixel
pairs (𝑃௜ ,𝑃௜ାଵ), and the binary secret data stream is cut into two sub-streams 𝑠௝ and 𝑠௝ାଵ, each of
which contains a 2-bit binary number. Second, a pair of cover pixels(𝑃௜ ,𝑃௜ାଵ) is applied to locate an
element 𝑚(𝑃௜ ,𝑃௜ାଵ) in the RM. After that, employ (𝑠௝ , 𝑠௝ାଵ) as coordinates to find the corresponding 𝑇(𝑠௝ , 𝑠௝ାଵ) in the location table. Then, find the closest element, making 𝑚(𝑃௜′,𝑃௜ାଵ′) = 𝑇(𝑠௝ , 𝑠௝ାଵ) .
Finally, modify the values of the pixel pair to embed it.

Sensors 2020, 20, 2739 3 of 19

By taking relative location of a number in the turtle shell into account, this data-hiding scheme
improves the embedding capacity of the original turtle shell scheme from 1.5 to 2. However, the
image quality is degraded due to increase of embedding area.

Figure 1. Turtle shell reference matrix.

Figure 2. Location table T.

Figure 3. Four locations of elements in M.

2.2. Mini SuDoKu Matrix-Based Data Hiding

The SuDoKu is a matrix which contains nine 3 × 3 sub-matrices with numbers from 1 to 9. In
addition, each number is used only once in each raw and each column. Inspired by the conventional
SuDoKu, the mini-SuDoKu matrix (MSM) [25] was proposed.

As shown in Figure 4, the MSM is a matrix that contains 4096 4 × 4 submatrices, and each
submatrix contains 4 basic structures. Each basic structure is filled with numbers from 0 to 3. In
addition, the digits from 0 to 3 must occur just once in each row and each column of the submatrix.

Sensors 2020, 20, 2739 4 of 19

Figure 4. Mini-SuDoKu reference matrix.

The data-hiding scheme using MSM is briefly described as follows: First, the original image is
cut into pixel pairs (𝑝௞,𝑝௞ାଵ) . The secret data stream is cut into four-bit substreams 𝑠𝑔ௗ =ሼ𝑠ସௗିଷ, 𝑠ସௗିଶ, 𝑠ସௗିଵ, 𝑠ସௗሽ , and then we divide 𝑠𝑔ௗ into three groups, i.e., 𝐵ଵ = 𝑠ସௗିଷ𝑠ସௗିଶ,𝐵ଶ =𝑠ସௗିଵ,𝐵ଷ = 𝑠ସௗ. Thus, 𝐵ଵ is a quaternary digit from 0 to 3 and 𝐵ଶ/𝐵ଷ is a bit of 0 or 1. Second, take
the pixel pair as coordinates and locate 𝑀𝑆𝑀(𝑝௞,𝑝௞ାଵ) in the MSM. Then, a 4 × 4 candidate block 𝐺
is determined by (1). Find the element 𝑀𝑆𝑀(𝑝௞′,𝑝௞ାଵ′) within 𝐺 satisfying 𝑚(𝑝௞′,𝑝௞ାଵ′) =𝐵ଵ, 𝑚𝑜𝑑(𝑝௞ᇱ , 2) = 𝐵ଶ and 𝑚𝑜𝑑(𝑝௞ାଵᇱ , 2) = 𝐵ଷ. Finally, modify the pair(𝑝௞,𝑝௞ାଵ) to (𝑝௞′,𝑝௞ାଵ′). We can
embed the secret data and get the stego image by repeating these steps.

𝐺 =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝑀𝑆𝑀(0: 3,0: 3), if 𝑝௞ ≤ 1 and 𝑝௞ାଵ ≤ 1;𝑀𝑆𝑀(0: 3, 𝑝௞ାଵ − 2: 𝑝௞ାଵ + 1), if 𝑝௞ ≤ 1 and 1 < 𝑝௞ାଵ < 255;𝑀𝑆𝑀(0: 3252: 255), if 𝑝௞ ≤ 1 and 𝑝௞ାଵ = 255;𝑀𝑆𝑀(𝑝௞ − 2: 𝑝௞ + 1,0: 3), if 1 < 𝑝௞ < 255 and 𝑝௞ାଵ ≤ 1;𝑀𝑆𝑀(𝑝௞ − 2: 𝑝௞ + 1, 𝑝௞ାଵ − 2: 𝑝௞ାଵ + 1), if 1 < 𝑝௞ < 255 and 1 < 𝑝௞ାଵ < 255;𝑀𝑆𝑀(𝑝௞ − 2: 𝑝௞ + 1, 𝑝௞ାଵ, 252: 255), if 1 < 𝑝௞ < 255 and 𝑝௞ାଵ = 255;𝑀𝑆𝑀(252: 255,0: 3), if 𝑝௞ = 255 and 𝑝௞ାଵ ≤ 1;𝑀𝑆𝑀(252: 255,𝑝௞ାଵ − 2: 𝑝௞ାଵ + 1), if 𝑝௞ = 255 and 1 < 𝑝௞ାଵ < 255;𝑀𝑆𝑀(252: 255,252: 255), otherwise.

 (1)

The mini-SuDoKu matrix suffers from the problem of low security level. There are too many
constraints on the construction rules. Each row, each column and each basic structure of size 2 × 2
must contain distinct values of 0 to 3. To obtain a better PSNR (peak signal to noise ratio)
performance, the candidate block for a regular element is defined as 𝑀𝑆𝑀(𝑝௞ − 2:𝑝௞ + 1,𝑝௞ାଵ −2:𝑝௞ାଵ + 1). The two axial ranges of the candidate block do not always coincide with an original 4×4
submatrix. To satisfy the translational invariant requirement for embedding, the whole MSM should
repeat the same 4 × 4 submatrix. In addition, the candidates of embedding should satisfy 𝑚𝑜𝑑(𝑝௞ᇱ , 2) = 𝐵ଶ and 𝑚𝑜𝑑(𝑝௞ାଵᇱ , 2) = 𝐵ଷ . An example grouping of embedding candidates for
different combinations of 𝐵ଶ and 𝐵ଷ is shown in Figure 5. The elements in the same group also
should contain all values of 0 to 3. These requirements severely restrict the variety of the MSM and
thus threaten the security of data hiding.

Figure 5. Candidates of embedding for different combinations of 𝐵ଶ and 𝐵ଷ.

Sensors 2020, 20, 2739 5 of 19

3. The Proposed Scheme

In this section, we will introduce the proposed cubic mini-SuDoKu matrix and a two-layered
data-hiding scheme based on the proposed matrix. Then, the matrix and its corresponding data-
embedding and extraction algorithm will be generalized to n-dimensional version. Some mechanisms
for improving the time efficiency will also be presented.

3.1. Cubic mini-SuDoKu Matrix (CMSM)

In this study, we propose a two-layered hiding scheme based on a cubic mini-SuDoKu matrix.
By leveraging the proposed cubic mini-SuDoKu matrix, the proposed data-hiding scheme can embed
secret data with an efficient way and produce stego images of good visual quality.

3.1.1. Construction of the Cubic mini-SuDoKu Matrix

The cubic mini-SuDoKu matrix is a 256 × 256 × 256 matrix that contains 64 × 64 × 64 sub-cubes of
size 4 × 4 × 4. Each sub-cube contains eight basic structures of size 2 × 2 × 2. The basic structures are
labeled with bold Arabic numerals as shown in Figure 6. Elements of each basic structure are
randomly assigned with distinct values of 0 to 7. The resulting RM is denoted as 𝑀(𝑥,𝑦, 𝑧), 𝑥,𝑦, 𝑧 =0,1, … ,255.

Before embedding, secret data and cover image should be prepared. Binary secret stream is
divided into segments of 6 digits each, while the pixels of the cover image are grouped into triplets.
A set of three pixels in a triplet (𝑝௫௜ ,𝑝௬௜ ,𝑝௭௜) is used to embed a secret segment of 6 digits 𝑠௝ =൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯. First, the values of the three cover pixels are applied as the coordinates to locate a
reference element in the 3D RM. Then, a two-layered embedding scheme is executed. The outer layer
is to obtain a matched basic structure by using the three most significant bits (3 MSBs) of secret
segment 𝑠௝ெ = ൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝൯. Subsequently, the inner layer of embedding is to find an element within the
obtained basic structure with a value matching the three least significant bits (3 LSBs) 𝑠௝௅ = ൫𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯.
Finally, the pixel values are modified to the indices of the matched element.

Figure 6. Architecture of cubic matrix.

To improve the efficiency of outer layer embedding, we define a range locator function 𝐺 to
identify the precise searching range for each direction of axis. By combining ranges of all axes, the
basic structure matching the 3 MSBs can be determined.

Let 𝑝 be the pixel value and 𝑤 = 𝑚𝑜𝑑(𝑝, 4) as shown in Figure 7. We always apply the segment
[0:1] of 𝑤 to embed secret digit 𝑑 = 0, while apply the segment [2:3] of 𝑤 to embed 𝑑 = 1. To meet
this constraint and minimize the modification distortion, we choose the nearest formal segment to
embed. For convenience, we define a range front matrix ∆ to record the offset values from the current
pixel to the range front of embedding. In the case of 𝑑 = 0, the offset is −2 for 𝑚𝑜𝑑(𝑝, 4) = 2; +1

Sensors 2020, 20, 2739 6 of 19

for 𝑚𝑜𝑑(𝑝, 4) = 3; 0 and −1 for 𝑚𝑜𝑑(𝑝, 4) = 0 and 1, respectively. In the case of 𝑑 = 1, the offset
is −2 for 𝑚𝑜𝑑(𝑝, 4) = 0; +1 for 𝑚𝑜𝑑(𝑝, 4) = 1; 0 and −1 for 𝑚𝑜𝑑(𝑝, 4) = 2 and 3, respectively.
The resulting offset matrix ∆ and range locator function 𝐺 for the entire axis are given in Equations
(2) and (3), respectively.

Figure 7. Illustration of incremental value ∆ for different situations. ∆= ቂ 𝟎 −𝟏−𝟐 +𝟏 −𝟐 +𝟏𝟎 −𝟏ቃ (2)

𝐺(𝑝,𝑑) = ⎩⎪⎨
⎪⎧ ሾ0: 1ሿ, if 𝑝 = 0 and 𝑑 = 0;ሾ2: 3ሿ, if 𝑝 = 0 and 𝑑 = 1;ሾ252: 253ሿ, if 𝑝 = 255 and 𝑑 = 0;ሾ254: 255ሿ, if 𝑝 = 255 and 𝑑 = 1;ሾ𝑝ᇱ:𝑝ᇱ + 1ሿ with 𝑝ᇱ = 𝑝 + ∆(𝑑,𝑚𝑜𝑑(𝑝, 4)), if 1 ≤ 𝑝 ≤ 254. (3)

Figure 8 illustrates an example of combining ranges of three axes. Assuming the cover triplet is ൫𝑝௫௜ ,𝑝௬௜ ,𝑝௭௜൯ = (2,3,2) and the 3 MSBs of the secret segment to be embedded is 𝑠௝ெ = ൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝൯ =(110)ଶ . By applying the range locater, the embedding range of each axis can be determined
independently as 𝐺൫𝑝௫௜ ,𝑑ଷ௝൯ = 𝐺(2,0) = ሾ2 + ∆(0,2): 2 + ∆(0,2) + 1ሿ = [0: 1] , 𝐺൫𝑝௬௜ ,𝑑ସ௝൯ = 𝐺(3,1) =[3 + ∆(1,3): 3 + ∆(1,3) + 1] = [2: 3] and 𝐺൫𝑝௭௜ ,𝑑ହ௝൯ = 𝐺(2,1) = [2 + ∆(1,2): 2 + ∆(1,2) + 1] = [2: 3] .
As shown in the figure, the basic structure obtained by combining the located ranges is 𝑀(0: 1,2: 3,2: 3). Comparing with Figure 6, the basic structure obtained by applying 𝑠௝ெ = (110)ଶ to
range locater coincides with the structure labeled 6 = (110)ଶ. This result demonstrates that the range
locater can be treated as an efficient tool for the outer layer of embedding scheme.

Sensors 2020, 20, 2739 7 of 19

Figure 8. Locating the basic structure for embedding by combining ranges of three axes.

3.1.2. Secret Data Embedding

As mentioned in the previous subsection, the proposed data-embedding scheme is composed of
two hiding layers. The outer layer uses the 3 MSBs to locate the nearest formal basic structure for
embedding. The inner layer seeks to find the element with a value matching the 3 LSBs and embeds
the 6 digits in total by modifying the pixel values. The details of secret data embedding are as follows:

The secret data-embedding algorithm based on the cubic mini-SuDoKu matrix (CMSM)
Input: cover image 𝑃, secret stream 𝑆, secret key K
Output: stego image 𝑃ᇱ
Step 1: Construct the CMSM 𝑀 using the secret key K (details are given in Appendix A)
(a) Apply the secret key K to initialize the random number generator;
(b) Allocate an empty array of size 256 × 256 × 256 and divide it into blocks of size 2 × 2 × 2;
(c) Fill in each block with random ordered 0 to 7, consecutively;
Step 2: Group the cover pixels into triplets 𝑃 = ൛(𝑝௫௜ ,𝑝௬௜ ,𝑝௭௜)ห𝑖 = 1, 2, … , ⌊(𝐻 × 𝑊)/3⌋ൟ;
Step 3: Segment secret digits 𝑆 = ൛𝑠௝ = ൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯ห𝑗 = 1, 2, … , ⌈𝐿/6⌉ൟ;
Step 4: Locate 𝑀ቀ𝐺൫𝑝௫௜ ,𝑑ଷ௝൯,𝐺൫𝑝௬௜ ,𝑑ସ௝൯,𝐺൫𝑝௭௜ ,𝑑ହ௝൯ቁ by applying Equations (2) and (3);
Step 5: Search the matching element in the located basic structure; 𝑀൫𝑝௫௜ᇱ ,𝑝௬௜ᇱ ,𝑝௭௜ᇱ ൯ = ൫2ଶ × 𝑑ଶ௝+2ଵ × 𝑑ଵ௝+2଴ × 𝑑଴௝൯;
Step 6: Record ൫𝑝௫௜ᇱ ,𝑝௬௜ᇱ ,𝑝௭௜ᇱ ൯ to stego image 𝑃ᇱ;
Step 7: Repeat Steps 4–6, until all secret digits are embedded.

In the embedding algorithm, we use a secret key K to initialize the random number generator.
Each basic structure is stored with a random permutation of 0 to 7. The number of different CMSM
is (8!)ଵଶ଼×ଵଶ଼×ଵଶ଼ . To reduce the computational load of the matrix, we can produce a randomly
generated matrix of size, for example, 16 × 16 × 16 and repeat it to obtain a 256 × 256 × 256 CMSM.
The number of different permutations is (8!)ଵ଺×ଵ଺×ଵ଺, which is still much secure than the 2D mini-
SuDoKu version [23]. By sharing the initialization key for the random number generator, the receiver
can reconstruct the CMSM using the same rule.

In the following, three examples are used to further explain the secret data-embedding process
as shown in Figure 9. Assume the three triplets are {(1,1,2), (1,3,2), (1,5,2)}, which will be used to hide
the secret segments {(001010)ଶ, (101010)ଶ, (000000)ଶ}.

For the triplet (1,1,2) as shown by the purple submatrix in Figure 9a, the secret data 𝑠௝ =൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯ = (001010)ଶ is to be hidden. First, use triplet (1,1,2) and 3 MSBs 𝑠௝ெ = (001)ଶ to
locate the basic structure 𝐺൫𝑝௫௜ ,𝑑ଷ௝൯ = 𝐺(1,1) = [1 + ∆(1,1): 1 + ∆(1,1) + 1] = [2: 3] , 𝐺൫𝑝௬௜ ,𝑑ସ௝൯ =

Sensors 2020, 20, 2739 8 of 19

𝐺(1,0) = [1 + ∆(0,1): 1 + ∆(0,1) + 1] = [0: 1] , 𝐺൫𝑝௭௜ ,𝑑ହ௝൯ = 𝐺(2,0) = [2 + ∆(0,2): 2 + ∆(0,2) + 1] =[0: 1], and 𝑀൫𝐺൫𝑝௫௜ ,𝑑ଷ௝൯,𝐺൫𝑝௬௜ ,𝑑ସ௝൯,𝐺(𝑝௭௜ ,𝑑ହ௝)൯ = 𝑀(2: 3,0: 1,0: 1). Then, 𝑀(2,1,1) = 2ଶ × 0 + 2ଵ × 1 +2଴ × 0 = 2 can be found in the located basic structure and record (2,1,1) to stego image 𝑃ᇱ.
For the second example of (1,3,2) as shown by the red submatrix in Figure 9b, the secret data 𝑠௝ = ൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯ = (101010)ଶ is to be hidden. First, use triplet (1,3,2) and 3 MSBs 𝑠௝ெ = (101)ଶ

to locate the basic structure 𝐺൫𝑝௫௜ ,𝑑ଷ௝൯ = 𝐺(1,1) = [1 + ∆(1,1): 1 + ∆(1,1) + 1] = [2: 3], 𝐺൫𝑝௬௜ ,𝑑ସ௝൯ =𝐺(3,0) = [3 + ∆(0,3): 3 + ∆(0,3) + 1] = [4: 5] , 𝐺൫𝑝௭௜ ,𝑑ହ௝൯ = 𝐺(2,1) = [2 + ∆(1,2): 2 + ∆(1,2) + 1] =[2: 3], and 𝑀൫𝐺൫𝑝௫௜ ,𝑑ଷ௝൯,𝐺൫𝑝௬௜ ,𝑑ସ௝൯,𝐺(𝑝௭௜ ,𝑑ହ௝)൯ = 𝑀(2: 3,4: 5,2: 3). Then, 𝑀(3,4,2) = 2ଶ × 0 + 2ଵ × 1 +2଴ × 0 = 2 can be found in the located basic structure and record (3,4,2) to stego image 𝑃ᇱ.
For the third triplet (1,5,2) as shown by the green submatrix in Figure 9c, the secret data 𝑠௝ =൫𝑑ହ௝𝑑ସ௝𝑑ଷ௝𝑑ଶ௝𝑑ଵ௝𝑑଴௝൯ = (000000)ଶ is to be hidden. First, use triplet (1,5,2) and 3 MSBs 𝑠௝ெ = (000)ଶ to

locate the basic structure 𝐺൫𝑝௫௜ ,𝑑ଷ௝൯ = 𝐺(1,0) = [1 + ∆(0,1): 1 + ∆(0,1) + 1] = [0: 1] , 𝐺൫𝑝௬௜ ,𝑑ସ௝൯ =𝐺(5,0) = [5 + ∆(0,5): 5 + ∆(0,5) + 1] = [4: 5] , 𝐺൫𝑝௭௜ ,𝑑ହ௝൯ = 𝐺(2,0) = [2 + ∆(0,2): 2 + ∆(0,2) + 1] =[0: 1], and 𝑀൫𝐺൫𝑝௫௜ ,𝑑ଷ௝൯,𝐺൫𝑝௬௜ ,𝑑ସ௝൯,𝐺(𝑝௭௜ ,𝑑ହ௝)൯ = 𝑀(0: 1,4: 5,0: 1). Then, 𝑀(1,4,1) = 2ଶ × 0 + 2ଵ × 0 +2଴ × 0 = 0 can be found in the located basic structure and record (1,4,1) to stego image 𝑃ᇱ.

(a)

(b)

Sensors 2020, 20, 2739 9 of 19

(c)

Figure 9. Examples of data hiding with cubic mini-SuDoKu matrix (CMSM). (a) Hide (001010)ଶ into cover triplet (1,1,2) ; (b) Hide (101010)ଶ into cover triplet (1,3,2) ; (c)
Hide (000000)ଶ into cover triplet (1,5,2).

3.1.3. Secret Data Extraction

After receiving the stego image 𝑃′, the recipient first groups the stego pixels into triplets. Then,
the secret segments can be obtained by mapping the triplets into the CMSM. For a located element,
its corresponding secret segment includes the 3 MSBs determined by the label of basic structure it
belongs to and the 3 LSBs determined by its value. The details of the extraction process are provided
as follows:

The secret data extraction algorithm based on the cubic mini-SuDoKu matrix (CMSM)
Input: stego image 𝑃ᇱ, secret key K
Output: secret stream 𝑆
Step 1: Construct the CMSM 𝑀 using the secret key K (details are given in Appendix A)
(a) Apply the secret key K to initialize the random number generator.
(b) Allocate an empty array of size 256 × 256 × 256 and divide it into blocks of size 2 × 2 × 2.
(c) Fill in each block with random ordered 0 to 7, consecutively.
Step 2: Group the stego pixels into triplets 𝑃 = ൛(𝑝௫௜ᇱ ,𝑝௬௜ᇱ ,𝑝௭௜ᇱ)ห𝑖 = 1, 2, … , ⌊(𝐻 × 𝑊)/3⌋ൟ.
Step 3: Extract the 3 LSBs by 𝑠௝௅ = ൣ𝑀൫𝑝௫௜ᇱ ,𝑝௬௜ᇱ ,𝑝௭௜ᇱ ൯൧ଶ.
Step 4: Extract the 3 MSBs by 𝑠௝ெ = ൫𝑑ହ௝ ,𝑑ସ௝ ,𝑑ଷ௝൯ = ൫⌊𝑚𝑜𝑑(𝑝௭௜ᇱ , 4)/2⌋, උ𝑚𝑜𝑑(𝑝௬௜ᇱ , 4)/2ඏ, ⌊𝑚𝑜𝑑(𝑝௫௜ᇱ , 4)/2⌋൯.
Step 5: Concatenate 𝑠௝ = 𝑠௝ெ𝑠௝௅.
Step 6: Repeat Steps 3–5, until all secret digits are extracted.

3.2. N-dimensional MSM (NMSM)

In this section, we introduce the construction of NMSM and the secret data-embedding and
extraction algorithm, based on the NMSM. In addition, a fast algorithm for the inner embedding layer
is proposed to improve the time efficiency.

3.2.1. The Data-Embedding and Extraction Algorithm

To boost the efficiency of data embedding and extraction, the proposed secret data-embedding
scheme can be generalized to an n-dimensional version. In the NMSM, a basic structure consists of 2௡ elements and 2௡ basic structures constitute a submatrix. An n-tuple pixel group can uniquely
map to an element in the NMSM. Therefore, by applying the same embedding rule, we can hide n

Sensors 2020, 20, 2739 10 of 19

MSBs with the label of basic structure and n LSBs with the element value. The pseudo codes for the
NMSM-based embedding and extraction schemes are given as follows:

The secret data-embedding algorithm based on the n-dimensional mini-SuDoKu matrix (NMSM)
Input: cover image 𝑃, secret stream 𝑆, secret key K
Output: stego image 𝑃ᇱ
Step 1: Construct the NMSM 𝑀 using the secret key K (details are given in Appendix B);
(a) Make an n-dimensional array of size 16௡, which consists of 8௡ submatrix;
(b) Repeat the array to obtain NMSM;
Step 2: Group the cover pixels into 𝑃 = ൛(𝑝௑(଴)௜ ,𝑝௑(ଵ)௜ , … ,𝑝௑(௡ିଵ)௜)ห𝑖 = 1, 2, … , ⌊(𝐻 × 𝑊)/𝑛⌋ൟ;
Step 3: Segment secret digits 𝑆 = ൛𝑠௝ = ൫𝑑ଶ௡ିଵ௝ 𝑑ଶ௡ିଶ௝ …𝑑଴௝൯ห𝑗 = 1, 2, … , ⌈𝐿/2𝑛⌉ൟ;
Step 4: Locate the basic structure 𝑀ቀ𝐺൫𝑝௑(଴)௜ ,𝑑௡௝൯,𝐺൫𝑝௑(ଵ)௜ ,𝑑௡ାଵ௝ ൯, … ,𝐺൫𝑝௑(௡ିଵ)௜ ,𝑑ଶ௡ିଵ௝ ൯ቁ

by applying Equations (2) and (3);
Step 5: Search the matching element in the located basic structure 𝑀൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯ = ൫2௡ିଵ × 𝑑௡ିଵ௝ +2௡ିଶ × 𝑑௡ିଶ௝ +⋯+ 2଴ × 𝑑଴௝൯;
Step 6: Record ൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯ to stego image 𝑃ᇱ;
Step 7: Repeat Steps 4–6, until all secret digits are embedded.

The secret data extraction algorithm based on the n-dimensional mini-SuDoKu matrix (NMSM)
Input: stego image 𝑃ᇱ, secret key K
Output: secret stream 𝑆
Step 1: Construct the NMSM by the same process as Step 1 of embedding;
Step 2: Group the stego pixels into 𝑃ᇱ = ൛(𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ)ห𝑖 = 1, 2, … , ⌊(𝐻 × 𝑊)/𝑛⌋ൟ;
Step 3: Extract the n LSBs by 𝑠௝௅ = ൣ𝑀൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯൧ଶ;
Step 4: Extract the n MSBs by 𝑠௝ெ = ൫උ𝑚𝑜𝑑(𝑝௑(௡ିଵ)௜ᇱ , 4)/2ඏ, උ𝑚𝑜𝑑(𝑝௑(௡ିଶ)௜ᇱ , 4)/2ඏ, … , උ𝑚𝑜𝑑(𝑝௑(଴)௜ᇱ , 4)/2ඏ൯;
Step 5: Concatenate 𝑠௝ = 𝑠௝ெ𝑠௝௅;
Step 6: Repeat Steps 3–5, until all secret digits are extracted.

3.2.2. Fast Algorithm for the Inner Layer of Embedding

As the MSM generalized to n-dimensions, the basic structure for embedding can be efficiently
determined by the range locator. However, the searching process in the Step 5 of embedding
algorithm becomes burdensome. To improve time efficiency of the inner embedding layer, we devise
a fast algorithm to overcome this burden. Its key idea is to leverage the matrix operation supported
by the MATLAB language. The pseudo code of the fast algorithm is given as follows: More precise
pseudo code expressed in MATLAB instructions is given in Appendix C.

Fast Algorithm for the Inner Embedding Layer (details are given in Appendix C)
Input: n LSBs of secret segment 𝑠௝௅, basic structure for embedding 𝐴 = 𝑀ቀ𝐺൫𝑝௑(଴)௜ ,𝑑௡௝൯,𝐺൫𝑝௑(ଵ)௜ ,𝑑௡ାଵ௝ ൯, … ,𝐺൫𝑝௑(௡ିଵ)௜ ,𝑑ଶ௡ିଵ௝ ൯ቁ
Output: stego pixel values ൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯
(a) Construct an n-dimensional basic structure 𝐵 with all elements valued with 𝑠௝௅;
(b) Using matrix operation to find the only matched element in both 𝐴 and 𝐵;
(c) Project the element to all axes and obtain the coordinates for embedding.

4. Experimental Results

In the following, the experimental results of the proposed scheme will be presented and
compared with the related works. As shown in Figure 10, this study uses eight standard 512 × 512
grayscale images and four standard 512 × 512 true color images as the cover image 𝑃 for secret data
embedding. All experiments are implemented with MATLAB R2017b. Figure 11 shows the twelve
stego images obtained by applying the two-layered hiding scheme based on the CMSM.

Sensors 2020, 20, 2739 11 of 19

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 10. Twelve cover images with size 512 × 512: (a) Lena; (b) peppers; (c) airplane; (d)
baboon; (e) boat; (f) Elaine; (g) Gledhill; (h) sailboat; (i) baboon (RGB); (j) Lena (RGB); (k)
peppers (RGB); and (l) Tiffany (RGB).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Sensors 2020, 20, 2739 12 of 19

(i)

(j)

(k)

(l)

Figure 11. Twelve stego images with size 512 × 512: (a) Lena; (b) peppers; (c) airplane; (d)
baboon; (e) boat; (f) Elaine; (g) Gledhill; (h) sailboat; (i) baboon (RGB); (j) Lena (RGB); (k)
peppers (RGB); and (l) Tiffany (RGB).

The stego images look like the cover images and cannot be distinguished by human eyes. The
peak signal-to-noise ratio (PSNR) is used to measure the quality of a stego image. Its calculation is
given by Equation (4). In the equation, 𝑃 and 𝑃ᇱ represent the cover image and the stego image,
respectively, 𝐻 and 𝑊 represent their height and width and (𝑚,𝑛) represents the coordinate of the
pixel. 𝑃𝑆𝑁𝑅 = 10 × logଵ଴ 255ଶ × 𝐻 × 𝑊∑ ∑ [𝑃(𝑚,𝑛) − 𝑃ᇱ(𝑚,𝑛)]ଶௐ௡ୀଵு௠ୀଵ . (4)

In addition, we also use structural similarity index (SSIM) to measure the similarity between a
cover image and its corresponding stego image. Let 𝑃 and 𝑃ᇱ represent the cover image and the
stego image, respectively, the SSIM of the two images can be obtained according to Equation (5),
where 𝜇௉ is the average of 𝑃, 𝜇௉ᇲ is the average of 𝑃ᇱ, 𝜎௉ଶ is the variance of 𝑃, 𝜎௉ᇲଶ is the variance
of 𝑃ᇱ and 𝜎௉௉ᇲ is the covariance of 𝑃 and 𝑃ᇱ. In addition, 𝑐ଵ and 𝑐ଶ are constants used to maintain
stability and can be obtained by Equations (6) and (7), respectively, where L is the dynamic range of
pixel values, 𝑘ଵ = 0.01, 𝑘ଶ = 0.03. 𝑆𝑆𝐼𝑀(𝑃,𝑃ᇱ) = (2𝜇௉𝜇௉ᇲ + 𝑐ଵ)(2𝜎௉௉ᇲ + 𝑐ଶ)(𝜇௉ଶ + 𝜇௉ᇲଶ + 𝑐ଵ)(𝜎௉ଶ + 𝜎௉ᇲଶ + 𝑐ଶ). (5)

𝑐ଵ = (𝑘ଵ𝐿)ଶ. (6)𝑐ଶ = (𝑘ଶ𝐿)ଶ. (7)

Embedding capacity (EC) is another important issue in the image steganography. It is used to
measure the maximum amount of secret data that can be embedded in an image by a data-hiding
scheme. Since EC is dependent on the image size, we further define the embedding rate (ER) to
express the average number of secret bits that each pixel can embed. ER is defined as (8), where ||𝑆||
represents the total amount of secret data embedded in the entire stego image. 𝐸𝑅 = ||𝑆||𝑀 × 𝑁. (8)

Table 1 shows the experimental results of the grayscale images. In our hiding scheme, three
cover pixels are applied to embed a secret segment of six digits. Therefore, the ER measure is 6 bits/3
pixels = 2 bits/pixel, the embedding capacity for an applied grayscale cover image is therefore
512 × 512 × 2 = 524,288 bits as shown in the Under full embedding, the proposed scheme achieves a
high image quality of PSNR = 46.37 dB and SSIM = 0.9923 in average. The quality of stego image is
irrelevant to features of the cover image. For the true color images, each pixel consists of three
channels, including red, green and blue. Each of the three channels is represented by one byte. By
mapping the three bytes (r, g, b) of a pixel into the CMSM, we can hide a secret segment of six bits
by applying the proposed embedding algorithm. Therefore, the embedding capacity of an applied

Sensors 2020, 20, 2739 13 of 19

true color image is 512 × 512 × 6 =1572,864 bits. The PSNR and SSIM of the true color stego images
are very close to the experimental values of grayscale images as shown in Table 2.

Table 1. Experimental results for grayscale images.

Image EC (bits) PSNR (dB) SSIM

Lena 524,288 46.38 0.9918

Peppers 524,288 46.37 0.9906

Airplane 524,288 46.37 0.9883

Baboon 524,288 46.36 0.9958

Boat 524,288 46.37 0.9938

Elaine 524,288 46.38 0.9919

Gledhill 524,288 46.36 0.9936

Sailboat 524,288 46.37 0.9929

Average 524.288 46.37 0.9923

Table 2. Experimental results for color images.

Image EC (bits) PSNR (dB) SSIM

Baboon (RGB) 1,572,864 46.36 0.9930

Lena (RGB) 1,572,864 46.38 0.9926

Peppers (RGB) 1,572,864 46.37 0.9908

Elaine (RGB) 1,572,864 46.37 0.9916

Average (RGB) 1,572,864 46.37 0.9920

4.1. EC and PSNR Comparison

Table 3 compares the PSNR of different reference matrices under the same EC. As shown in
Table 3, Xie et al.’s scheme has the lowest average PSNR at 41.87 dB. The average PSNR of the
proposed scheme is 46.37 dB, which is nearly 4 dB higher than the average PSNR of the Xie et al.’s
scheme. Moreover, compared with the other two schemes, our scheme also achieves the highest
PSNR with the same EC. It can be seen that the proposed scheme outperforms the related works.

Table 3. Comparison with related works.

Image
Jin et al. [24] Liu et al. [23] Xie et al. [17] Proposed
EC PSNR EC PSNR EC PSNR EC PSNR

Lena 524,288 45.57 524,288 45.55 524,288 41.87 524,288 46.38
Peppers 524,288 45.56 524,288 45.54 524,288 41.86 524,288 46.37
Airplane 524,288 45.56 524,288 45.58 524,288 41.87 524,288 46.37
Baboon 524,288 45.57 524,288 45.55 524,288 41.86 524,288 46.36

Boat 524,288 45.58 524,288 45.54 524,288 41.87 524,288 46.37
Elaine 524,288 45.56 524,288 45.49 524,288 41.87 524,288 46.38

Gledhill 524,288 45.49 524,288 45.49 524,288 41.87 524,288 46.36
Sailboat 524,288 45.58 524,288 45.55 524,288 41.86 524,288 46.37
Average 524,288 45.56 524,288 45.54 524,288 41.87 524,288 46.37

In order to further understand the performance of our scheme, it is compared with three other
schemes [19,22,23] based on the SuDoKu reference matrix. As shown in Table 4, the EC of the Chang
et al.’s scheme is 393,216 bits, and its average PSNR is 44.83 dB. Regardless of the EC or image quality,

Sensors 2020, 20, 2739 14 of 19

the proposed scheme outperforms the Chang et al.’s scheme. Comparing with the other two schemes,
although their image quality are better than the proposed scheme, their embedding capacity are far
lower than our scheme. Therefore, it can be concluded that the overall performance of the proposed
scheme is better than the SuDoKu-based data-hiding schemes.

Table 4. Comparison among SuDoKu-based data-hiding schemes.

Image
Chang et al. [20] Hong et al. [21] Lin et al. [19] Proposed

EC PSNR EC PSNR EC PSNR EC PSNR
Lena 393,216 44.96 393,216 48.68 393,216 49.90 524,288 46.38

Peppers 393,216 44.67 393,216 48.67 393,216 49.91 524,288 46.37
Airplane 393,216 44.99 393,216 48.68 393,216 49.92 524,288 46.37
Baboon 393,216 44.68 393,216 48.66 393,216 .49.89 524,288 46.36

Boat 393,216 44.90 393,216 48.67 393,216 49.91 524,288 46.37
Elaine 393,216 44.92 393,216 48.68 393,216 49.91 524,288 46.38

Gledhill 393,216 44.85 393,216 48.67 393,216 49.90 524,288 46.36
Sailboat 393,216 44.67 393,216 48.67 393,216 49.90 524,288 46.37
Average 393,216 44.83 393,216 48.67 393,216 49.90 524,288 46.37

In addition, we also compare the proposed CMSM-based scheme with the 3D SuDoKu-based
scheme. As shown in Table 5, the average PSNR of the scheme proposed by Xia et al. is 41.31 dB,
while the average PSNR of our scheme is 5 dB higher than their scheme. Based on the same frame
structure of using 3D reference matrix, our scheme has a relatively small modification of pixel values
under the same EC.

Table 5. Comparison with the 3D SuDoKu matrix-based scheme.

Image
Xia et al. [18] Proposed

EC PSNR EC PSNR

Lena 524,288 41.31 524,288 46.38

Peppers 524,288 41.30 524,288 46.37

Airplane 524,288 41.28 524,288 46.37

Baboon 524,288 41.25 524,288 46.36

Boat 524,288 41.23 524,288 46.37

Elaine 524,288 41.26 524,288 46.38

Gledhill 524,288 41.29 524,288 46.36

Sailboat 524,288 41.27 524,288 46.37

Average 524,288 41.27 524,288 46.37

Our scheme is inspired by the He et al.’s scheme. Except for expanding the 2D mini-SuDoKu to
a 3D CMSM, our scheme effectively improved the complexity of reference matrix and efficiently
reduced the computation time. As shown in Table 6, although our scheme has no advantage over the
He et al.’s scheme in terms of EC and PSNR. However, the improvement in time consumption (TC)
is obvious. As discussed in Section 2.2, to achieve a translation invariant property for minimizing the
distortion of pixel value modification, the mini-SuDoKu has to repeat a same basic 4 × 4 submatrix.
This severely damages the complexity of a reference matrix. In our scheme, in spite of CMSM or
NMSM, each basic structure is a completely random permutation of 2௡ distinct numbers. The
possible combinations of a CMSM is an enormous figure. In the construction of NMSM, referring to
Section 3.2.1, we even truncate the size of a randomly generated array and make the whole NMSM
by repetition to reduce computational load. The key difference with the He et al.’s scheme is the
design of range locator. It releases the constraint on the diversity of reference matrix. An additional

Sensors 2020, 20, 2739 15 of 19

benefit of the range locator is that the basic structure for embedding can be efficiently located without
applying a time-consuming searching process. The cooperation of range locater in the outer
embedding and the matrix operation in the inner embedding frees the hiding scheme from intensive
loops of searching. According to the experimental data in Table 6, the required embedding time is
less than half of the compared scheme.

Table 6. Comparison with the mini-SuDoKu matrix-based scheme.

Image
He et al. [25] Proposed

EC PSNR TC EC PSNR TC

Lena 524,288 46.37 2.71 s 524,288 46.38 1.07 s

Peppers 524,288 46.37 2.72 s 524,288 46.37 1.12 s

Airplane 524,288 46.37 2.70 s 524,288 46.37 1.10 s

Baboon 524,288 46.36 2.73 s 524,288 46.36 1.09 s

Boat 524,288 46.36 2.71 s 524,288 46.37 1.11 s

Elaine 524,288 46.38 2.71 s 524,288 46.38 1.12 s

Gledhill 524,288 46.37 2.72 s 524,288 46.36 1.09 s

Sailboat 524,288 46.35 2.71 s 524,288 46.37 1.12 s

Average 524,288 46.37 2.71 s 524,288 46.37 1.10 s

4.2. Time Efficiency Comparison

To investigate the time efficiency of the proposed algorithm, we try to compare the time
consumption of the proposed algorithm with the traditional approach. Although we present the
three-dimensional (3D) CMSM and the n-dimensional (n−D) NMSM, our approach can also be de-
generalized back to two-dimensional (2D) and one-dimensional (1D) version.

This experiment uses 8 typical grayscale images for testing and compares the proposed
algorithm with a traditional one. A computer with a Dual i7-920 CPU and 8 GB memory is adopted
for the experiment. The tic and toc commands in MATLAB are used to record the time cost in seconds.
As shown in Table 7, due to the large number of loops used in the search step of the traditional
algorithm, it takes significantly longer time to embed secret data. As the dimension rises, the time
consumption increases rapidly. On the other hand, our algorithm has consistent performance as the
dimension rises. Note that, as the dimension rises, the complexity of the reference matrix increases
and thus the security level raises.

Table 7. Comparison of time efficiency between the proposed scheme and traditional
algorithm.

Image Trad-2D Trad-3D Proposed-2D Proposed-3D Proposed-4D
Lena 2.80 s 4.48 s 1.09 s 1.07 s 1.11 s

Peppers 2.81 s 4.51 s 1.11 s 1.12 s 1.13 s
Airplane 2.83 s 4.52 s 1.10 s 1.10 s 1.12 s
Baboon 2.82 s 4.49 s 1.11 s 1.09 s 1.11 s

Boat 2.75 s 4.47 s 1.10 s 1.11 s 1.12 s
Elaine 2.94 s 4.54 s 1.13 s 1.12 s 1.14 s

Gledhill 2.86 s 4.54 s 1.08 s 1.09 s 1.11 s
Sailboat 2.83 s 4.49 s 1.11 s 1.13 s 1.13 s

5. Conclusions

This study introduces an efficient multidimensional secret data-embedding scheme based on the
mini SuDoKu matrix. In the proposed scheme, a CMSM RM with high complexity is first constructed

Sensors 2020, 20, 2739 16 of 19

to guarantee the security, and then a range locator function and the matrix operation are adopted to
enhance the embedding efficiency. The reference matrix is further expanded to multidimension in
order to obtain even higher embedding capacity and, meanwhile, still preserve good security and
efficiency. The proposed scheme is compared with state-of-the-art RM-based data-hiding schemes
and the experimental results show that the proposed scheme achieved higher than 46 dB in terms of
the image quality and two bits per pixel in terms of the embedding capacity. In addition, the time
consumption of the proposed algorithm is less than half of the traditional approach and keeps
consistency as the dimension and security level raises. It is shown that the proposed scheme is
advantageous in both embedding efficiency and security compared to the original mini-SuDoKu
matrix.

We also provide a set of true color test images to demonstrate that the proposed scheme
performs equal well to multi-channel images. By leveraging CMSM, each pixel of three-color
channels—i.e., R, G, and B—can exactly match with the requirement of embedding a secret segment
of data. The flexibility in dimension of RM meets the diverse data structure of cover media in the
future word of massive IoT.

Author Contributions: Conceptualization, J.-H.H and S.X.; Data curation, S.X.; Formal analysis, S.X.; Funding
acquisition, J.-H.H.; Investigation, S.X.; Methodology, J.-H.H. and S.X.; Project administration, C.-C.C. (Chin-
Chen Chang); Resources, S.X.; Software, S.X.; Supervision, C.-C.C. (Chin-Chen Chang); Validation, S.X.;
Visualization, J.-H.H., C.-C.C. (Ching-Chun Chang) and C.-C.C. (Chin-Chen Chang); Writing: original draft, S.X.;
Writing: review & editing, J.-H.H., C.-C.C. (Ching-Chun Chang) and C.-C.C. (Chin-Chen Chang). All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no competing interests.

Appendix A

The pseudo code for constructing the CMSM is provided as follows:
(a) Apply the secret key to initialize the random number generator.

rng(K);
(b) Allocate an empty array of size 256 × 256 × 256 and divide it into blocks of size 2 × 2 × 2. 𝑀 = zero(256,256,256);
(c) Fill in each block with random ordered 0 to 7, consecutively;

for 𝑥 = 0: 2: 255,
for 𝑦 = 0: 2: 255,
for 𝑧 = 0: 2: 255, 𝑉 = randperm(8) − 1; 𝐴 = [𝑉(0) 𝑉(1);𝑉(2) 𝑉(3)]; 𝐵 = [𝑉(4) 𝑉(5);𝑉(6) 𝑉(7)]; 𝑀(𝑥: 𝑥 + 1,𝑦:𝑦 + 1, 𝑧: 𝑧 + 1) = 𝐴;
end
end
end
The MATLAB functions rng() and randperm(8) are used to initialize random number generator

and produce random permutations of 1 to 8, respectively. Although we apply the coding format and
the functions of MATLAB programming language, the index of an array in the pseudo code follows
the convention of zero leading value.

Appendix B

The pseudo code for constructing the NMSM is provided as follows:
(a) Make an n-dimensional array of size 16௡ using the secret key K

rng(K);
for 𝑋(0) = 0: 2: 15,
for 𝑋(1) = 0: 2: 15,

Sensors 2020, 20, 2739 17 of 19

…
for 𝑋(𝑛 − 1) = 0: 2: 15, 𝑉 = randperm(2௡) − 1; 𝑘 = 0;

for 𝑋ᇱ(0) = 0: 1,
for 𝑋ᇱ(1) = 0: 1,
…
for 𝑋ᇱ(𝑛 − 1) = 0: 1,

M(𝑋ᇱ(0),𝑋ᇱ(1), … ,𝑋ᇱ(𝑛 − 1)) = 𝑉(𝑘); 𝑘 = 𝑘 + 1;
end
…
end
end

end
…
end
end

(b) Repeat the array to obtain NMSM
for 𝑋(1) = 0: 16: 255,
for 𝑋(2) = 0: 16: 255,
…
for 𝑋(𝑛) = 0: 16: 255,

M(𝑋(0):𝑋(0) + 15,𝑋(1):𝑋(1) + 15, … ,𝑋(𝑛 − 1):𝑋(𝑛 − 1) + 15) = 𝑀(0: 15,0: 15, … ,0: 15);
end
…
end

end

Appendix C

The pseudo code for fast algorithm of inner embedding is given as follows:
Input: n LSBs of secret segment 𝑠௝௅, basic structure for embedding 𝐴 = 𝑀ቀ𝐺൫𝑝௑(଴)௜ ,𝑑௡௝൯,𝐺൫𝑝௑(ଵ)௜ ,𝑑௡ାଵ௝ ൯, … ,𝐺൫𝑝௑(௡ିଵ)௜ ,𝑑ଶ௡ିଵ௝ ൯ቁ
Output: stego pixel values ൫𝑝௑(଴)௜ᇱ ,𝑝௑(ଵ)௜ᇱ , … ,𝑝௑(௡ିଵ)௜ᇱ ൯
(a) Construct an n-dimensional basic structure 𝐵 with all elements valued with 𝑠௝௅; 𝐵 = 𝑠௝௅ × 𝑜𝑛𝑒𝑠(2,2, … , 2(௡));
(b) Using matrix operation to find the only matched element in both 𝐴 and 𝐵; 𝐶 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝐴,𝐵);
(c) Project the element to all axes and obtain the coordinates for embedding;

for 𝑘 = 0:𝑛 − 1, ൣ𝑣,𝑝௑(௞)௜ᇱ ൧ = max෍ C(: , : , … , :(௤) , … , :)௤ஷ௞ ;
end
The algorithm utilizes an array of unique value 𝑠௝௅ to compare with the basic structure for

embedding 𝐴 using the function 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(). As a result, the unique ‘1’ in the array 𝐶 indicates the
location of 𝑠௝௅ in 𝐴 . By projecting the summations to each axis can obtain the index of the
corresponding axis. Thus, the values of stego pixels are determined.

Sensors 2020, 20, 2739 18 of 19

References

1. Matsui, M. Linear cryptanalysis scheme for DES cipher. In Workshop on the Theory and Application
of Cryptographic Techniques; Springer: Berlin, Germany, 1993; pp. 386–397.

2. Rivest, R.; Shamir, A.; Adleman, L. A scheme for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 1978, 21, 120–126.

3. Ullah, S.; Marcenaro, L.; Rinner, B. Secure smart cameras by aggregate-signcryption with
decryption fairness for multi-receiver IoT applications. Sensors 2019, 19, 327,
doi:10.3390/s19020327.

4. Li, Y.; Tu, Y.; Lu, J.; Wang, Y. A security transmission and storage solution about sensing image
for blockchain in the Internet of Things. Sensors 2020, 20, 916, doi:10.3390/s20030916.

5. Ker, A. Improved detection of LSB steganography in grayscale images. In International Workshop
on Information Hiding; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3200, pp. 97–115.

6. Qin, C.; Chang, C.; Huang, Y. An inpainting-assisted reversible steganographic scheme using a
histogram shifting mechanism. IEEE Trans. Circuits Syst. Video Technol. 2012, 23, 1109–1118.

7. Chang, C.; Lin, C.; Tseng, C.; Tai, W. Reversible hiding in DCT-based compressed images. Inf.
Sci. 2007, 177, 2768–2786.

8. Huang, F.; Qu, X.; Kim, H.; Huang, J. Reversible data hiding in JPEG images. IEEE Trans. Circuits
Syst. Video Technol. 2016, 26, 1610–1621.

9. Chang, C.; Kieu, T.; Wu, W. A loss-less data embedding technique by joint neighboring coding.
Pattern Recog. 2009, 42, 1597–1603.

10. Hu, Y. High capacity image hiding scheme based on vector quantization. Pattern Recogn. 2006,
39, 1715–1724.

11. Lin, Y.; Hsia, C.; Chen, B.; Chen, Y. Visual IoT security: Data hiding in AMBTC images using
block-wise embedding strategy. Sensors 2019, 19, 1974, doi:10.3390/s19091974.

12. Chang, C.; Wang, X.; Horng, J. A hybrid data hiding method for strict AMBTC format images
with high-fidelity. Symmetry 2019, 11, 1314, doi:10.3390/sym11101314.

13. Bender, W.; Gruhl, D.; Morimoto, N.; Lu, A. Techniques for data hiding. IBM Syst. J. 1996, 35,
313–336.

14. Kim, H.; Kim, C.; Choi, Y.; Wang, S.; Zhang, X. Improved modification direction schemes.
Comput. Math. Appl. 2010, 60, 319–325.

15. Mielikainen, J. LSB matching revisited. IEEE Signal Proc. Lett. 2006, 13, 285–287.
16. Zhang, X.; Wang, S. Efficient steganographic embedding by exploiting modification direction.

IEEE Commun. Lett. 2006, 10, 781–783.
17. Xie, X.; Liu, Y.; Chang, C. Extended squared magic matrix for embedding secret information

with large payload. Multimed. Tools Appl. 2019, 78, 19045–19059.
18. Xia, B.; Wang, H.; Chang, C.; Liu, L. An image steganography scheme using 3D-Sudoku. J. Inf.

Hiding Multimed. Signal Process. 2016, 7, 836–845.
19. Lin, C.; Chang, C.; Lee, W.; Lin, J. A Novel Secure Data Hiding Scheme Using a Secret Reference

Matrix. In Proceedings of the Fifth International Conference on Intelligent Information Hiding
and Multimedia Signal Processing, Kyoto, Japan, 12–14 September 2009; pp. 369–373.

20. Chang, C.; Chou, Y.; Kieu, T. An Information Hiding Scheme Using Sudoku. In Proceedings of
the 3rd International Conference on Innovative Computing Information and Control (ICICIC),
Dalian, China, 18–20 June 2008; pp. 17–22.

21. Hong, W.; Chen, T.; Shiu, C. A Minimal Euclidean Distance Searching Technique for Sudoku
Steganography. In Proceedings of the International Symposium on Information Science and
Engineering (ISISE2008), Shanghai, China, 20–22 December 2008; pp. 515–518.

22. Chang, C.; Liu, Y.; Nguyen, T. A Novel Turtle Shell Based Scheme for Data Hiding. In
Proceedings of the Tenth International Conference on Intelligent Information Hiding and
Multimedia Signal Processing (IIHMSP 2014), Kitakyushu, Japan, 27–29 August 2014; pp. 89–93.

23. Liu, Y.; Chang, C.; Nguyen, T. High capacity turtle shell-based data hiding. IET Image Process.
2016, 10, 130–137.

Sensors 2020, 20, 2739 19 of 19

24. Jin, Q.; Li, Z.; Chang, C.; Wang, A.; Liu, L. Minimizing turtle shell matrix based stego image
distortion using particle swarm optimization. Netw. Secur. 2017, 19, 154–162.

25. He, M.; Liu, Y.; Chang, C. A mini-Sudoku matrix-based data embedding scheme with high
payload. IEEE Access 2019, 7, 141414–141425.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

