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Abstract: The localization of multiple scattering objects is performed while using scattered waves.
An up-to-date approach: neural networks are used to estimate the corresponding locations. In the
scattering phenomenon under investigation, we assume known incident plane waves, fully reflecting
balls with known diameters and measurement data of the scattered wave on one fixed segment.
The training data are constructed while using the simulation package µ-diff in Matlab. The structure
of the neural networks, which are widely used for similar purposes, is further developed. A complex
locally connected layer is the main compound of the proposed setup. With this and an appropriate
preprocessing of the training data set, the number of parameters can be kept at a relatively low level.
As a result, using a relatively large training data set, the unknown locations of the objects can be
estimated effectively.

Keywords: localization problem; inverse scattering; neural networks; scattered data

1. Introduction

Determining the location and material properties of objects is an important practical
problem in a number of measurement systems. For this, a general approach is to detect
how the objects scatter certain incoming waves. One can apply either sonic or electro-
magnetic waves, depending on the experimental setup. This general framework includes
radar and sonar systems, seismic methods in geophysics, and a number of methods in
medical imaging, such as ultrasonic methods and computed tomography. In many cases,
only the reflection of certain pulse-waves is measured. At the same time, a scattered
periodic wave involves more information, which can make it possible to perform the
quantitative analysis of the scattered objects. This is used, e.g., in ground penetrating
radar systems and through-the-wall imaging for monitoring buildings, assisting archaeo-
logical explorations and seismic surveys. In this case, given point-source wave pulses or
plane waves are emitted. Typically, time-harmonic waves are used, often with multiple
frequencies. In realistic cases, even the detection of the scattered waves is non-trivial, since
one can only detect these in a very limited region in contrast to a conventional computer
tomography or magnetic resonance imaging.

The corresponding mathematical models—leading to inverse problems—contain
a number of challenges also for the theoretical studies. Accordingly, different numerical
methods were developed in order to assist and fine-tune different radar systems, ultra
sound systems or evaluate various geological measurements. All of these conventional
methods use a kind of regularization, since the “raw” mathematical equations correspond-
ing to the physical laws lead to unstable and ill-posed problems. Even these regularized
methods, which become stable and possess unique solutions, are computationally rather
expensive and somewhat arbitrary, owing to the choice of the regularization. In any
case, these lead to involved models and the corresponding simulations demand extensive
computational resources.
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Neural networks offer a modern approach for replacing this conventional method [1,2].
Having a large number of direct measurements or simulations, one can try to automatize
the solution and develop a relatively easy localization procedure using neural networks.
In this case, the time-consuming compound can be to obtain sufficiently large training
data and train the network. This can be what identified with an immense number of
observations and, based on this, carrying out a long calibration procedure. Having a
trained network at hand, the corresponding inverse problem can be solved quickly, even in
real-time.

Accordingly, in the last decade, a number of neural networks were developed for
specific tasks to assist or replace conventional sensing and measuring.

1.1. Statement of Problem

We focus on the case, where a scattered plane wave is analyzed for finding the location
of multiple objects. In order to mimic a realistic situation, the scattered waves were only
detected in a limited region. In concrete terms

• Two uniform unit disks with reflecting boundaries were placed in free space.
• Given plane waves were applied from several directions.
• The scattered waves were measured only on the bottom edge of a square-shaped

domain, where the phenomenon was simulated.
• The position of the obstacles had to be determined while using the scattered waves.

Figures 1 and 2 show the corresponding geometric setup and a sample scattered wave.

Figure 1. Absolute value of a full wave in a simulation with given obstacles. An upward planar
incident wave was applied with k = 4π.
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Figure 2. Absolute value of the scattered wave in a simulation with given obstacles. An upward
planar incident wave was applied with k = 4π.

1.1.1. Mathematical Model

The conventional direct mathematical model of wave scattering is the following
partial differential equation (PDE from now on) for the unknown complex-valued function
u : R2 → C: 

(∆ + k2)u(x) = 0, for x ∈ R2 \Ω−

−∂ν(x)u(x) = −∂ν(x)uinc, for x ∈ ∂Ω−,

lim
|x|→∞

|x|
d−1

2 (∂ru(x)− iku(x)) = 0,
(1)

where |u| corresponds to the amplitude, Ω− denotes (all of) the obstacles (the union of the
two disks in Figure 1) with the surface ∂Ω−, and k denotes the frequency of the scattered
wave. In the first line, the Helmholtz equation is given for the propagation, the boundary
condition in the second line corresponds to the reflecting obstacles, while, in the third line,
the usual Sommerfeld far-field radiation condition is formulated. For more details, we refer
to the review paper [3].

For fixed obstacles Ω−, this leads to a well-posed problem, which is usually solved
with an integral representation while using the Green function for the operator ∆ + k2.
This is also applied to perform training data for our approach.

However, we investigate an inverse problem for the following: the solution u is known
in Ω0 ⊂ R2 \Ω− and we have to determine Ω−. For our case, Ω0 is neither an open subset
of R2 \Ω− nor a closed boundary: this is only a side of the computational domain. In this
way, any theory ensuring the well-posedness cannot be applied for our inverse problem.
Nevertheless, despite all of these difficulties, methods that are based on the mathematical
analysis are developed, see, e.g., [4].

1.1.2. Neural Network Approach

As mentioned, a recent research direction for investigating inverse problems that
correspond to (1) is given by neural networks. Here, using an enormous number of
location-scattered wave “pairs”, the network will learn to associate a pair of locations to a
certain scattered wave.

A comprehensive work explaining the background, the basics, and dealing with earlier
achievements can be found in [5,6]. We refer to these works in order to understand the
standard structure of the corresponding neural networks.

In the last few years, these methods were developed further and applied to real-life
cases: deep neural networks were constructed to also detect complex shapes using scat-
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tered waves in [7,8], and the method is also applicable in the case of non-linear waves [9].
A recent review on this topic with a number of further references can be found in [10].
Our geometrical setup and the equations in (1) are also related to the problem of sound
source localization, which is also investigated while using neural networks, see, e.g., [11,12].
Detecting the structure of entire domains is one of the most important and challenging prob-
lems in this area, which have also been recently tackled by applying neural networks [13].

Obviously, the structure of the neural network has a significant impact on the results.
The starting point of such constructions is mostly a well-working neural network structure,
which is often used for image recognition problems. Such general structures for the present
purposes are shown in [5,6].

In [14], a new direction considering the neural networks is suggested: efficient shal-
low networks are constructed, combined with special activation functions and parallel
backpropagation gradient algorithms in order to keep the number of unknown parameters
at a relatively low level.

The approach of the work is the same here: using a neural network with a special struc-
ture, involving a moderate number of parameters. Besides speeding up the corresponding
simulations, this can prevent overfitting and lead to stable and reliable computing pro-
cesses.

Another novelty of our approach is that scattered waves are only detected here on
a narrow section, such that we use only a part of the information that arises from the
scattering. Of course, this realistic case has its own limitation: complex structures can
hardly be recognized in this way.

Recent results that are closely related to our work can be found in [7,8]. Here, the au-
thors developed neural networks to detect very complex shapes. At the same time,
they only assumed one object at a fixed position. Moreover, the scattered wave was
detected all around the scattering object. We did not apply these assumptions, at the same
time, only the locations of simple disks were detected.

2. Materials & Methods
2.1. Obtaining Training and Validation Data

In our case, the training data consist of a set of vector-pairs (Fj,Gj)j=1,2,...,J . Here Gj =

(Gj1, Gj2) ∈ R×R2 corresponding to a geometrical setup, which can be identified with the
two coordinate pairs of the disk-midpoints, while Fj ∈ R161 denotes the dimensionless
wave intensity in our observation points, as shown in Figure 3. Shortly and formally:
the further task is to predict Gj1 and Gj2 while using Fj.

In order to obtain a satisfactory set of training data for this, we considered each
geometrical setup of disks with different integer midpoint-coordinates, i.e., the elements of
the set

G =
{
(Gj1, Gj2) : Gj1, Gj2 ∈ {−4,−3, . . . , 3, 4}2, Gj1 � Gj2

}
where� denotes the lexicographical ordering. This means 735 different cases, which proved
to be sufficiently large. Note that, taking much more training data could not further in-
crease the accuracy of our prediction. On the contrary, several runs made the learning
process have a more oscillating accuracy.

For the pairs of disks that are given by G, we have simulated the scattered waves
while using the simulation package µ-diff in Matlab [15]. In this framework, it is also
possible to choose different boundary conditions and point sources for the incident waves.
Figures 1 and 2 depict sample simulated waves.

The dimensionless wave intensity is measured on the bottom edge of the computa-
tional domain in 161 gridpoints. For a geometrical setup Gj, this gives Fj. The choice of
161 is a good balance: this means approximately eight measurement points per the dimen-
sionless wave length 1

2 , which is a minimum for identifying a scattered wave. Using more
gridpoints could lead to extremely long simulation time and an unnecessarily large number
of parameters.
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A total of 92 percent of the generated data set was used for training, and the remaining
eight percent for validation purposes. In concrete terms, we used J = 676 samples for
training and a validation data set with 59 samples, which were chosen randomly.

We have used sixteen different plane waves with angles: k π
16 , k = 0, 1, . . . , 15 and a

dimensionless wave length of 1
2 .

To summarize, the raw training data that we have worked with can be given by an
array of size 16× 676× 161.

Preprocessing of Data

The data coming from the simulations can be highly oscillating, such that a small shift
results in a completely different data at a fixed observation point. To get rid of this main
problem, we considered observation points with maximal amplitude and the measurement
was then interpolated and extrapolated from these locations, in order to obtain an estimated
amplitude function in each 161 points of the measurement.

The corresponding process was also executed while using the built-in subroutines in
Matlab. Figure 3 shows this interpolation step in a sample case.

Figure 3. Sample row simulation data (without noise) and the interpolated data.

One may expect that the simplified data set can have a shorter representation. Accord-
ingly, we applied a max pooling layer before sending data to the convolution layer in order
to push down the number of parameters in the consecutive computation.

It turned out that this radical simplification does not harm the prediction: we could
successfully localize the disks while using 11 data points instead of the original number
161. One can observe in Figure 3 that the real simplification occurs in the previous step of
the preprocessing.

All of this can lead to a loss of data. From a practical point of view, we may obtain
then very similar transformed data sets that correspond to a completely different geometric
setup of the scattering objects. This problem will also be discussed later.

This last step could also correspond to a layer within the neural network, but, in this
discussion, we consider the above preprocessed data as the input of the network.

Additionally, by applying this procedure, noise can be filtered out, which pollutes
most real observations. For testing purposes, we have added Gaussian noise to all of of our
training and simulation data. The amplitude of the noise was one-fifth of the original plane
waves’ standard deviation. The top of Figure 4 shows a pair of these. Additionally, in this
example, one can compare the preprocessed data that arise from the original simulated data
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and the corresponding noisy in the bottom of Figure 4. Note that no additional denoising
procedure was applied, and our preprocessing performed this task automatically.

Figure 4. A sample simulated scattered data (top left) and a corresponding noisy data (top right) together with the preprocessed
version of these data sets (bottom).

2.2. The Structure of the Neural Network

When working with neural networks, the main challenge one can face is to figure
out the structure to use. This usually consists of modifying an existing network and then
fine-tuning the parameters that determine its structure. In concrete terms, one can modify
the size of dense layers and convolution windows, the number of features in convolutions
to obtain an optimal performance. Additionally, inserting dropout steps and tuning the
parameters of the underlying optimization process is of great importance. This is a really
time-consuming process.

As a starting point, we have used the neural networks shown in [12,16] and the
general framework in [5]. Here, the data are immediately sent to consecutive convolutional
layers and then the information is collected in one or more dense layers, which is finally
summarized into the desired output values.

We present here one specific network, which has delivered the most accurate estima-
tion for the locations of the unknown disks.
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Finding appropriate convolution windows is an important building block in neural
networks. In concrete terms, a convolution window w = [w1, w2, . . . , wn] transforms the
vector v = [v1, v2, . . . , vN ] with N > n to w ∗ v ∈ RN−n+1, as given by

w ∗ v =

[
n

∑
j=1

wjvj,
n

∑
j=1

wjvj+1, . . . ,
n

∑
j=1

wjvN−n+j

]
. (2)

This window is associated with some “feature”, which is found by the neural network
during the learning process by optimizing the components (or weights) of w. Usually,
a couple of such convolution windows are included in the networks to gain all of the
characteristic features in the training set.

The main improvement in our construction is that we have used a so-called two-
dimensional locally connected layer. In this case, for all components in (2), we had to use
different weights. Formally, the convolution window now becomes

wLC = [w1,1, w1,2, . . . , w1,n, w2,1, w2,2, . . . , w2,n, . . . . . . , wN−n+1,1, wN−n+1,2, . . . , wN−n+1,n]

and instead of (2), we have

wLC ∗ v =

[
n

∑
j=1

w1,jvj,
n

∑
j=1

w2,jvj+1, . . . ,
n

∑
j=1

wN−n+1,jvN−n+j

]
. (3)

We defined a couple of these complicated windows in order to obtain the features
of the scattered wave. Moreover, these are varied according to the angle of the incident
plane waves. The motivation of this is that the observation points are located on the bottom
edge and, therefore, depending on the angle of the incident plane waves, different kinds of
scattering occur.

The description in the forthcoming points can be easily followed in Figure 5, where the
overall structure of our network is demonstrated. The connections between the layers are
represented with dashed and straight lines, according to their operations. When informa-
tion was just passed through the layers (no parameters were added), we used dashed lines.
In other cases, continuous lines correspond to operations with some parameters. For a clear
visualization, the lengths of the layers are scaled down, so that they fit in one figure. The
size (dimension) of the different layers is always displayed.

2.2.1. the Layers

The first layer collects the information from the scattered waves that arise from given
incident plane waves with 16 different angles. In concrete terms, after preprocessing,
for each geometric setup, we have an input of size 11× 16.

In the first hidden layer, for each incident wave direction, we allowed 12 different
two-dimensional locally connected convolution windows of length 8× 4.

The application of each two-dimensional convolution window in (3) to the input
vectors of length 11, results in a vector of length 12− 4 + 1 = 8. An arrow in Figure 5
corresponds to one of the convolutions in (3). This is performed in 12 cases, such that we
obtain a matrix of size 8 × 12. The total size of the first hidden layer is 16 × 8 × 12 because
we have 16 incident waves.

In the second hidden layer, we collect the information that is given by the first hidden
layer. This does not increase the complexity of the model, since we did not use any weight
or unknown parameters for this layer. This results in a layer that consists of one vector of
length 1536.
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Figure 5. The structure of the neural network with the size of the consecutive layers and the inputs I1, I2, . . . , I16.

The following hidden layers are all dense. In these layers, each component is affected
by the entire data in the previous layer. In practice, dense layers are used when the
information in the data of the previous layer has to be compressed into a smaller one.
In our neural network, we achieved this by using dense layers with the lengths of 50, 40,
and 8, respectively. Neither the numbers nor the sizes of these layers are indicated a priori.
This choice is the result of a series of experiments.

Obviously, as an output, we have used a dense layer of size 4, which means the four
coordinates of the unknown midpoints of the scattering objects.

2.2.2. Parameter Reduction

The transformation between the layers is governed by parameters that, when com-
bined with the above structure, completely describes the action of the neural network.

In concrete terms, we have used the following number of parameters:

[(16× 8)× (4× 1) + (16× 8× 1)]× 12 + (16× 12× 8 + 1)× 50 + (50 + 1)× 40 + (40 + 1)× 8 + (8 + 1)× 4 = 86,934.

Even though it seems to be an overly large number of parameters, in the practice of
neural networks, this is still a moderate value. Observe that the major compound of this
sum corresponds to the application of the first dense layer. The contribution of the second
one is still larger than that of the locally connected layer.

The so-called overfitting effect is the real danger of using an unnecessary large number
of parameters. When overfitting occurs, the prediction becomes consistently worse after a
certain number of iterations. Therefore, “unnecessary” parameters should be eliminated.
This is done automatically while using a dropout step [17] in some given layers. As it
turned out, the optimal choice was a radical cut of the parameters by halving them in the
first dense layer, such that, indeed, we used 48509 of them. Note that this step may also
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result in a loss of information. Accordingly, the application of further dropout steps led to
less accurate predictions.

2.2.3. The Activation Function

The data that we are using are bounded and positive. Therefore, we applied the
RELU activation function in each step, but the final one. This real function is constant 0 for
negative inputs and identical for positive ones. Other activation functions were also tried,
but they delivered less accurate results. In the literature, for similar neural networks [18], a
sigmoid activation function was applied in the last step. Our experiments confirm that this
choice is optimal. Note that the complexity and the computational time is not affected by
trying different activation functions.

2.3. Loss Function and Optimization

When working with neural networks, the difference between the predicted and real
values must be minimized. We chose the mean squared error as a common measure of
the prediction error. The accuracy of the neural network is measured by this value. In
practice, we can only minimize the loss function of the training set and validate the result
on the validation data set. A significant difference between the training and validation loss
indicates the presence of overfitting. In this case, the model will be extremely inaccurate
for everything, except the training dataset. To sum up, the quality of our predictions can be
characterized with the validation loss.

The conventional optimization processes in neural networks are stochastic gradient
methods [19], from which we chose the ADAM algorithm [20–22]. Because inverse prob-
lems are extremely unstable, a small change in the parameters can result in a completely
different output. Accordingly, by the calibration of the parameters, a relatively small
learning rate 0.0005 was the optimal one. Two further parameters had to be chosen in the
ADAM algorithm; we took β1 = 0.9 and β2 = 0.8.

The number of global iteration steps, called the epochs, where the full training data
set is used, was also experimentally determined. The process was terminated when the
validation loss does not decrease any more.

3. Results

The neural network was implemented while using the Keras library in Python. Using
the parameters shown above, after around 100 epochs, the validation loss function does
not decrease significantly anymore. Therefore, taking a lot of further epochs would not
increase the quality of our prediction. The train and validation loss are strongly correlated
and they remain close to each other. This is a common indicator of the success of the
learning process.

The oscillation of the loss function is accompanied with the optimization algorithm.
The validation dataset is smaller and it was not used in the minimization procedure,
such that it exhibits larger oscillations. Figure 6 shows this behavior, which is typical for
neural networks.
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Figure 6. The train and validation loss in the function of epochs.

3.1. Prediction of the Locations

In order to measure the quality of our prediction, we have computed the average
squared error of the obstacle-midpoints. In Figure 6, one can observe that this value goes
below 0.002 during the optimization process.

Figures 7 and 8 display some concrete midpoint-predictions.
The larger disks represent the real size of the scattering objects, while the smaller show

their midpoints in order to demonstrate the accuracy of the predictions. The deviations of
the predicted and real midpoints are shown next to the graphs. The total (real) distance
between the centers is given shortly by dist. We have used the short notations devb and
devg for the values of deviations between the predicted and real centers, while b and g
refer to the blue− and the green centers, respectively. These are summed up to obtain the
variable dev_total.

Figure 7. Example for the real and predicted midpoints and objects.
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Figure 8. Example for the real and predicted midpoints and objects.

We have calculated the distances between the scattered waves on the bottom edge in
order to analyze the simulation results further. According to our previous optimization
procedure, the distance was taken the square distance of the two data (of length 161).
In this way, we intended to detect the problematic cases, where scattered waves are very
close to each other. Figure 9 shows the distance distribution of the waves. As one can
realize, a lot of relatively small distances occur, which clearly indicates the unstable nature
of the present scattering problem. One would expect that the almost identical scattering
waves correspond to the very similar geometry of the scattering objects. Surprisingly, this
is not the case, as shown in Figures 10 and 11.

Figure 9. The distance distribution of the waves. x axis: the number of sample-pairs with less
distance than y.

A natural attempt to enhance the efficiency of the neural network is to remove these
pairs from the training data set. Interestingly, this did not significantly improve the accuracy,
pointing again to the rather complex nature of the problem.

We have also investigated the effect of noisy data in the simulations. Because our
preprocessing could filter the additive noise, the input of the neural network was very
slightly affected by this, see the bottom of Figure 4. Therefore, we obtained the same
accuracy for the midpoint-prediction. We could not even separate the final results arising
from noisy and noiseless data sets, due to the randomness of the splitting into training and
learning data and the built-in stochastic optimization method ADAM.
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Figure 10. Two different geometric setup of the scattering obstacles.

Figure 11. Similar characteristics of the scattered waves corresponding to the left-hand side cases.

3.2. Comparison with Other Approaches

The main compounds of our construction were the applications of an appropriate
preprocessing of data and an appropriate locally connected layer in the network. In order
to demonstrate the importance of these, we performed two additional series of simulations.
For testing purposes, we have used noiseless data in all cases.

In the first series, we did not apply any preprocessing. In this case, the loss function
remained 2–3 times the one in the original network, as shown in Figure 12. At the same
time, since we had an input of size 16 × 161 (instead of 16 × 11), the computational time
was about ten times more when compared to the original case.

In the second case, we have substituted the locally connected layer with a convolution
layer, while using convolution windows. Here, the computational costs are at the same
level as compared with the original case. At the same time, the loss function becomes about
two times of the original value. Figure 13 shows the simulation results.

The following observations also refer to the power of our approach:

• Our network could process even the oscillating full data set with an acceptable loss.
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• Using a conventional convolution network, train loss is above the validation loss,
which suggests that new variables should be included. The locally connected layer
purpose.

The simulation codes with detailed explanations, comments, and figures on the results
can be found in the Supplementary Materials. They are given as Python notebooks, where
each of the main steps can be run independently. All of the relevant information on these is
collected in the file readme.txt. It is completed with the data sets that were used for our
simulation.

Figure 12. Train and validation loss for the unprocessed, raw simulation data with a locally connected
layer.

Figure 13. Train and validation loss for preprocessed simulation data with a conventional convolution
layer.

3.3. Computing Details

In order to point out the computational efficiency of our method, we mention that
a simple laptop with Intel i3 processor and 4 GB RAM was used for the simulations.

In the following, we summarize the computing time of the main steps in the simula-
tions.

• Computing time of the simulation data: approx. 20 h.
• Computing time for the data transformation: approx. 10 s.
• Training the neural network and computing the prediction: 2–3 min.
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4. Conclusions

A neural network based approach was presented for inverse scattering problems with
restricted observation of the scattered data. Including a complex locally connected layer
in the network seems to be the right balance: this ensures sufficient complexity, while a
moderate number of parameters are used. A feasible preprocessing of the data was the
other cornerstone: we have assisted the network by pre-mining information. In this way,
the number of parameters could be reduced. This not only resulted in the speed of the
simulations, but also made them more reliable by avoiding overfitting. Moreover, it has
the capability to diminish the effect of noise.

This study provides a general framework, fixing that deep neural networks with an
appropriate preprocessing and locally connected layers are perfect for this job.

At the same time, the present work has its limitations: in a robust method, the number
and shape of the scattering objects and their material properties are unknown. For a
corresponding extension, one should first detect the number of objects with a simple
network and perform an enormous number of training data for different shapes and
locations.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-82
20/21/1/11/s1.
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