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Abstract: We propose a methodology to verify applications developed following programming
patterns inspired by natural language that interact with physical environments and run on resource-
constrained interconnected devices. Natural language patterns allow for the reduction of intermediate
abstraction layers to map physical domain concepts into executable code avoiding the recourse to
ontologies, which would need to be shared, kept up to date, and synchronized across a set of devices.
Moreover, the computational paradigm we use for effective distributed execution of symbolic code
on resource-constrained devices encourages the adoption of such patterns. The methodology is
supported by a rule-based system that permits runtime verification of Software Under Test (SUT) on
board the target devices through automated oracle and test case generation. Moreover, verification
extends from syntactic and semantic checks to the evaluation of the effects of SUT execution on target
hardware. Additionally, by exploiting rules tying sensors and actuators to physical quantities, the
effects of code execution on the physical environment can be verified. The system is also able to
build test code to highlight software issues that may arise during repeated SUT execution on the
target hardware.

Keywords: embedded systems; wireless sensor networks; internet of things; symbolic programming;
distributed programming; concatenative languages; forth

1. Introduction

Developing applications interacting with physical environments, as required by the
emergent Ambient Intelligence (AmI) and Internet of Things (IoT) scenarios, compels the
programmer to embrace networking and computational, functional and domain aspects
into a coherent whole [1]. Such an integration strongly demands novel paradigms to
program heterogeneous embedded devices in a homogeneous way in order to foster
interoperability [2]. In high-level AmI and IoT applications several objects, either sensors
and actuators, are provided with computational abilities and interact with the environment,
as exemplified in Figure 1.

These requirements collide with the scarcity of available resources on embedded de-
vices. For instance, many approaches found in the literature adopt the Java Virtual Machine
(JVM) to bring high-level symbolic programming to this class of computational units.

However, this choice often forces to sacrifice features for acceptable resource con-
sumption, leading to partial implementations [3–6]. More generally, high-level languages
are not easily applicable to embedded devices programming and resource constraints are
major issues in developing and debugging such systems [7]. While simulators are widely
adopted [8], designing on-board runtime verification mechanisms for resource-constrained
devices demands specific efforts [9].
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Figure 1. A possible reference application scenario. The physical domain is composed of objects
interacting with the environment.

On the other hand, high-level abstractions may significantly support verification [10].
While a full-blown Java implementation may be out of the question for resource-constrained
hardware, the simplicity of its stack-based model of computation suggests further investi-
gations that can benefit from related work.

Assertion-based [11], model-based [12,13], and fault-injection [14] approaches have
been proposed to address the problem of test oracle generation for the JVM. Even if not
specifically for either embedded or runtime applications, grammar-based methodolo-
gies enriched by denotational semantics have been proposed to verify the correctness of
Java high-level symbolic expressions [15]. Other works focus on test case generation tech-
niques specifically intended for embedded systems [16–19]. Besides correct-by-construction
methodologies, which generate executable code from formal specifications [20], direct gen-
eration of formal models from executable code has also been investigated [21]. In the latter
case, formal specifications are defined by patterns and transformation rules are applied to
the source code to produce different formal models for verification purposes.

In this paper, we propose a methodology to program resource-constrained hardware
using programming patterns inspired by natural language that includes runtime verifi-
cation through automated oracle and test case generation. Our approach significantly
differs from all the aforementioned ones, which are intended for offline formal software
verification. Moreover, the generated oracles are not exclusively bound to syntactic and
semantic checks of code adhering to specified programming patterns. In fact, oracles verify
that code execution leads to the expected state change of the hardware. Additionally,
by exploiting rules tying sensors and actuators to physical quantities, code verification is
extended to the effects of code execution on the physical environment.

The rationale behind the choice to focus on natural language patterns lays not only
in the reduction of intermediate abstraction layers to map physical domain concepts
into executable code but also in programming practice. In fact, the adopted symbolic
concatenative computational paradigm encourages the programmer to build programs as
sequences of natural language words. Moreover, while the present work does not discuss
these aspects, the proposed approach converges toward the natural command control
embodied by voice-based virtual assistants that more and more prominently provide the
human–machine interface of AmI and IoT applications.

Our methodology supports the design of domain specific languages (DSL) with
clearly defined boundaries and strong ties to natural semantics. This also avoids the
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implementation of complex and rigid ontologies that would need to be shared, kept up to
date, and synchronized across the system.

In the proposed approach, a rule-based system integrates knowledge about physi-
cal domain concepts and properties, hardware components and programming patterns,
and provides an automated oracle for a given Software Under Test (SUT). The SUT and
the respective oracle are then executed on the target platform using a symbolic compu-
tational paradigm. The system is also able to generate test cases and perform repeated
test execution.

The remainder of the paper is organized as follows. Related work is presented in
Section 2. Section 3 focuses on the key features of the symbolic computational paradigm,
while the description of the proposed rule-based system is given in Section 4.

Section 5 discusses the strategies to avoid defining patterns with ambiguous semantics
in high-level applications.

Section 6 collects the experimental results. Finally, Section 7 concludes the paper.

2. Related Work

Current researches on IoT focus on a wide variety of novel computing applications
including smart homes and automation [22,23], smart cities [24,25], personal assistants [26],
and structural health of buildings [27]. To overcome the difficulties arising in programming
heterogeneous devices, interpreter-based platforms have been proposed in the literature.
However, most of these approaches struggle with the resource constraints of small IoT
nodes. Maté [28] supports the development of applications in the form of assembly-like
scripts. More recent approaches are T-RES [29] and PyFUNS [30], which are built above
PyMite, a reduced Python virtual machine. Darjeeling [3] and TakaTuka [6] are virtual
machines that run a small subset of the Java language. All these platforms are built above
full-blown operating systems that require considerable amounts of resources. Thus, not
enough space is left for applications that go beyond simple environmental monitoring [31].
The interpretation of code based on programming patterns abstracting automation rules
is not totally new. For instance, the IFTTT paradigm (https://ifttt.com/discover), which
enables programming heterogeneous devices through rigid reactive rules adhering to a
trigger-action pattern, was adopted in several works [32,33]. Although this simple pattern
covers a wide range of IoT applications, the applicability is restricted to supported devices,
services, and partners, while more structured rules are difficult to implement. Similarly to
this approach, we consider sensing and actuation patterns as building blocks for IoT and
AmI applications, and propose a methodology to control resource-constrained hardware
using imperative sentences composed of natural language words.

Abstractions naturally lead to the inclusion of verification mechanisms in the de-
velopment stages as indicated by several examples the literature. ThingML [34] targets
resource-constrained microcontrollers and includes concepts to describe software com-
ponents using architecture models, state machines and an imperative action language.
UML-based frameworks for embedded system verification that complement verification
with a simulation tool have also been proposed [35,36]. In these cases, target code genera-
tion is not immediate, but it involves model-to-model transformations while verification is
performed offline.

The idea to combine a rule-base logic system for verification with a language to pro-
gram in a simple and intuitive way has been also proposed [37]. A simple target DSL is
defined, while specifications about software, setup, and hardware are described in the
knowledge base. Target code generation and automated verification relying on a logic
rule base system that holds specifications about the hardware setup have also been inves-
tigated [38]. The conformance to the embedded system specification is formally verified
along with the hardware configuration. Rule base systems to model new DSLs using sets
of if–then rules can be also found in the literature [39]. Novel logic languages intended for
formal specification and verification have been introduced to abstract, express and check
desirable properties, e.g., trust, in distributed systems [40], or to specify typical embedded

https://ifttt.com/discover


Sensors 2021, 21, 107 4 of 23

and Cyber-Physical System functionalities like sensing, actuation, and communication [41].
In the latter case, statistical, instead of exhaustive, model checking techniques are adopted
to avoid state space explosion [42].

Besides offline verification, software instrumentation has been suggested to address
online monitoring [43]. In this case, observers defined in a data-flow language are com-
piled into programs. Unlike our system, which binds hardware and software verification,
this approach only targets software. Observers may run on a separate computer from
that of the target application to check logic formulae [44]. Another approach consists in
running a bytecode-based virtual machine providing a safe execution environment above
an operating system on a resource-constrained device [45,46].

Other research efforts only address automatic test case generation by using differ-
ent formalisms such as Statechart-like behavioral models [47], interface-automata [48],
and graphical specification [49].

Differently from all these works, our approach combines a rule-base system for the
automated oracle and test case generation together with on-board verification. The key
idea is to bind high-level domain concepts to the related hardware operation as naturally
as possible. A high-level concept exists if corresponding executable code, which produces
low-level hardware effects, exists. Given an SUT expressed as a word sequence, formal
specifications are used to generate the code for both on-board sentence verification, i.e., the
oracle, and input test cases. Trigger-action patterns, which, as previously reported, abound
in related work, are naturally included by the proposed approach. Moreover, although the
oracle generation process is performed offline, it runs on the target hardware platform.
Finally, also the effects on the environment of hardware-driving code are taken into account.
The approach is feasible for applications including resource-constrained nodes as the
underlying software platform DC4CD, which we introduced in a previous work [31], runs
efficiently on this class of devices. To provide an idea of how tiny the resources offered by
the target hardware are, the IRIS Mote platform, a reference platform for Wireless Sensor
Networks (WSN), is based on an Atmega1281 8-bit Harvard RISC microcontroller unit
(MCU) clocked at about 8 MHz with 128 KB of Flash RAM for program storage, 8 KB of
RAM, and an 4 KB EEPROM. These computing resources are all that is available to run
code managing a 10 bit ADC, I2C, SPI, UART and GPIO interfaces, and a IEEE 802.15.4
compliant AT86RF230 radio chip.

The idea of crafting natural language-inspired programming patterns for such ma-
chines would not even be feasible without using an efficient computational paradigm.
The one discussed in the next section, on which DC4CD is based, has been proven to
be effective by comparisons not only with other symbolic programming approaches for
IoT and WSN development adopting interpreters like those cited above but also with
environments based on cross-compilation like Contiki and TinyOS [31,50] in terms of the
minimum required resources. Additionally, differently from these environments, it includes
the executable code exchange as a powerful mechanism supporting the development of
distributed applications despite its tiny footprint.

3. Computational Paradigm

The proposed approach exploits a simple stack-based symbolic computational model
that can be effectively implemented even on resource-constrained devices [51].

In this model, a program P is a sequence of symbols a1 a2 . . . an. Symbols can be either
numeric constants or words. Program execution is carried on evaluating the symbols in
the order they are provided. While constants are simply pushed on the stack, words are
used as keys to search in a structure called the word dictionary the related executable code.

For instance, execution of the code:

2 3 +

pushes 2 and 3 on the stack, then executes the word + that pops the two operands leaving the
result on the stack. This simple execution mechanism, based on postfix evaluation, has been
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notably exploited in the Forth programming methodology [52]. Forth environments are
particularly suited for embedded applications as they provide the features of a high-level
interpreter and compiler, and also of an operating system, with extremely reduced resource
requirements. For instance, the Forth environment we adopted for our experimental work
(see Section 6) occupies about 8 KB out of the 128-KB storage memory of the IRIS mote
target hardware. The effectiveness of this computational model in enabling high-level
programming on resource-constrained devices has been demonstrated in the development
of a software platform for distributed symbolic processing to support AmI applications on
WSNs [31,53], to turn on-board hardware specifications into automatic verification code for
subsystems [50] of resource-constrained devices, and to implement symbolic distributed
protocols that can be automatically verified [54,55] on resource-constrained WSN nodes.

In the following, the Forth terminology is used to describe the computational paradigm.
The stack discussed previously, also called parameter stack or data stack, is used for input
and output parameter passing among words while a second stack, the return stack, stores
return addresses, iteration control parameters and other temporary values. The word set
composing the word dictionary includes:

• Built-in words that directly map to machine code. These words can be considered as
terminal symbols and define operations on stack and memory as well as selection,
iteration and compilation constructs;

• User-defined words that are defined as chains of words already in the dictionary.
The evaluation of a defined word consists in the execution of each word composing
its definition, sequentially (Figure 2).

Words are defined by compiling a sequence of symbols into the dictionary. The com-
piling operations are incorporated into the computation of some built-in words, such as
the words : to enter compilation mode and ; to return to the interpretation state. For each
word compiled into the dictionary, a numeric value called execution token (XT) is defined
that points to the executable code of the word. The XT permits runtime computations on
code to be executed. The word [’] (bracket-tick-bracket) is used in the definition of a new
word to compile the XT of the following word in the chain as a literal. The word ’ (tick)
has the same behavior at interpretation time so we use this word to build expressions refer-
ring to XTs. For instance, in Figure 2 the expressions ’ relay-open and ’ relay-close
represent the XTs of the words relay-open and relay-close respectively, which are left
on the stack by the execution of the word relay. This word-based programming paradigm
gives the designer the possibility to develop code that is aligned to natural language syntax
and semantics.

lamp on

no relay

 ‘ relay-open ‘ relay-close drop execute

High-level  
sentence

Figure 2. High-level words define a sentence, which can be executed and verified on the target
machine. Words are defined in terms of lower-level words. Execution proceeds along the chain
of definitions.

As an example, we consider an application including an actuation device, such as a
lamp, connected to a relay on board the target hardware platform. A simple program to
switch the lamp on could be:

lamp on
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This would be actually a very natural choice for a Forth programmer. The goal ex-
pressed through this particularly clear semantics is reached, according to the computational
paradigm, by executing the two syntactically independent words lamp and on, one after
another. From the hardware perspective, switching the lamp on implies to drive the relay
to close the circuit. Relays can be either normally-open or normally-closed and in some
I/O expansion boards both kinds are provided. This two types are usually indicated in
technical documentation with the abbreviations no and nc so that the two words can be
naturally considered for inclusion in the dictionary. Hence, in such a case, the word lamp
could be defined by executing the following compiling code:

: lamp no relay ;

where the words no and relay must have been previously defined. For the example
depicted in Figure 2 the design choice is that the word no leaves on the stack the address
of the normally-open relay. Then, the word relay pushes on the stack the XTs of two
words switching the relay respectively on and off according to the relay address. The two
hardware-dependent words, here defined as the words relay-open and relay-close,
incorporate the low-level details, including the communication protocol over the specific
hardware interface (e.g., GPIO, SPI or I2C). Finally, the word on could be defined with
the code:

: on drop execute ;

The top-down design approach used for this example is shown in Figure 2.
The word on drops the first item on the stack, which is the address of the word

relay-close, and then executes the topmost item, that is, the address of the code associated
with the word relay-open, which finally switches the lamp on. The step-by-step stack
effects of this implementation are provided in Figure 3. Similarly, the sentence led on
could be used with an LED.

40 11043

11049

no

relay

on

‘ relay-open
‘ relay-close

11043 11043

drop
execute

lamp

Figure 3. Stack effects of the execution of the sentence lamp on.

Due to the inherent complexity arising from not relying on a predefined syntax,
the oracle problem for the symbolic paradigm provides a wide range of possible verification
activities that go beyond mere input generation for unit testing and syntactic verification.
An oracle, in this paradigm, is thus a sequence of words that: (i) is syntactically and
semantically valid, and (ii) verifies both the state of the target hardware and of the physical
environment are the expected ones. Generation of oracles and test cases is detailed in the
next section.

4. System Overview

The proposed system integrates knowledge about the environment, such as physical
quantities and cause–effect relations, hardware specifications as well as syntax and seman-
tics which model word sequences adhering to programming patterns inspired by natural
language (Figure 4).

Rules defining physical domain concepts and natural language patterns are not tied
to a specific application. Application code is instead strictly dependent on hardware
specifications. However, the latter can be used to test all the SUTs running on the same
hardware. Given the three distinct but closely tied components of the knowledge base,
the system gets the SUT as input and generates the oracle, if it exists, to be incorporated



Sensors 2021, 21, 107 7 of 23

into the SUT for its verification (see Figure 5). According to the computational paradigm
described in Section 3, the input program is as a sequence of high-level words relating to
the application domain. Similarly, the oracle is a sequence of words verifying hardware
effects during the execution of the test.

Generic 
Concepts

Application Specific 
Concepts

Hardware
Specifications

SUT
Physical Domain

Rules

Natural Language
Programming 

Patterns

Figure 4. The three components of the knowledge base and the conceptual dependencies among
them and the software under test (SUT).

Natural Language
Patterns

Target Hardware  
Specifications

Physical Domain
Rules Software Under Test

ORACLE	AND	TEST	CASE	GENERATOR

Pattern-based 
Test Case Synthesis

Automated Oracle 
Generation Runtime Verification

Figure 5. Architecture of the proposed automated test case and oracle generation system. The gener-
ated oracle is incorporated into the SUT for runtime verification on the target platform.

Due to the nature of target applications, we focus on testing each actuating and sensing
sentence as an independently verifiable component. For instance, in the following code:

temperature
50 < if

green led on
else

green led off
then

the sensing sentence temperature writes the value of the physical quantity to the top of
the stack (TOS), then a comparison with a constant threshold value determines which of
the actuation sentences is to be executed. The three sentences can be verified alone, and the
correctness of the three components can also be assessed through a repeated execution test
over a number of iterations (see Section 6).

Finally, given a programmer-defined word set, the system is able to generate test cases
with word sequences that are syntactically and semantically valid because they adhere to
natural language programming patterns specified in the knowledge base. Test cases and
the respective oracles are then executed on the target platform implementing the symbolic
computational paradigm. In the following, the components of the knowledge base as well
as the oracle and test case generation are detailed.
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4.1. Physical Domain Rules

The system includes the explicit specification of domain concepts and their relations.
However, physical domain features are confined to those provided by sensing and actuation
abilities of the hardware. In a broad sense, a system is specified in terms of its components,
object classes, and interactions with the physical domain through sensing and actuation
devices, as shown in Figure 6.

HARDWARE

Symbolic Computation

ACTUATORS

APPLICATION

Hardware/Software 
Domain Concepts

Physical Domain 
Concepts

Ports, Pins, Registers,
ADCs, Timers, …

Physical Quantities, 
Objects, Actions

Mapping from Hardware/Software Concepts to Physical Domain Concepts
Mapping from Physical Domain Concepts to Hardware/Software Concepts

SENSORS

Figure 6. The Physical Domain is bidirectionally mapped to an internal hardware representation
through sensing and actuation devices. Executable words of an application are defined in terms of
lower level words concerning ports, registers, timers, and other hardware components.

The same symbols used by rules to specify systems can also be defined as executable
words. For instance, the word lamp not only defines a specific domain object but is also
a symbol that is used in the high-level code running on the target hardware. The model
including rules for an application consists of specifications about:

• Objects and their features. Classes of objects composing the system, e.g., lamps,
LEDs, Heating Ventilation and Air Conditioning systems (HVAC), and so on, are de-
fined as facts in the knowledge base. Object specifications also include class properties,
possible states, and relationships with physical domain quantities.

• Properties of the physical environment. Unlike the approaches found in the litera-
ture [56], environmental features, which are physical quantities, are not described in
terms of differential equations or continuous functions. Rather, ambient properties
are confined to those measurable by the defined sensor devices.

• Actuation. High-level actions are described by means of their effects on the state of
objects. As an example, a rule defining an action is:

action([FinalState], [Object, _, FinalState]):- state(Object, FinalState).

Each action is declared by binding a list of words describing it in natural language
to a list containing an object name along with the initial and final states of the ac-
tion. Considering the above declaration, the simplest way to change the object state
is to indicate the final state to be reached, as with the command on. This action is
independent of the initial state, thus the universal quantifier underscore (_) is used
in place of a variable. The same applies to the definition including turn. The other
definitions depend instead on both states so they are explicitly evaluated through
named variables. Alternatively, the rules may include more complex natural-language
sentences expressing possible actions having the same effects on the object state. Sen-
tences that change (turn on, change state to on), or invert (invert state, toggle
state). The definitions can be queried with either one or two instantiated arguments,
to obtain the values satisfying the clause, if existing.
Words composing sentences can be the same words used to build high-level sentences
in the target programming language. Correct sentences are those satisfying actuation
programming patterns.
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• Sensing. Sensing allows to perceive the environment in terms of its physical quantities
by reading the appropriate sensor devices. The simplest command to sense the
environment consists in the name of the physical quantity to be measured. For instance,
sensing may be expressed by simply using the physical quantity name, as in the
following rule:

perception([Physical],[Object, _]):- sense(Object,Physical).

More structured sensing operations include commands to read a value or query a
sensor expressed as list of words from natural language.
Similarly to actuation, syntactically valid sentences, which include the same words
used to specify sensing commands, are those satisfying programming patterns
for sensing.

• Qualitative dynamics of the system. Actuation actions affect the physical domain
state. These cause–effect relations are specified by rules that bind physical quantities
to actuation abilities.

The knowledge base can be extended to include further objects, actions, perceptions,
and events of the target application domain.

4.2. Hardware Specifications

Beside rules defining physical domain features, the oracle generation engine requires
the hardware configuration as an input. From a structural point of view, the system is
made of hardware components that are instances of classes of objects. For sensor devices,
the hardware specification also includes the physical quantity they measure.

This description implicitly defines the physical quantities, which are considered
environmental properties of the system, as a whole. Furthermore, it is possible to specify
qualitatively hardware device properties as attributes, e.g., LED color, buzzer frequency,
timer resolution, and so on.

The hardware specifications also incorporate the semantic mapping between actuation
and sensing devices, and high-level expressions satisfying patterns that refer to objects.
The same object can be in fact identified by its unique label or through one or more
attributes that unambiguously distinguish it from other similar devices.

For instance, with respect to the specification provided in the knowledge base, the ex-
pressions led0 and green led are equivalent as they refer to the same device. The former
expression identifies the object by name, while the latter provides a natural way to refer to
the same device based on an attribute, that of emitting the green light. Similarly, sensor1
is equivalent to light sensor.

This equivalence results from rules that incorporate common-sense ways of referring
to objects. In fact, when more instances of the same object class are present, an attribute
is used as an object qualifier (e.g., green led vs. yellow led). Otherwise, the attribute
is unnecessary as the instance can be uniquely referred to by simply using the name of
its class. In case multiple objects have attributes with identical values, e.g., a system with
two green LEDs, several choices are possible. The first is to refer to hardware components
through their respective low-level identifier, which is in most cases straightly taken from the
specifications (led0, led1). Otherwise, more attributes can be specified to distinguish one
from another. For instance, in the case of the two green LEDs their function could be used
as attribute value to signal a “ready” state with attribute(led0, ready) and a “loaded”
state with attribute(led1, loaded), respectively. Finally, symbolic enumeration could
be used to define a first green led and a second green led. The latter could be useful
in a few circumstances, for instance to drive an LED bar-graph meter.

The system also provides specifications about actuation effects. Rules link an object to
an actuation on it together with both the low level symbolic code to perform the action and
code that verifies that the expected internal hardware configuration is reached. For instance,
the low level verification code for actuation may include executable symbols related to
hardware concepts such as porta or pin_input to set the data direction register.
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For perception actions, the command to read the value enables the Analog to Digital
Converter (ADC) (+adc), fetches its value to the TOS (adc@), then disables the ADC (-adc).
In this case, the verification code fetches the value of the ADC on the TOS and checks that it
equals the value that the previous execution of the command to be tested pushed below the
TOS. A summary of low-level executable words used in the hardware effect specifications
above is provided in Table A1.

The use of verification code in the oracle generation is detailed in Section 4.3, while
the use of the hardware driving code to perform repeated test execution is discussed in
Section 6.

4.3. Automated Oracle Generation

As described in Section 3, the implementation of the symbolic computation paradigm
fosters the development of DSLs that directly drive the hardware without the need of
multiple models and languages. As this approach naturally supports writing a program as
a sequence of high-level words, we identified a set of programming patterns whose syntax
and semantics are very close to natural language sentences.

Even if the SUT is verifiable, it is not sure that a behavior for the target system either
exists or is as expected. In fact, the implementation of each word on the target machine
is left to the programmer that defines the computation associated with the execution of
each symbol.

For instance, there are several possible implementations for each of the words com-
posing the sentence lamp on, although having the same hardware effect. Considering the
implementation introduced in Section 3, running the word lamp implies the execution of
the sentence no relay. The words relay and on may be defined as such:

: relay
no? if

[’] no-open [’] no-close
else
[’] nc-open [’] nc-close

then ;

: on drop execute ;

where the word no? checks if the normally open relay address is contained in the TOS.
The word [’] compiles the XT of the following word as a literal. However, another
implementation option is:

: relay
parse-name
s" on" compare if

no? if no-open else nc-open then
else
no? if no-close else nc-close then

then ;

Differently from the previous implementation, the word relay parses the next symbol
in the text input stream. If the symbol on is encountered –that is, the result of the comparison
of the symbol and the constant string on left on the stack by s" on" equals to true– the
relay is switched to close the circuit, otherwise the relay breaks it. Words no and nc are
defined to respectively set or reset a boolean flag that is read and put on the TOS by the
word no?. In this case, even if it is requested to complete a sentence the word on is not
defined in the dictionary.

This example shows that, as different implementations are possible for the same high-
level sentence, it is useful to incorporate mechanisms to verify that the program works
correctly, i.e., the lamp reaches the on state, during its execution.

Our system specifies the mapping between high-level object states and the corre-
sponding internal hardware configuration, as described in Section 4.2. Hence, the system
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generates the oracle as the sequence of words to check that the actual hardware configura-
tion meets the specified one. The oracle code is then embedded into the SUT while runtime
verification occurs on the target platform. The oracle generation process is schematically
shown in Figure 7.

Pattern 
Matching Pattern satisfied? Mapping exists?

yes

no

No Oracle for SUT 

Oracle 
for SUT 

SUT 

no

No Oracle for SUT 

yesHardware 
Mapping

Figure 7. The oracle generation process.

Given a high-level sentence as the SUT, the first step includes syntactic and semantic
verification to check that the sequence of words satisfies one of the specified patterns.
If pattern matching fails, then the system will signal an inconsistency for that SUT. In this
case there is no oracle. Otherwise, a high-level sensing, actuation or system sentence was
recognized. A specific mapping between the high-level sentence and corresponding hard-
ware is then looked for in the knowledge base. In the case of system patterns, the mapping
includes code to verify the behavior of the network as a whole, by some algorithm for
distribution of code or value collection. A failure at this point signals an inconsistency
between the action, which is implemented by the sentence, and the expected high-level and
hardware states. The oracle code is thus not generated. Otherwise, the oracle is generated
and appended to the SUT code to be run on the target hardware.

The oracle generation does not involve any analysis of the word definitions designed
by the programmer. Rather, the output code (SUT + oracle) is executed on the target
machine and the result is placed on the parameter stack. A positive outcome indicates that
the actual hardware configuration matches the specifications and suggests correct word
implementations. For instance, given:

green led on

as SUT, the system would generate the following code:

green led on porta @ 2 and 0 =

Code porta @ 2 and 0 = verifies the effect of the action by fetching the value of
porta and performing a logic and operation with the bitmask value 2. If the value is equal
to 0, then the pin is low and led0 is on.

At the end of the runtime execution the oracle would leave a truth value expressing the
outcome of the test in the TOS. As the input sentence must meet the pattern, the high-level
action in the input sentence, which was matched to it, must also match the respective
hardware effect so that the corresponding oracle could be generated. Moreover, the object
in the high-level action must be mapped to a hardware device. In essence, the oracle
generation takes place by unification with the action and the object.

In the case of sentences adhering to system patterns, the oracle consists of a sequence
of words to be run on single nodes assessing that the whole system task has been per-
formed correctly. This requires nodes to be able to send symbolic code to peers, a feature
unsupported by operating systems for resource-constrained devices. In our case, for the
purpose we resort to the syntactic construct tell: :tell that we defined very easily in
our experimental software platform due to the effectiveness of the computational model
we adopted [53]. For instance, given:

network green led on

as SUT, the system would generate the following code:

network green led on bcst tell: porta @ 2 and 0 = :tell
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The oracle for a network task, for either actuation or sensing, consists of the sentence
describing the task to be performed, i.e., green led on, followed by its oracle. In the
example above, the oracle is enclosed between tell: and :tell, all preceded by the
broadcast address bcst. The oracle for the given SUT is executed by receiving nodes and
the result of verification is placed on the stack of each node, as in the previous example.
A sensing task example is provided in Figure 8.

Oracle generator

network read light sensor value

network read light sensor value bcst tell: adcl c@ adch c@ 8 lshift or :tell

Rule-base System

Target device stack content  
after oracle execution

Target 
Device

Target 
Device

Target 
Device

TRUE

Network
SUT

OracleSUT

Target 
Device

Target 
Device

Figure 8. Network sensing task example. A SUT in form of a sentence is broadcast along with the
generated oracle. A TRUE value on top of the target device stacks indicates that the programmer
implemented the sentence correctly.

In the case of a SUT performing an aggregation task at system level, as the following:

network light average

a sequence of words is generated and sent to remote nodes to compute the average light.
At the end of the verification, the value from the averaging process implemented by the
programmer and the value resulting from the execution of the verification code are left on
the stack to be compared so to assess the correctness of the SUT.

4.4. Automated Test Case Generation

The proposed system exploits physical domain rules, and hardware and software
specifications to automatically generate test cases.

The flowchart of the automated test case synthesis is shown in Figure 9.
Provided with the source code as a collection of word definitions, which have been

designed by the programmer, the system uses the application domain word set as input.
The first step thus just extracts only the names of each defined word from the source code.
As a result of the unification mechanism, the system generates a collection of executable
sentences that are obtained by exploiting all the possible word sequences. For each of
these sequences, the system verifies that both syntactic and semantic specifications are
met. Hence, valid test cases are sequences matching natural language-like patterns in the
knowledge base. Each test case is provided as input to the oracle generator, as detailed
in the previous section. If the oracle is not generated, then the sequence is removed from
output test cases. Otherwise, the system incorporates the oracle into the test case. Test
cases and the respective oracles are stored in separate source files and executed one at a
time for runtime verification on the target hardware.
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Word Extraction Test Case Generation Oracle Generation

Oracle  
exists?

yes

no

Test Case + Oracle

Further 
sequence?

noExit

Program 
File

yes

Figure 9. Test case generation. Given the word set defined by the programmer, the system generates
all possible executable sentences along with the respective oracles.

For instance, supposing that the programmer defined the domain-specific words green,
yellow, led0, led, humidity and on, the system generates the test cases reported in
Figure 10.

green 
yellow
led0
led

humidity
on

Input Word Set

green 
yellow
led0
led

humidity
on

green yellow
green led0
green led

green humidity
green on

yellow green
yellow led0
yellow led

yellow humidity
yellow on

led0 green
led0 yellow

led0 led
led0 humidity

led0 on
humidity green
humidity led0
humidity on

green yellow led0
…

Word 
Combinations

green led on
yellow led on 

led0 on
humidity

Output
Test Cases

Figure 10. Given an input word set the system generates the test cases by combining the input words
into executable sentences.

5. Ambiguous Semantics and High-Level Commands in Real Use Cases

As natural language is inherently ambiguous, building concatenative programming
patterns inspired by natural language is not devoid of risks and pitfalls especially when
defining commands for high-level tasks involving multiple devices. However, the spread-
ing adoption of voice-based virtual assistants permitting the execution of commands in
AmI and IoT applications signals that this is a path to be pursued. Indeed, the verification
mechanisms of our approach mitigate some of the issues potentially arising in the design
of programming patterns inspired by natural language. In the following, we discuss how
semantic ambiguities are tackled in the proposed system, operatively. Then, we show the
current system capabilities to verify high-level commands involving multiple devices.

As a first example, we consider potential ambiguities that may arise from the use of
plural nouns. To define the plural form of nouns, the knowledge base holds facts such
as plural(led,leds). As a consequence, the sentence

network green leds on

can only be interpreted as the command that turns all the green LEDs in the system on.
On the contrary, the sentence

green leds on

is ambiguous as it is not easy to discern whether it addresses the system or a single device
that has several green LEDs. Similarly, sentences including universal quantifiers could
have multiple meanings:
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all green leds on

Several disambiguation strategies can be considered. The first one is to specify two
different patterns generating disjoint set of sentences. For instance,

green leds on

could indicate a command to be executed only locally, while

all do: green leds on

could specify a network command. A second strategy makes use of a pattern with two
universal quantifiers. In this case, a valid sentence could be the following:

all all green leds on

The first quantifier would specify that the command refers to the whole network, while
the second would indicate that all the green LEDs of a node are to be switched on. Another
possible solution could be to let ambiguous sentences to include some context. However,
we deliberately use context-free patterns as the implementation is left to the programmer.

Finally, the strategy that is adopted in this work is to solve the semantic ambiguity
operatively. Thus, the sentence:

all green leds on

could satisfy either a system or a local pattern. Two oracles are associated to this sentence
and are both generated by the rule system. The automatic generation of more than an
oracle for a sentence warns the programmer about an ambiguity. Both oracles are then run
on the target. The one associated to the system command interpretation is run first. If it
succeeds, the green LEDs are turned off, then the local oracle is executed. The results of
the oracles give the programmer useful information about the correspondence of the SUT
execution with its design.

Sentences including plurals are executable only if more than one instance of an object
is specified in the knowledge base. For instance, if two green LEDs are present, the oracle
generation process for the sentence:

green leds on

produces the concatenation of the oracles for the sentences first green led on and
second green led on. Anyway, generating possible oracles for ambiguous sentences al-
lows the programmer to discriminate verification results occurred by chance or deliberately.

Sometimes, ambiguities are only apparent. For instance, consider the sentence:

green yellow and led on

In the natural-language interpretation the word and would be a postfix join operator.
The sentence would then represent a command to turn both the yellow and the green LED
on. However, in a programming language it would be unreasonable to give the word and
meanings other than that of the boolean operator. Moreover, the low-level mechanism
to turn the LEDs on, as showed previously, could consist in setting a couple of bits in an
output I/O port register. The words green and yellow would simply push the respective
bitmask on the stack. The sequence of words led on would then read the content of the
I/O port register, apply the boolean OR to both values, and write the result to the I/O port
register. Thus, the sentence would not be executable and it should rather replaced by:

green yellow or led on

The proposed system can generate and verify high-level commands involving many
devices altogether, as found in real-life applications. In this context, the term “scene” is
spreading in the IoT parlance to define a set of low-level commands leading to the desired
configuration of a set of devices. For instance, executing the scene named “Good night”
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would turn all the lamps in a house off. In the following, we conform with this use of
the term “scene” even if the related concept turns out to be much less central. In fact,
instead of resorting to predefined scenes, our approach makes use of rules about the
qualitative dynamics of the system. Given a set of devices, their initial state, and a high-
level command, the system generates all the possible scenes to reach the final state. Scene
code is produced by resorting to the prototypal hardware-driving code in the knowledge
base. A scene is thus a low-level executable description of a state of the system. In general,
multiple verifiable sentences share the same low-level scene code. The latter is thus used to
group sentences producing the same hardware effect. As a consequence, all the high-level
verifiable sentences associated to each scene can be generated along with the expected state
and the oracle for each involved device.

As an example, we consider an environment including an LED, a lamp and a light
sensor. A light increase may be produced alternatively by switching on either one or both
light emitting devices. The system can be queried for all the scenes implementing the
hardware effect of the increase light command as such:

Devices=[led0,lamp1,sensor1], Goal=[increase,light], InitialState=[off,off,_],
scene_by_devices(Devices,Goal,Sentences,Oracles,Scenes,InitialState,FinalState).

The code for the generated scenes and the respective hardware-effect oracles is shown
in Figure 11.
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Light 
Sensor

Lamp

LED

Light 
Sensor

1

2

Lamp

LED

Light 
Sensor

3

Scene1: +dio 40 invert twdr c@ and twi.tx -i2c
Verifiable sentences: (lamp1 on)  (lamp on)  (turn lamp1 on) (turn lamp on) (lamp1 
change state to on) (lamp change state to on) (lamp1 invert state) (lamp 
invert state) (lamp1 toggle state) (lamp toggle state)
Hardware-effect oracle: twdr c@ invert 40 and 40 =
Physical-effect oracle:  
32 46 high  32 46 pin_output 1 40 pin_input 1 40 low +adc 1 adc@ -adc 32 46 
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Light 
Sensor + increase light

Rule-based System

Scene 2: 2 porta low
Verifiable Sentences: (led1 on) (led on) (turn led1 on) (turn led on) (led1 change 
state to on) (led change state to on) (led1 invert state) (led invert state) 
(led1 toggle state) (led toggle state)
Hardware-effect oracle: porta @ 2 and 0 =
Physical-effect oracle: 32 46 high 32 46 pin_output 1 40 pin_input 1 40 low +adc 1 
adc@ -adc 32 46 low 32 46 pin_input
2 porta low
32 46 high 32 46 pin_output 1 40 pin_input 1 40 low +adc 1 adc@ -adc 
32 46 low 32 46 pin_input <

Scene 3:  +dio 40 invert twdr c@ and twi.tx -i2c 2 porta low
Verifiable Sentences: (lamp1 on led1 on) (lamp on led1 on) (lamp1 on led on) (lamp 
on led on) (turn lamp1 on) (turn led1 on) (turn lamp on) (turn led1 on) (turn 
lamp on) (turn led1 on) (turn lamp on) (turn led on) …
Hardware-effect oracle:  twdr c@ invert 40 and 40 = porta @ 2 and 0 = and
Physical-effect oracle: 32 46 high  32 46 pin_output  1 40 pin_input 1 40 low +adc 1 
adc@ -adc 32 46 low 32 46 pin_input
+dio 40 invert twdr c@ and twi.tx -i2c 2 porta low
32 46 high  32 46 pin_output  1 40 pin_input 1 40 low +adc 1 adc@ -adc  32 46 
low 32 46 pin_input <
 

Figure 11. Given the set of hardware devices in the example, the initial state, and the high-level
command increase light, the system generates three possible scenes. For each, all the verifiable
sentences producing the same final state are also generated, along with the respective hardware-effect
and physical-effect oracles.

Besides hardware-effect verification, the causal relations modeled in the knowledge
base permit to implement another verification mechanism for high-level commands based
on their physical effects. In the example, a physical-effect oracle involves the feedback
provided by the light sensor. In particular, the test oracle for [increase, light] encloses
the scene code between the low-level code to acquire a light sample and the comparison
code to assess the effective increase of light. The three physical-effect oracles generated for
this high-level command are also reported in Figure 11.

6. Experimental Evaluation

This section describes the experimental results of the proposed system. In particular,
tests evaluate both the formal system used for automatic oracle generation and the code
generated by the formal system on the target machine. Concerning the formal specifica-
tions, the tests consist in (i) assessing the number of sentences which are executable and
verifiable by the system with a given configuration of the knowledge base; (ii) evaluating
the complexity of the specification code in terms of Lines of Code (LOC). On the other
hand, as verification takes place onboard the target hardware, we also performed tests
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consisting in (i) generating repeated test execution code to verify the efficiency of a set of
SUTs, which are usually required as commands in IoT applications, and (ii) evaluating the
average execution time of a SUT on a target device.

Despite the fact that, for the sake of brevity, just a minimal set of concepts and
hardware device specifications has been included in the test knowledge base, the number
of valid sentences exceeds 1000. Sentences are grouped by pattern type and the number of
valid sentences. The number of sentences which adhere to each of the considered patterns
and that can be automatically verified by the system as an oracle exists are reported in Table
1. To evaluate the formal system upstream the oracle generation process, the knowledge
base was partitioned into components, as reported in Figure 4 and LOC was measured for
each of them. Results concerning the specification system code complexity are provided in
Table 2.

Table 1. Executable sentences for the test knowledge base.

Number Example

Local
Sensing 45

light, humidity, infrared, sensor1 sample, light sensor sample, sensor2
sample, get light sensor sample, get sensor1 value, query light sensor,

read humidity sensor, ...

Actuation 80 led0 on, led1 on, first green led on, second, green, led on, led0 off,
led1 off, turn first green led on, ...

Aggregation 36
humidity average, humidity maximum, humidity minimum, humidity samples

average, humidity, samples maximum, humidity samples minimum,
light average, ...

Time 23 seconds, milliseconds, current time in milliseconds, current time in
seconds, elapsed, get milliseconds, get seconds, ...

System
Sensing 180 network light, network light sensor sample, all do get humidity sensor

sample, all first green led on, network light average, ...

Actuation 320
network led0 on, network first green led on, all 4KHz buzzer change

state to off, network lamp on, all lamps on, all nodes do lamp off, all
do turn 4kHz buzzer off, ...

Aggregation 144

network humidity average, network humidity maximum, network humidity
minimum, all node do humidity samples average, network humidity,

network samples maximum, network humidity samples minimum, all node do
light average, ...

Time 92
all seconds, all milliseconds, network seconds, all do current time in

milliseconds, network current time in seconds, network get
milliseconds, all get seconds, ...

Plural Local 31 green leds on, leds on, green leds off, buzzers change state to off,
buzzers change state to, on, get sensors value, ...

System 155
network green leds on, network leds on, all buzzers change state to

off, all get sensors sample, all read sensors, all buzzers off, all do
sensors sample, ...

Total 1106

Table 2. Knowledge base code complexity in terms of Lines of Code (LOC).

Component LOC

Physical Domain Rules 85
Hardware Specifications 55
Natural Language Programming Patterns 57
Automated Oracle and Test Case Generation 30
High-Level Commands in Real Use Cases 11

Total 238
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The second evaluation is about how the rule-based system can also be used to generate
code that performs repeated test execution on the target hardware. Beside verifying
correctness of code implementation, repeated tests can be used to assess the efficiency of
SUTs with respect to reference low-level code, which is the hardware-driving code, stored
in the knowledge base.

To this purpose a natural language-like sentence is given as a input to the system
and an oracle is generated, as described in Section 4.3, and appended to the sentence. The
resulting code (SUT + oracle) is included in a loop that executes it #Repetitions (number of
repetitions) times along with code updating statistics concerning correctness with respect
to the effects on the hardware and execution time. For the correctness assessment the
count of failed verifications is recorded. This loop is contained in another one that makes it
execute for values of #Repetitions ranging from 1 to #MaxRepetitions (maximum number
of repetitions) with a Step increment. Both #MaxRepetitions and Step are chosen by the
tester. For each iteration of the external loop the statistics are collected and associated with
the value of #Repetitions. The collected data are useful to verify the correctness of the high-
level code, highlighting issues triggered by increasing repetitions of the sentence like stack
overflows, memory leakages, unresponsive subsystems, or conflicts with interrupt service
routines. Estimates of the asymptotic trend of the execution time can also be easily plotted.

An execution time baseline estimator can also be generated that exploits the hardware
specifications replacing the high-level sentence with the related sequence of low-level
symbols defined in the knowledge base (see HWDrivingCode in Section 4.2). Provided that
this code has been crafted as efficient as possible, driving the hardware through low-level
words, the estimator provides the lower bound for the execution time, as application
code is destined to trade expressiveness and abstraction for execution time. Considering
the simplest sentence for this purpose (light) according to the defined patterns (see
Section 4.1), the rule base system is queried to generate the repeated test code as follows:

SUT=[light], Step=100, repeated_execution_test_code(SUT,Step,TestCode).

The generated test code is provided in Figure 12. The code requires the upper bound
(#MaxRepetitions) to be on the stack before execution. The step increment (Step) is 100.
The sensing operation leaves the sensory reading in the TOS. The target hardware for our
tests was an IRIS WSN node running the AmForth (v. 5.4) Forth environment [57]. As
the light sensor on the target device is connected to the ADC, the oracle consisted in the
word sequence to read the ADC register and to compare its content with the TOS. In the
following, this example SUT is addressed as benchmark SUT 1. Results of the repeated test
execution with the upper limit of 2000 repetitions are reported in Figure 13 (benchmark
SUT 1) along with the results of all the other benchmarks. The system behaved correctly
for any repetition number. As expected, the baseline time was slightly lower than the
execution time on the target platform. This difference, amounting to a few CPU cycles, is
easily ascribed to the indirection code included in the definition of light, which is missing
in the inlined definition of the Baseline test code. As seen in the graph plot, this difference
would be actually measurable with rather low precision on the target hardware, due to the
relatively large granularity of the timescale of the timer circuit with respect to the execution
time of the indirection.

The same evaluation was carried out for the representative set of SUTs collected in
Table 3. Results are provided in Table 4. The zero values for test with #Repetitions = 1 are
again ascribable to the precision of the on-board timer circuit.
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Figure 12. Repeated execution test codes for a high-level sentence to acquire a light sample. The high-
level hardware-driving code and its oracle is put in the internal loop and statistics are updated.
The external loop increments the upper limit of the inner loop by 100. The word tick acquires the
current value of the timer. The timer value is fetched at the start and at the end of the internal loop to
obtain the execution time by difference.
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Figure 13. Results of repeated test execution for the benchmark SUTs.
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Table 3. Benchmark SUT number and the respective code.

Benchmark
Number SUT Code

1 light
2 lamp on
3 alarm on
4 light 400 < if lamp on else lamp off then
5 time @ elapsed 5 < if all leds on else all leds off then

Table 4. Time per repetition [ms] for a set of benchmark SUTs and the respective baseline test code.

Benchmark
Number Description #Repetitions

Time per
#Repetitions [ms] 1 10 100 400 800 1000 1400 1800 2000

1. Acquire a light sample SUT Test Code 1 18 180 720 1441 1800 2521 3241 3600

Baseline Test Code 1 17 163 652 1305 1631 2284 2937 3263

2. Switch a lamp on SUT Test Code 2 28 175 700 1399 1749 2448 3148 3497

Baseline Test Code 2 15 152 605 1211 1514 2119 2725 3028

3. Fire an alarm SUT Test Code 0 5 42 167 333 416 583 749 833

Baseline Test Code 0 3 28 111 222 278 389 500 555

4. Turn the lamp on if the below SUT Test Code 5 52 525 2101 4202 5252 7356 9452 10,503

is under a certain value Baseline Test Code 4 47 470 1880 3763 4702 6582 8645 9404

5. Turn all the LEDs on if elapsed SUT Test Code 1 6 59 233 467 584 817 1051 1167

time is over a threshold Baseline Test Code 0 5 53 213 425 531 744 957 1063

Finally, precise estimates of the execution time of the SUT were obtained by repeating
execution over the maximum number of iterations (2000) used for the repeated execution
tests. This evaluation provides an assessment about the average execution time, which
is typically desirable on IoT applications with time constraints. Indeed, the programmer
can benefit from an estimate about the execution cost of each command on the real target
hardware before deployment. Estimates for a representative set of benchmark SUTs were
measured and reported in Table 5. Finally, results also show that by adopting the repeated
execution methodology for tests on-board estimation of execution efficiency of high-level
code can be performed on resource-constrained devices with as low as 128 KB of storage
memory, 8 KB of RAM, and a 10 MHz CPU.

Table 5. Average Execution Time over 2000 repetitions for a set of benchmark SUTs along with their
respective baseline test code.

Benchmark
Number Average Execution Time [ms] Efficiency Ratio

(SUT/baseline) Number of Words

SUT Baseline SUT

1. 1.8 1.63 1.1 16

2. 1.75 1.51 1.16 17

3. 0.42 0.28 1.5 14

4. 5.25 4.70 1.12 55

5. 0.58 0.53 1.10 45
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7. Conclusions

Design and verification of applications interacting with physical environments is
challenging as it requires the programmer to combine models and languages to treat
different domain aspects while dealing with resource constraints. Novel programming
paradigms and high-level abstractions are needed to address these issues and support the
interoperability required by AmI and IoT scenarios.

In this paper we proposed a knowledge-based methodology for the development of
applications as sequences of words matching natural language patterns. The approach
exploits a simple but effective, even on resource-constrained devices, stack-based symbolic
computational model and a knowledge base integrating specifications about physical do-
main, hardware specifications, and programming patterns. The knowledge base explicitly
specifies the mapping between recurring operations, such as sensing and actuation, and the
corresponding hardware. We also showed how the knowledge base can be easily extended
to accomodate more complex patterns that describe commands for a system or a network
as a whole. An oracle and test generation system for runtime verification of applications
on the target hardware was also presented. Although the oracle generation is offline,
verification is performed on the target platform, differently from other approaches in the
literature. Test generation produces code to verify that program components behave as
expected in repeated executions.

The proposed methodology supports the definition of DSLs that are verifiable on
independent hardware devices to be integrated into larger systems. These DSLs have
clearly defined boundaries with respect to the domain included in the knowledge base but
do not force software designers to choose a specific syntax. Moreover, due to the simplicity
of the adopted computational model, the defined DSLs can be used on both resource-rich
and resource-constrained nodes. Furthermore, as symbols themselves represent domain
concepts, interoperability can be pursued without recurring to complex ontologies. In fact,
symbols can be directly taken from natural language and combined according to common
sense patterns. Software designers adopting the Forth methodology are used to building
such patterns, usually through several iterations of refactoring. Future work will investigate
recurrent operations and interactions among nodes, addressing communication patterns
for distributed programming. Other possible future extensions include time intervals as
well as non imperative patterns. With respect to system patterns, other extensions will be
evaluated, for instance to partition nodes in groups satisfying given conditions.
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Appendix A

Table A1. Summary table of a subset of low-level words used by specification rules in Section 4.2. Standard Forth words are
described in the upper part of the table, hardware-dependent words in the lower.

Word Description

@ Fetch a memory word from the address left on the TOS
c@ Fetch an 8-bit value from the address left on the TOS
! Store the second item on the stack to the address in the TOS
+! Increment the content of the address on the TOS by the second item on the TOS
<> Leave true on the stack if the two topmost items on stack are different
= Leave true on the stack if the two topmost items on stack are equal
abs Compute the absolute value of the number in the TOS
and Logical and between the two topmost item on the stack. Result is written to TOS
do Start a defined iteration. The upper and lower bound must be on the stack
I Push the current value of the iteration counter on the stack
if If the value in TOS is true execute the following words until the word then is reached,

otherwise skip past them
+loop Increment the current value of iteration by the number in the TOS
lshift Using the two topmost values (n, k) on the stack perform a logical shift left of k

bits-places on n leaving the result in the TOS
or Logical or between the two topmost item on the stack. Result is pushed on TOS
s¨ Parse the next sequence of chars until ¨ is encountered. The string address and

its length are left on the stack
swap Swap the two top elements of the stack
then Conclude the selection construct and continue execution

ADCL Leave the address of the IRIS mote ADCL data register (low byte) in the TOS
ADCH Leave the address of the IRIS mote ADCH data register (high byte) in the TOS
+adc Enable the ADC
adc@ Fetch the content of ADC writing it to the TOS
-adc Disable the ADC
low Turn a port pin off
high Turn a port pin on
porta Leave the address of target hardware port PORTA in the TOS
pin_input Set a port Data Direction Register (DDR) pin as input
pin_output Set a port Data Direction Register (DDR) pin as output
+dio Initialize the I2C subsystem and send the address of the 8-channel digital I/O

expander on the MDA300 data acquisition board
twdr Leave the Two Wire (I2C) Data Register (TWDR) address on the stack
twi.tx Send one byte through I2C
-i2c Send stop condition through I2C
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