
sensors

Article

Advanced Supervision of Smart Buildings Using a Novel
Open-Source Control Platform

Peter Minarčík 1,2,* , Hynek Procházka 2 and Martin Gulan 1

����������
�������

Citation: Minarčík, P.; Procházka, H.;

Gulan, M. Advanced Supervision of

Smart Buildings Using a Novel

Open-Source Control Platform.

Sensors 2021, 21, 160. https://doi.org/

10.3390/s21010160

Received: 30 November 2020

Accepted: 23 December 2020

Published: 29 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering,
Slovak University of Technology in Bratislava, 812 31 Bratislava, Slovakia; martin.gulan@stuba.sk

2 Prosystemy, s.r.o. (Ltd.), 900 86 Budmerice, Slovakia; hynek.prochazka@prosystemy.sk
* Correspondence: peter.minarcik@stuba.sk

Abstract: Gathering data and monitoring performance are at the heart of energy efficiency and
comfort securing strategies in smart buildings. Therefore, it is crucial to present the obtained data to
the user or administrator of such a building in an appropriate form. Moreover, evaluating the data in
real time not only helps to maintain comfort, but also allows for a timely response from the user or
operator to a possible fault. Continuous online monitoring and analysis of process behaviour, which
is referred to as advanced supervision, is addressed in this paper by developing a procedure that will
form an artificial operator autonomously supervising process. After introducing several techniques
that are used for signal analysis, we propose an approach to advanced supervision of processes
in smart buildings or other industrial control systems. The developed procedure is implemented
on a control system platform that is particularly suitable for this purpose. Moreover, this platform
includes a framework that provides support for the implementation of advanced control techniques
and it is based on open-source tools, which is rarely seen in industrial applications. The developed
advanced supervision procedure has been tested in simulation as well as in a practical case study
using a real two-storey family house.

Keywords: smart buildings; supervision; global monitoring; open-source control platform;
signal analysis

1. Introduction

Over the past decade, we have experienced an intense development of new smart
devices that can connect to the internet and can be controlled remotely using applications.
The network of such devices and other items embedded with sensors, electronics, software,
and connectivity is referred to as the Internet of Things (IoT). IoT, smart home, energy con-
sumption, remote control, global monitoring and supervision, or predictive maintenance
are definitely some of the most discussed topics in the field of process control, whether
in the residential, commercial, or industrial sector. In particular, the IoT is becoming a
part of the daily operation of many industries. The support of smart buildings and homes
is a related and cost-effective user-level IoT application [1,2]. Smart homes have become
central in recent technology and policy discussions regarding energy efficiency, climate
change, and the sustainability of buildings [3,4].

IoT-enabled smart building or home technologies refer to devices that provide some
degree of digitally connected, automated, or enhanced services to building occupants [5].
They depend, to a great extent, on the use of an efficient and reliable control system.
In addition to the academic research community, there is a large number of multinational,
as well as smaller, industrial companies that are engaged in the development of control
techniques and their implementation in practice. For instance, according to [6], some of
the largest companies dealing with smart buildings and their management are Cisco, Hon-
eywell, Johnson Controls, Schneider Electric, Emerson Electric, and Siemens [7]. Control
systems that are offered by these vendors are not easily accessible to the general public

Sensors 2021, 21, 160. https://doi.org/10.3390/s21010160 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1884-3685
https://orcid.org/0000-0002-8672-9577
https://doi.org/10.3390/s21010160
https://doi.org/10.3390/s21010160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21010160
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/1/160?type=check_update&version=2


Sensors 2021, 21, 160 2 of 21

though. On the contrary, the more affordable control platforms, such as Amit, Domat,
Proview, Raspberry Pi, IndustrialShield, Unipi, etc., offer a good alternative. Nevertheless,
these low-cost controllers miss or poorly support modern, advanced control techniques
and design tools that are used in control engineering. This gap creates a challenge for
developing new, ideally open-source and low-cost hardware and software tools that would
provide advanced functionality for the monitoring and control of smart buildings.

1.1. Motivation

Smart buildings are not only buildings that can perform different types of operations
for thermal comfort and occupants’ overall well-being based on various input data, but
they are also able to provide information regarding their health state, level of stress, and
wear of particular technological components. In addition, they can determine whether the
operation is truly optimal and inform the end user about relevant statistical information.
According to Mofidi and Akbar [8], in the past, the term intelligent or smart building merely
referred to the implementation of automated operation and smart devices into buildings,
without considering the needs of the occupant and the level of the interaction between
the occupant and building itself. Nowadays, the occupants’ requirements and operation
of smart buildings are well balanced. In order to maintain this balance, an appropriate
and adequately complex system, which will provide data collection, global monitoring,
and control of the given processes, has to be designed. The design of techniques and
tools for intelligent monitoring and supervision of buildings has been subject of several
recent works. For example, in [9], the authors present a building automation and control
tool for remote and real-time monitoring of energy consumption in the building sector.
The authors in [10] developed an IoT-based automated alert system for thermal comfort
monitoring in buildings and, similarly, Wang et al. [11] proposed an integrated system for
building structural health monitoring and early warning based on IoT. The role of intelligent
supervision concept integrated into building predictive control has been comprehensively
reviewed in [12].

Although there are numerous corporate Building Monitoring System (BMS) and/or
Building Automation System (BAS) solutions available, advanced control techniques and
algorithms have not been commonly applied in practice yet, neither have been advanced
modelling environments, such as MATLAB by Mathworks or Scilab by INRIA used for
development and practical deployment of these techniques. Moreover, an open-source, low-
cost, and reliable control system platform for this purpose is practically missing. Therefore,
the approach presented in this paper is realized on the basis of a novel Dynamic Control
Unit (DCU) control system platform, which overcomes deficiencies of other systems in
this way.

Despite numerous functionalities and advanced features, the DCU control system
platform has not until now provided the advanced supervision of processes, whether
these are thermodynamic processes in buildings or mechanical processes in systems in
general. The motivation also stems from the industrial practice where experts and operators
often need to manually monitor individual parts of each building in order to be able to
observe any possible anomalies or unusual signal behaviour. Our objective is to design
and implement the ability to automate this supervision process and, hence, to develop an
adequate advanced supervision component as a part of the so-called Global Monitoring
and Control System (GMCS). The GMCS will not only analyse the process and increase
reliability of the system, but also improve knowledge about the controlled system. Within
a larger set of functions designated as Advanced Supervision Server (ASS), the emphasis
will be put on the analysis of a general signal (air/water temperature, pressure, etc.), which
enables to detect and, consequently, determine the nature of a potential problem.

1.2. Signal Analysis and Anomaly Detection Methods

As already outlined, the focus of this paper is on the ASS part of the control platform
and on the associated input-output signal analysis. These functions are used for the



Sensors 2021, 21, 160 3 of 21

detection of anomalies occurring during a given process, including fault and illogical data
trend detection.

This kind of problem is of interest to many research groups, and several techniques
and methods have been developed for signal analysis and anomaly or fault detection. Not
only time domain, but also frequency domain, are tool for signal analysis, and they are both
suitable for solving these problems, as Majewski et al. [13] state. There are several methods
that are utilised to obtain better insight into the basic nature of signal and its dynamics. For
example, Elbi and Kizilkaya [14] focused on Fast Fourier Transform (FFT) and Short Time
Fourier Transform (STFT), Wavelet Transform (WT), Gabor and Stockell transform, etc. It is
widely known that the essential idea of the Fourier analysis is that every harmonic signal
can be decomposed into an infinite sequence of sinusoids of different frequencies and, after
the transformation into frequency domain, FFT creates a spectrum. STFT is a modification
of FFT, which is able to window the analysed signal, thus removing the main disadvantage
of FFT—not knowing the time when the specific frequency appears in the signal. However,
there still remains a problem with the constant window width for analysis. On the contrary,
WT has an advantage in its ability to change the width of the window dynamically. WT and
its modifications are described in several works, e.g., Ren and Sun [15] advocate WT as an
efficient tool for local signal analysis and, together with Shanoon entropy, were both used
for structural damage detection. Li [16], on the other hand, combined wavelet analysis
with Kalman filter for sudden fault detection. Sharma and Pachori [17], in turn, proposed
an iterative decomposition of the Hankel matrix, enabling the decomposition of the mono-
competent signal and following Hilbert transform, the amplitude is determined as well as
frequency functions of each decomposed component. Another use of wavelet analysis can
be found, for example, in [18–20]. Yeap et al. [21] and Sejdić et al. [22] summarise some of
the advantages and disadvantages of the FFT and WT methods. It is demonstrated that
FFT is fast, simple for implementation, accurate, and suitable for embedded systems, while
its constant window width is the main disadvantage. On the contrary, wavelet analysis
can serve as another example of variable resolution and it is accurate and immune to noise.
However, it has a few disadvantages, such as high computational demands and filtering,
leading to time delay.

There is a number of methods for anomaly detection that are based on different
approaches. Mirnaghi and Haghighat [23] elaborated on a comprehensive review of their
use in buildings and their Heating, Ventilation, and Air-Conditioning (HVAC) systems,
who formulated three main approaches for fault detection and diagnosis, in particular,
model-based methods, data-driven methods, and knowledge-based methods, which can
also be combined to achieve a higher accuracy. Lughofer et al. [24] introduced another
novel anomaly detection method, who proposed an approach that was based on a casual
relation network for online anomaly detection in industrial environments. The outlier
detection can significantly contribute to signal analysis and fault reveal. This problem was a
point of interest, for example, for Smiti [25], who divided methods of this analysis into four
groups—statistical detection methods, distance-based detection methods, density-based,
and cluster-based detection methods. A comprehensive overview of research on anomaly
detection can be found, e.g., in [26] or in [27]. Our approach of signal analysis and anomaly
detection is based on the FFT/STFT technique, signal’s peaks detection, and the algorithm
of cumulative sum.

2. A Novel Dynamic Control System Platform

The term control system platform represents the overall hardware and software setup
for a standard building, as well as for an industrial control environment. Such a setup
includes real-time controller, tools for real-time control design, programming, validation
and optimisation, Supervisory Control and Data Acquisition (SCADA) system, and user
friendly Graphical User Interface (GUI), while its application is considered for small
standalone mobile devices, compact technologies, such as air-conditioning machines, up
to large processes. Moreover, apart from sufficient performance, an appropriate control



Sensors 2021, 21, 160 4 of 21

system platform must also contain standardised protocols and communication technologies
allowing for a trouble-free implementation into buildings and other industrial control
systems. Even though the system for BMS or BAS offered, for example, by companies
that are mentioned in Section 1, seems to be sophisticated and sufficient to meet all of
these requirements, there are several supplementary functions that shall be implemented
in order to obtain a truly purpose-built and professional control system, featuring low-cost
hardware, modern open-source, and free IT platforms and the possibility to be integrated
into IoT or industrial IoT (IIoT) topology at the same time. In this section, we introduce the
structure of a novel control system platform that is based on the DCU.

2.1. Structure of the Control System Platform

The following description of the DCU control platform is shown to meet the above
requirements. This platform, developed by Prosystemy company [28] and GMCS in
particular, is built on three pillars that provide a satisfying performance of the whole
system. These can be defined, as follows:

• control algorithm design and implementation—including means to design control
diagrams in a convenient software environment familiar to the developer;

• data processing and advanced supervision—together with database and advanced
supervision procedures of the ASS package; and,

• global monitoring and visualisation—the visualisation of processes and design of GUI
for a specific system operation and global management of ongoing processes.

Figure 1 schematically represents a GMCS, where the three pillars are highlighted by
colours. Note that the specific extension of the system lies in the integration of ASS and
Global Monitoring System (GMS) into the GMCS structure, as indicated in Figure 1.

gl
ob

al
m

on
it

or
in

g
an

d
vi

su
al

is
at

io
n

d
at

a
pr

oc
es

si
ng

an
d

ad
va

nc
ed

su
pe

rv
is

io
n

sc
he

m
e

d
es

ig
n

an
d

im
pl

em
en

ta
ti

on

computing environment DCU

ASS PDS

GMS PV

local server

control diagram

RT data

process data, server performance

notifications,
overrides,...

advanced computation
control tuning

notifications and warnings

Figure 1. Simplified scheme of a global monitoring and control system. DCU—Dynamic Control Unit; ASS—Advanced
Supervision Server; PDS—Process Data Server; GMS—Global Monitoring System; and, PV—Process Visualisation.



Sensors 2021, 21, 160 5 of 21

The DCU platform offers numerous advantages in comparison with other similar
devices. For the design and development of control diagrams and algorithms, the well-
known scientific computational platform MATLAB/Simulink or its open-source alternative
Scilab/Xcos can be used. Ready-to-use libraries and toolboxes are available for the pro-
grammer and, thus, provide a comfortable software environment. The designed and
possibly simulated control diagram can be compiled and uploaded to the DCU control unit
(described in more detail in Section 2.2), which, together with the computing environment,
creates the first pillar depicted in red.

The DCU control unit collects the real-time data from the process and transports
them via a standardised communication technology into the Process Data Server (PDS),
where the data are processed and stored in a database. PDS and the newly developed part,
ASS, fall into the second pillar that is shown in green. In ASS, the operator can define all
of the required procedures of supervision, which will be performed during operation of
the system. This can involve, for example, signal analysis, frequency analysis, peak and
outliers detection, threshold alerts, fault detection, or process model identification.

Because of more complex tasks, such as the computation of the secondary controller’s
output in a cascade control scheme, closed-loop identification, but also fault detection
and other procedures, ASS is in cooperation with the computing environment, where the
result is evaluated and sent back to ASS for the purpose of implementation. For instance,
controller tuning, i.e., the design of more convenient new parameters of a PID controller, is
a good example. Based on the interaction between ASS and PDS, ASS is able to determine
the status of further operation; whether it is a better or worse case in comparison with the
previously recorded results. The most common example of result exploitation is notification
of a user in the case of anomalies indicated by results.

The last layer of the control system, as illustrated by blue colour, represents the means
of process visualisation, which provides a comfortable interface for process monitoring
and it also ensures interaction between the user and system via control elements. This GUI
helps the user to better understand the controlled process and provides him with all of
the relevant notifications, alarms, override of values, and historical data available. Such a
concept can be also used for monitoring of more complex processes in even more detail,
creating the GMS, which can be very convenient for the operator during debugging or
fault detection in a complex or even in several independent buildings or processes. Thus,
GMS can provide operators and administrators with all of the necessary information via
one interface.

In addition, the dashed line shown in Figure 1 represents the local server. This
involves the development environment with programming and designing software for
control algorithms and diagrams. The ASS package and PDS with real-time data that
are stored in database is also included. The local server is, in this case, represented by a
computing platform with Macintosh, Windows, or Linux operating system, i.e., a desktop
PC, mini PC, industrial PC, or a laptop in hobby projects.

Therefore, the resulting scheme of the GMCS can be considered as a complete hard-
ware/software setup for building control or other industrial systems, integrating the
procedures of ASS, real-time control design, optimisation, controller tuning, SCADA, and
global monitoring system.

2.2. Hardware and Software of Dynamic Control Unit

The entire GMCS is built on the Dynamical Control Unit, which can be generally used
for development of various industrial control system as well as hobby applications, as
outlined above. The DCU features the following ten specifications, which are also required
for each fully-featured advanced control system:

(a) User-friendly graphical control design and programming environment.
(b) Process data recording into database system.
(c) Modern and universal HMI.



Sensors 2021, 21, 160 6 of 21

(d) Hard real-time process control (true sampling time starting at 1 ms).
(e) Provide all standard control elements in industrial and building management.
(f) Support advanced control algorithms and advanced control design techniques.
(g) Support controller networking.
(h) Support standard license-free communication protocol.
(i) Cost-effective hardware components.
(j) Open-source and platform independent software tools.

Most of the specifications that are listed above are commonly required in practice, but
it is rare in a standard process control system to only use open-source, widely supported
and platform-independent software tools. This is caused by the tendency of companies
to develop and offer their proprietary solutions, which are often licensed to keep their
know-how. However, the use of such open-source software combination, which supports
at least Windows, Linux, or Mac operating system, helps, to a large extent, to avoid
tailored designing and programming as well as to reduce expenses. Moreover, this feature
increases modularity and flexibility of the control platform. Overall, the DCU control
system platform fulfils all of the expected requirements on an advanced control system,
while more information can be found on website of the Prosystemy company [28].

The control system platform consists of four main parts. The first is real-time control
unit for execution of control tasks, the second is a computer, which provides logging of
process data, HMI, and control design. The third part represents standard Local Area
Network (LAN) as well as Wide Area Network (WAN), which are used in order to create a
communication channel between the real-time control unit and the computer. The last part
is the standard industrial network (Modbus RTU) used for connecting other control units
or devices from other vendors.

In comparison with the classical Programmable Logic Controllers (PLCs), which are
usually hardware structured into a centralised control topology and that involve one
computational unit and a set of I/O modules, the DCU is a compact controller with a high-
performance computational unit and certain number of physical I/Os. Therefore, each
DCU can control a part of the process, such that it creates a distributed control topology.
More details can be found online [28].

Two types of DCU controllers are available. Both of them also have an integrated
RJ45 connector in order to provide UDP/TCP/IP service for processing data and real-time
communication tasks, RS485 serial communication connectors for Modbus RTU service
and power connectors. There is also an integrated pair of LED diodes to indicate voltage
source and ongoing communication.

These two DCU controllers differ from each other in their size and number of I/O
peripheries. The first, smaller one, is designated as DCU28IO and the second one as
DCU56IO. DCU28IO is more embedded-application oriented, due to its size reduction
from DCU56IO, and it offers fixed I/O peripheries layout only. In this unit, eight analog
inputs, four analog outputs, eight digital inputs, and eight digital outputs are available.
On the contrary, DCU56IO offers not only more I/O peripheries, but also their modularity.
The DCU56IO consists of three plastic parts—chassis (3), mid cover (2), and top cover (1),
as shown in Figure 2. These plastic parts are used to hold all of the electrical components.
The main DCU board (A), along with the ARM-core microcontroller, EEPROM, and battery
holder, and plenty of others relevant electrical components, also integrates multi-pin
connectors for I/O modules. Up to 8 I/O modules can be used; one of them is power
and communication module (C) and the other seven can be configured according to the
designer’s and application’s requirements. One analog output module, two analog input
modules (D), and four digital I/O modules (B) can be selected.



Sensors 2021, 21, 160 7 of 21

A B C

D

1 2 3
a

b

c

Figure 2. Dynamic control unit—DCU56IO (decomposed on the left). A—main DCU board; B—digital modules; C—power
and communication module; D—analog modules; 1—top cover; 2—chassis; 3—mid cover; a—width (230.2 mm); b—heigh
(138 mm); and, c—depth (53.5 mm).

DCU will be used for development as well as practical implementation and testing
of the proposed ASS procedure described in the next section. Apart from this, it also
supports controller implementation in several operation modes. Figure 3 illustrates four
control modes of DCU that can be used in the control application design process as
well as in a validation procedure. The actual DCU mode determines the behaviour of
control application with respect to the physical I/Os. These control modes offer various
possibilities to the designer, and they can be classified, as follows:

Mode 1

Mode 4 Mode 3

Mode 2

1

2

3

These two DCU controllers differ from each other in their size and number of I/O peripheries.

Figure 3. DCU control modes. 1 —real system/process; 2 —DCU controller; and, 3 —host PC with simulation platform.
NOTE: Red arrows connect parts, which cooperate in specific control mode.



Sensors 2021, 21, 160 8 of 21

• MODE 1—real controller + real system—classic control mode, in which the real-time
control application is executed inside the DCU controller and I/Os signals from real
system are measured by physical I/Os channels of DCU;

• MODE 2—controller model + system model—classic simulation mode, where the
controller and plant is designed in dynamic simulator environment, thus the control
application execution in DCU is stopped and physical I/Os remain in the last state;

• MODE 3—real controller + system model—validation of the control algorithm (after
mode 2), when the process model outputs are sent into DCU, where they are processed
and evaluated, while output values are sent back to the process model in the host PC;
and,

• MODE 4—controller model + real system—the real process is controlled, but the
control application is executed inside host PC and DCU receives computed values of
outputs and sends measured physical inputs back into the host PC.

The main advantage of mode 4 is that any block or function built or programmed
inside the simulation platform (i.e., not only functions that are preprogrammed for DCU)
may be used.

3. Advanced Supervision Server and Its Functions

The real-time control system, as described in Section 2.2, covers the first pillar in the
concept of GMCS—scheme design, its validation, and implementation. To sum up, the
real-time control scheme is designed and programmed in dynamic simulators, and then
directly uploaded into DCU via UCC service. Consequently, the real-time data are collected
into PDS (second pillar), from where they can be monitored and visualised in PV (third
pillar) by means of an intuitive SCADA system.

The other two remaining parts of GMCS—ASS and GMS—make the system that is
described above more intelligent and complex in terms of control optimisation, process
monitoring and cost savings. These two parts form the main objective of our research
interest. GMS monitors the health status of multiple controlled systems globally and offers
all information on one GUI, being more comfortable and effective way of monitoring from
the user, operator, or administrator point of view, as it has been already pointed out in
Section 2. On the contrary, the ASS only analyses the selected processes locally and submits
reports to the higher layer of the GMCS concept—SCADA and GMS.

The ASS with its tailored functions shall be used to solve these partial tasks in order
to equip the control system with an universal tool for online analysis of a process, its
closed-loop identification, and controller tuning. Moreover, the interfacing with a numeric
computing environment, such as MATLAB, can be used to perform more complex and
computationally demanding operations. The ASS functions can be divided into two groups:

• DCU I/O analysis—time-domain and frequency-domain analysis to detect anoma-
lies, unwanted oscillations and switching frequencies, wear of system’s components,
etc.; and,

• DCU process control analysis—closed-loop identification, controller tuning, and
implementation of advanced control algorithms.

Note that the execution of these functions is performed in the background, so it is
sufficient for the administrator or operator to first define a few required parameters and
then he/she can monitor the process of evaluating a particular procedure or just wait for a
warning message in PV or GMS.

3.1. Signal Analysis Procedure

One of the above functions has been designed, programmed, simulated, and tested
in practice so far, as stated in Section 1. The underlying procedure belongs to the first
group of ASS functions and is used for anomaly detection, including fault and illogical data
trend detection in a specific process. For this purpose, the approach that is based on FFT
is also used as a process of detecting signal peaks in the time-domain. The programmed
advanced supervision analysis function, called signalCheck(), also searches for a sudden



Sensors 2021, 21, 160 9 of 21

change over the operator defined threshold. This function operates in three main steps.
The first is to read data from the input text or data file, which is automatically created by
the UCC agent via a visualisation page, the second is to execute all of the commands for
signal processing and analysis, and the last is to write the results to the output text or data
file that is created and filled by signalCheck() function itself. Definition of required input
parameters and boundary conditions represent a path to the location for output results
file saving, critical values of the signal (period, amplitude and duration), sudden change
interval and its critical amplitude. These critical parameters represent values that arise
from the expected process behaviour, so the operator only needs to have basic technical
knowledge in the signal analysis field. In addition to these settings, a matrix from time and
signal value series data is contained in the input file, which is automatically filled by the
UCC agent. Listing 1 shows the structure of the input data file for clarity.

Listing 1. Structure of the input data file.

Row 1—output folder path and file name, where to store results.
Row 2—informative message or any optional string.
Row 3—number of input parameters (matrices) for analysis.
Row 4—number of results (if previous results from analysis need to be considered).
*
Row 5—definition of matrix dimensions (number of rows and columns).
Row 6—the first row of matrix.
Row 7...(x − 1)—other rows of matrix (each row is on new line).
†
Row x—number of initial parameters.
Row (x + 1)..(x + y)—matrix dimensions and rows values—analogous to part between *
and †.

Hence, the number of rows in the input file depends on the number of parameters,
while each parameter is defined, as shown between * and † signs in Listing 1. After writing
these parameters, the initial parameters are defined in the same way. The initial values are
used in the case when the message of previous results contains ‘Initialisation’, and that
is when the function is evaluated for the first time. An example of input data file can be
found in Appendix A.

This data file is loaded and processed by the signalCheck() function programmed
in Scilab 5.5.2 environment. The evaluation of the procedure begins by processing all
information from the input data file and continues with determination of signal duration
and its sampling time. Optionally, if the signal has an inverted logic in terms of time
sequence, then it is reversed and rewritten. In the case of incomplete data matrix, an
omission of measurement or the value is not expressed in the form of a number (NaN),
the situation is solved by finding NaN samples and replacing these samples by the value
that is computed as a mean of samples before and following them. The solution for two
and more such samples located next to each other is also implemented. If this situation
occurs, then the signal is broken in this place and two or more segments of the signal for
further analysis are created. The same approach is used in order to solve the problem
of incomplete data from time-continuity point of view. Based on this fact, the function
segments the whole signal into time-continuous parts without any NaN values, which are
sequentially analysed later. First, the lengths of each signal segments have to be checked
and compared with a constant value determining the minimal size of data for analysis. In
addition, the function skips segments of data, which have an outdated signal time. In other
words, if the data sets are older than a user-defined time back from current time.

After the procedure of signal preparation for analysis and meeting all of the imposed
requirements is done, the analysis itself may proceed. Within this stage, the fftAnalysis(),
peaksAnalysis(), and changeAnalysis() functions, which are embedded in the main sig-



Sensors 2021, 21, 160 10 of 21

nalCheck() function and described next, are performed in a loop for every segment of
the signal.

3.2. Main Functions of the Signal Analysis Procedure

The frequency analysis is executed by the fftAnalysis() function, which performs FFT
algorithm for a particular moving time window with specified width, i.e., the windowing.
Afterwards, the number of windows is specified for each signal segment that is based on
its length, while half of the previous window width is added to all time windows in order
to prevent the loss of information at the boundary between two consecutive time windows,
as per the STFT algorithm. The number of windows is computed by dividing the segment
length by a user-defined value of critical duration and the result is rounded down. The
maximum magnitude with the corresponding frequency is determined in the loop for each
time window and a criterion is computed. This criterion only depends on magnitude if
the maximal determined magnitude is over critical frequency. Otherwise, the criterion is
computed based on both magnitude and frequency. The highest value of the criterion is
then expressed in percentage format in order to determine to what extent the user-defined
critical parameters were attained.

Alternatively to this approach in frequency-domain, the solution in the time-domain
has been programmed. To this end, the peaksAnalysis() function is used, in which the
peaks over a defined threshold value (value of possible noise) are found by an algorithm
that determines the differences in data vector with adequate sign (+/−) denoting the
change in positive and negative direction, respectively. A peak and its magnitude can
be detected by multiplying these changes in the data vector. Moreover, this depends on
the user-defined value of threshold. Afterwards, the distances between these peaks are
determined. Based on the distance between neighbours, the parts of signal are considered
to be ‘normal’ or ‘critical’. If the peaks are close to each other, then it is considered as a
critical state and the signal is analysed there. The period, amplitude, and time duration
are defined and compared with critical values being defined by the user. Subsequently,
the percentage criterion is calculated and compared with the percentage criterion that is
determined by frequency analysis. These two results can be weighted by user defined
weights for each technique of analysis and the bigger value is taken as indicator.

The last function embedded in signalCheck() performs an analysis of sudden change
in time-series data. The sudden change search is executed by the algorithm of cumulative
summation, which is a sequential analysis. The size of partial sums and difference between
them is monitored. Thus, the biggest change in the signal data is represented by the highest
difference between partial sums, and this is considered to be a result of t his function.
Again, the percentage format of reaching the user defined threshold is applied.

Section 3.3 demonstrates the outputs of these functions and their structure.

3.3. Outputs, Other Features and Offline Simulation of the Procedure

All of the results provided by the above functions are processed and written to the
output data file. The status of the procedure evaluation in form of a message is available
to the user in the GMS and/or PV, where it is automatically loaded from the generated
output file. Along with it, the numerical values in percentage format are present, as well
as a timestamp (Unix timestamp is a sequence of characters representing date and time
in seconds since 1st of January in 1970 at UTC), which declares the time of the maximum
attained criterion. The structure of the output data file is given in Listing 2 and an example
of the output file can be found in Appendix A.



Sensors 2021, 21, 160 11 of 21

Listing 2. Structure of the output data file.

Row 1—return message for user (status of the procedure evaluation).
Row 2—reached percentage value of criterion from fftAnalysis() and peaksAnalysis()
functions.
Row 3—timestamp when the highest criterion was measured.
Row 4—attained percentage value of criterion from changeAnalysis() function.
Row 5—timestamp when the biggest change in signal was measured.

Another interesting and useful feature of the signalCheck() function, for debugging
and more detailed information regarding an ongoing procedure in Scilab environment, has
been programmed. The developer or programmer can choose between four modes of the
function evaluation, which do not affect output data file structure, but more information in
Scilab console are displayed or a graphical representation of the results is shown. Based on
these options, the following four modes can be classified: minimalistic mode (debugging
and graphical modes are disabled), debugging mode (debugging mode is enabled and
graphical mode is disabled), graphical mode (debugging mode is disabled and graphical
modes is enabled), and complex mode (debugging and graphical modes are enabled).

In case of the first, most simple mode, the function prints to the Scilab console only
information regarding the completion of the procedure. In the second mode, a comprehen-
sive statement of each relevant step in function is displayed in console. In case of graphical
mode, a graphical window is generated, in which all important information are captured.
In the case of complex mode, the graph, as well as detailed statement, are generated. An
example of output statement generated during the procedure evaluation can be found in
Appendix B and an example of graphical output from simulation of the function is shown
in Figure 4 and more of them in Appendix C.

cfr = 115.3561%, tsf = 1584530558813, sc = 328.4006%, tss = 1584530601120

D
et

re
nd

ed
 a

m
pl

itu
de

Timestamp
×10

12

1.584529 1.58453 1.584531 1.584532 1.584533 1.584534 1.584535 1.584536 1.584537 1.584538

−2

−1

0

1

4

3

2

5

−3

6

7

Signal
f_fft = 97.9189% in 1584530617199
Peaks over amplitude 0.02
f_peaks = 115.3561% in 1584530558813
Max change = 328.4006% in 1584530601120

Figure 4. Graphical output from signalCheck() function simulation.

In this offline simulation, a dataset that was obtained by measuring air temperature in
the HVAC system of a real building was used. The dataset was the result of approximately
120 min. long measurement and due to the creation of ‘critical state’, a harmonic signal
was artificially imposed, so that the fault, which shall be detected, was created. This
fault simulates, for example, sensor drop-out, problem with actuator, or similar. The
harmonic signal was a sine wave with the parameters being set to the critical values given
in input data file, so the output value should be 100%. The results that are represented by



Sensors 2021, 21, 160 12 of 21

vertical coloured lines, as well as by numerical values in the legend and title, confirm this
assumption, as shown in Figure 4. Thus, the beginning of the fault in the de-trended signal
and the output values were determined.

4. Practical Case Study

After obtaining satisfactory simulation results and debugging the proposed procedure
for signal analysis, i.e., signalCheck(), it was possible to verify its functionality and prac-
tically on a real system—an experimental two-storey family house situated in Bratislava,
Slovakia, which the Prosystemy company had at its disposal for this purpose.

This residential building is a considerably complex system that includes several
technologies. Apart from the central heating system and HVAC system, solar panels and
indoor swimming pool automation are also involved. Because of the complexity of the
system, six DCU units had to be integrated, while each DCU unit serves a certain subtask.
This enables the access to a variety of signals from the sensors and actuators utilised in
this system. Two of them, which represent the temperature trend, have been selected for
signal analysis in our experimental verification. The first temperature signal comes from
the central heating system and the second is from the HVAC system of this building.

4.1. Experimental Setup

The two temperature signals, selected for the experimental verification of the proposed
signal analysis procedure, have been specified based on long-term experience of the
building’s administrators, which implied that the chosen temperatures have a harmonic
behaviour with a relatively high frequency. On the other hand, it is not so easy to reveal
this kind of behaviour early within such a complex system. This would require lengthy
observation of individual signals in the system, as well as analysis of historical data.
Furthermore, the detection and early solution of problems caused by these anomalies is
convenient not only for the user, but also for the process and technology in terms of less
load on the components of the system. Therefore, the proposed procedures are particularly
useful for the implementation of such a complex system.

The signal analysis is initiated and its parameters are defined via a process visual-
isation interface, which can be accessed on any device with an installed web browser;
examples are given in Figure 5. In order to make adjustments and set the ASS parameters,
the administrator must first enter the login name and password (Figure 5A) in order to
access the global monitoring and visualisation environment. Subsequently, the administra-
tor may inspect the controlled system’s description, variable list, error and warning list,
and visualisation of the entire system. For example, Figure 5C shows a visualisation of the
central heating system of the family house subject to the experimental testing. Selecting
any device (valves, pumps, etc.) further allows for changing their set-points. Moreover, a
new window with signal data evaluation in time can be shown by clicking on the specific
displayed value of the given signal (as shown in Figure 5C). The navigation menu also
features the ‘Advanced supervision’ menu item, using which one may also perform the
basic setup of the ASS and set parameters for the procedure (see Figure 5B). The specific
settings of the procedure related our example can be found in Table 1. The most important
values of parameters are typeset in bold font. The table lists the names of variables for
analysis and critical values that shall not be exceeded. After entering the input parameter
values in the visualisation environment, function aspcall.php and UCC agent take care
of writing them into the input file for execution. Specifically, variable names that have
been chosen to perform the analysis are cfn:: TC T15.3_out0 and cfn:: T1.1_out0, denoting
water temperature of outlet from the boiler and air temperature after the heating unit of
the HVAC system, respectively.

The implementation procedure of the function considers up to 7200 s, i.e., a 2 h window
of data for analysis, as shown in Table 1. The repeatability of the signal analysis is set to
every 3600 s, i.e., every 1 h. Moreover, it is possible to set the priority of analysis execution
by a value between 1 and 100, where a higher value implies higher priority. To sum up,



Sensors 2021, 21, 160 13 of 21

in the presented experiment, the critical period was set to value 60 s, critical amplitude to
2 ◦C, and critical duration to 900 s. The sudden change threshold was set to value 3 ◦C
and interval, within which the sudden change can occur, was chosen as 5 s. An output
from this analysis can also be found in the given web interface under the label ‘Results’, as
discussed in detail in the next section.

A

B

C

D

Figure 5. Visualisation accessible on any device with a web browser. A —mobile-phone; B —tablet; C —desktop; and,

D —laptop.

Table 1. Experimental setup for signalCheck() procedure.

Parameter Value

Label Temperature Signal Check
Computational platform URL http://127.0.0.1/ASS/ass/aspcall.php
Procedure call signalCheck
Priority 50
Scheduled EVERY 3600 SEC
For control variables cfn:: TC T15.3_out0, cfn:: T1.1_out0
For control functions
Input string Temp.analysis jj
Input structure Analyzed Temperature Signal: CONTROL_VARIABLE[7200SEC],

Frequency Critical Period: 60,
Frequency Critical Amplitude: 2,
Frequency Critical Duration: 900,
Sudden Change Threshold [degC]: 3,
Sudden Change Interval [s]: 5

Result structure Critical Frequency Reached: REAL: 0,
Sudden Change:REAL: 0,
Time of Critical Frequency Event: TIMESTAMP: 0,
Time of Sudden Change Event: TIMESTAMP: 0

Result record size 10
Result record resend 1
Visualisation notification Crit. Frequency Reached: Oscillation is close to critical period.
Visualisation alarm Crit. Frequency Reached: Oscillating is above critical period and amplitude.
GMS alarm
GMS warning
GMS notification
Max execution time 30SEC

http://127.0.0.1/ASS/ass/aspcall.php


Sensors 2021, 21, 160 14 of 21

4.2. Experimental Results and Discussion

The administrator can choose which signal analysis results for a given variable to
display. Four graphs are plotted after selecting the variables. The first pair of graphs
relates to the frequency analysis, where the first graph represents attained criteria value
and the second graph provides information about the time at which the analysis detected
the highest criteria values. The same is shown in the second pair of graphs, but here the
sudden change analysis is displayed. An example of the experiment output is shown
in Figure 5D. To make the results more clear, the MATLAB platform has been used for
post-processing, thus the obtained data are presented in the MATLAB graphical window;
see Figures 6 and 7. Both of the signals, as well as the corresponding graphical and numer-
ical outputs, are captured. Tables 2 and 3 lists the corresponding numerical results. Note
that the overall experiment lasted for sixteen hours on 18 November 2020.

T
em

p
er

at
u
re

 [
°C

]
C

ri
te

ri
o
n
 [

%
]

Time [h]

(a)

T
em

p
er

at
u
re

 [
°C

]
C

ri
te

ri
o
n
 [

%
]

Time [h]

(b)
Figure 6. Experimental results of cfn:: TC T15.3_out0 variable. (a) Signal evaluation and oscillation analysis. (b) Signal
evolution and sudden change analysis.



Sensors 2021, 21, 160 15 of 21

Table 2. Numerical results of cfn:: TC T15.3_out0 variable.

Analysis Time Oscillation Analysis Sudden Change Analysis
28/11/2020 Attained Criterion [%] Attained in Time Attained Criterion [%] Attained in Time

01:59:51 46.3334 01:09:50 33.2977 01:16:06
02:59:51 71.0155 02:14:00 33.9134 02:36:49
03:59:51 59.8925 02:19:15 34.2351 02:36:49
04:59:51 88.0896 04:25:37 33.4914 03:46:29
05:59:50 110.4940 04:28:13 33.2420 04:36:42
06:59:50 77.3565 05:42:25 33.2640 05:55:09
07:59:50 148.9891 06:19:14 65.6254 06:32:50
08:59:51 60.8071 07:56:55 33.3015 08:06:15
09:59:51 110.2355 09:21:39 33.2728 08:22:16
10:59:50 110.2355 09:21:39 33.0811 09:39:07
11:59:57 117.1298 10:37:50 33.0036 10:44:25
12:59:57 80.3785 11:20:33 33.2893 11:38:14
13:59:57 31.4047 13:12:32 33.2516 13:26:10
15:00:10 28.4239 13:59:22 33.2770 13:26:10

T
em

p
er

at
u
re

 [
°C

]
C

ri
te

ri
o
n
 [

%
]

Time [h]

(a)

T
em

p
er

at
u
re

 [
°C

]
C

ri
te

ri
o
n
 [

%
]

Time [h]

(b)(b)
Figure 7. Experimental results of cfn:: T1.1_out0 variable. (a) Signal evaluation and oscillation analysis. (b) Signal evolution
and sudden change analysis.



Sensors 2021, 21, 160 16 of 21

Table 3. Numerical results of cfn:: T1.1_out0 variable.

Analysis Time Oscillation Analysis Sudden Change Analysis
28/11/2020 Attained Criterion [%] Attained in time Attained Criterion [%] Attained in Time

01:59:49 46.3335 01:09:50 33.2977 01:16:06
02:59:49 108.8712 02:15:54 33.3104 01:28:54
03:59:49 227.4807 03:11:55 467.3365 03:17:12
04:59:49 155.0944 03:19:18 33.1927 04:11:20
05:59:48 44.0485 05:03:54 33.2763 05:27:12
06:59:48 155.5126 06:23:36 65.8576 06:32:54
07:59:48 148.9891 06:19:14 65.6254 06:32:50
08:59:49 199.7701 07:48:42 65.6596 08:06:07
09:59:48 147.9392 09:02:10 466.3525 09:07:55
10:59:48 66.8067 10:09:14 33.2872 09:45:42
11:59:55 95.6282 10:35:29 33.2592 11:38:14
12:59:55 80.3785 11:20:33 33.2893 11:38:14
13:59:55 222.7023 12:42:22 33.1799 13:08:13
15:00:08 49.0933 14:16:57 33.1973 14:34:18

Figure 6 shows the results from the analysis of the variable cfn:: TC T15.3_out0. This
figure consists of two pairs of graphs. The first pair of graphs (Figure 6a) relates to the
oscillation analysis, where the first graph illustrates signal evaluation in time and the bar
graph below represents the maximum value of given criterion in [%] attained in specific
times. The green colour highlights values below 100% and the red colour highlights those
that exceeded this threshold. The vertical lines in the first graph capture the time when the
highest value of the criterion was attained in a specific step of the analysis. The colours of
these lines correspond to the colours in the bar chart. The yellow bar represents the result
that is outside the displayed signal, and the dark red colour represents the result that is the
same as the previous one, while the vertical line of this result is dashed. The second pair of
graphs (Figure 6b) is the same, but it represents an analysis of sudden changes. The purple
bars, analogously to the first pair of graphs, represent the same result as that obtained in
the previous analysis step. Table 2 precisely lists quantified values of the attained criterion
and the times at which the highest value of the criterion was detected in a given step.

The same holds for Figure 7 and Table 3, which present the results of the analysis of
the second variable—cfn:: T1.1_out0. Based on the combination of graphical and numerical
results, it can be stated that we obtained satisfactory results, because the portions of signal
that approached the pre-defined critical values were reliably detected. Whether it is, for
example, detecting the harmonic behaviour of a signal at the time from 6:19:14, when the
criterion was attained to approximately 66% (see Figure 6a and Table 2), or the detection of
a sudden decrease and increase of temperature in the second case (Figure 7b), where the
criterion value was exceeded twice up to the value of approximately 467% (see Table 3).

Based on the performed practical experiments and obtained results, we can state that
the assumptions from the simulations have been confirmed and the proposed procedure of
advanced supervision is also reliable for long-term online deployment, since it has correctly
detected and quantified any undesirable phenomena, not only within, but also after the
presented experiment.

Nevertheless, certain limits and inadequacies have been observed. It is given that
the Fourier transform cannot determine the duration of a given frequency in a signal, so
the peaksAnalysis() function has been implemented and executed in parallel with the
fftAnalysis() function. Within this experiment, the weights were set for the values of their
results. The result of fftAnalysis() had a weight equal to 1, while the weight of the result of
peaksAnalysis() was 0.75. As a part of further research, we intend to focus on possibly the
last modification of this procedure, namely to adjust the signalCheck() function, so that
the FFT is performed first and the analysis in the time domain follows directly in series, in
order to determine the exact value of signal duration with a specific frequency.



Sensors 2021, 21, 160 17 of 21

5. Conclusions

In this paper, we introduced an approach to advanced process supervision and demon-
strated the implementation of the proposed signal analysis procedure in practice—while
using real smart building as a case study. The presented solution helps to ensure a con-
tinuous online monitoring of process behaviour and, thus, allows for the user to avoid a
potential problem in time. This eventually represents a step towards low-cost operation
of the building. Specifically, we proposed the procedure of signal analysis as a part of
advanced supervision system. The ASS was designed as function package and one of its
functions has been programmed and integrated into a novel, low-cost and open-source
control platform DCU. The procedure serves for the analysis of any signal measured by the
DCU unit, such that anomalies and illogical data trend can be detected. Functionality of the
designed function was tested in offline simulations and then experimentally, while using a
two-storey family house building. Based on the obtained results, we may conclude that the
proposed system is fully functional and performed satisfactorily. Within further work, our
aim is to extend the ASS package with identification algorithms as well as advanced control
methods. Finally, the practical aim is to deploy the proposed solution in other buildings
and industrial systems.

Author Contributions: Conceptualization, P.M., H.P. and M.G.; methodology, P.M. and H.P.; software,
P.M. and H.P.; validation, P.M.; formal analysis, P.M.; investigation, P.M. and H.P.; resources, P.M.
and H.P.; data curation, P.M. and H.P.; writing—original draft preparation, P.M.; writing—review
and editing, H.P. and M.G.; visualization, P.M.; supervision, P.M. and H.P.; project administration,
P.M., H.P. and M.G.; funding acquisition, M.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Slovak Research and Development Agency under the
grant APVV-18-0023. The APC was funded by the project ‘Predictive control of mechatronic systems
and industrial processes’ under the programme ‘Excellent creative teams at Slovak University of
Technology in Bratislava’.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Input and Output Data File Example

Input:
C:/Users/minarcik/Desktop/sch/signalCheck_output_31.dat

Some string here if needed
6
1
7200,2
1584537167675,32.360452
1584537166670,32.360394
1584537165664,32.360343
1584537164659,32.357122
1584537163656,32.354222
...
1584529900994,29.928913
1584529899988,29.930158
1584529898983,29.931279
1584529897978,29.932288
1584529896973,29.933196
1,1
25.0
1,1



Sensors 2021, 21, 160 18 of 21

1.0
1,1
1500.0
1,1
2.0
1,1
20.0
Initialization
4
1,1
0
1,1
0
1,1
0
1,1
0

Output:

MESSAGE: OK: Peaks signal analysis has been conducted. OK: Sudden change signal analysis has been

conducted;

MATRIX_0: [75.95734313336];

MATRIX_1: [1584530612174];

MATRIX_2: [335.6069380092];

MATRIX_3: [1584532109604];

Appendix B. Scilab Console List during the signalCheck() Procedure
–>signalCheck(’signalCheck_input_13.dat’)

OK: Data have been read from file.
OK: Input data have been read.
OK: Previous results have been read.
OK: The signal is not continuous-time and has been divided into 5 segments
OK: A duration of the 1. segment is 7200.548 [s]
OK: The signal meets all the requirements and will be analysed...
OK: Signal analysis executed and the result is [cfr, tsf, sc, tss]:
!149.3251305613 1584530465256 328.4002204453 1584530601120 !
OK: Execution time of the signal analysis was 6.811 [s] (0.018-fftAnalysis + 0.029-peaksAnalysis + 6.764-
changeAnalysis)
OK: A duration of the 2. segment is 0 [s] !ERROR: Signal length is shorter than 100 samples, so the analysis for
this signal will not be executed! !
OK: A duration of the 3. segment is 0 [s]
!ERROR: Signal length is shorter than 100 samples, so the analysis for this signal will not be executed! !
OK: A duration of the 4. segment is 0 [s]
!ERROR: Signal length is shorter than 100 samples, so the analysis for this signal will not be executed! !
OK: A duration of the 5. segment is 33.913 [s]
!ERROR: Signal length is shorter than 100 samples, so the analysis for this signal will not be executed! !
OK: The final result is [cfr, tsf, sc, tss]:
!149.3251305613 1584530465256 328.4002204453 1584530601120 !
OK: Results have been written to the text file

ans =
OK: FFT analysis has been conducted. OK: Sudden change signal analysis has been conducted.



Sensors 2021, 21, 160 19 of 21

Appendix C. Results of signalCheck() Function Simulations

cfr = 118.5544%, tsf = 1584530530675, sc = 152.1828%, tss = 1584530608155

D
et

re
nd

ed
 a

m
pl

itu
de

Timestamp
×10

12

1.584529 1.58453 1.584531 1.584532 1.584533 1.584534 1.584535 1.584536 1.584537 1.584538

Timestamp
×10

12

1.584529 1.58453 1.584531 1.584532 1.584533 1.584534 1.584535 1.584536 1.584537 1.584538

D
et

re
nd

ed
 a

m
pl

itu
de

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2.5

3.5

4

4.5

3

2

cfr = 51.8111%, tsf = 1584530136545, sc = 10.1720%, tss = 1584533555080
5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2.5

3.5

4

4.5

3

2

5

Signal
f_fft = 51.8111% in 1584530136545
Peaks over amplitude 0.02
f_peaks = 12.5317% in 1584534334997
Max change = 10.1720% in 1584533555080

Signal
f_fft = 97.9189% in 1584530617199
Peaks over amplitude 0.02
f_peaks = 118.5544% in 1584530530675
Max change = 152.1828% in 1584530608155



Sensors 2021, 21, 160 20 of 21

cfr = 101.7171%, tsf = 1584530612174, sc = 335.6071%, tss = 1584532109604

D
et

re
nd

ed
 a

m
pl

itu
de

Signal
f_fft = 97.9189% in 1584530617199
Peaks over amplitude 0.02
f_peaks = 101.7171% in 1584530612174
Max change = 335.6071% in 1584532109604

Timestamp
×10

12

1.584529 1.58453 1.584531 1.584532 1.584533 1.584534 1.584535 1.584536 1.584537 1.584538
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Timestamp
×10

12

1.584529 1.58453 1.584531 1.584532 1.584533 1.584534 1.584535 1.584536 1.584537 1.584538

Signal
f_fft = 51.3471% in 1584529896973
Peaks over amplitude 0.02
f_peaks = 19.0742% in 1584534837959
Max change = 12.6516% in 1584530644533

D
et

re
nd

ed
 a

m
pl

itu
de

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.6

0.8

1.4

1.8

2

2.2

2.4

1.6

1.2

1

0.4

cfr = 51.3471%, tsf = 1584529896973, sc = 12.6516%, tss = 1584530644533

References
1. Mocrii, D.; Chen, Y.; Musilek, P. IoT-based smart homes: A review of system architecture, software, communications, privacy and

security. Internet Things 2018, 1–2, 81–98. [CrossRef]
2. Al Dakheel, J.; Del Pero, C.; Aste, N.; Leonforte, F. Smart buildings features and key performance indicators: A review.

Sustain. Cities Soc. 2020, 61, 102328. [CrossRef]
3. Sovacool, B.K.; Furszyfer Del Rio, D.D. Smart home technologies in Europe: A critical review of concepts, benefits, risks and

policies. Renew. Sustain. Energy Rev. 2020, 120, 109663. [CrossRef]
4. Metallidou, C.K.; Psannis, K.E.; Egyptiadou, E.A. Energy efficiency in smart buildings: IoT approaches. IEEE Access 2020,

8, 63679–63699. [CrossRef]
5. Minoli, D.; Sohraby, K.; Occhiogrosso, B. IoT considerations, requirements, and architectures for smart buildings—energy

optimization and next-generation building management systems. IEEE Internet Things J. 2017, 4, 269–283. [CrossRef]

http://dx.doi.org/10.1016/j.iot.2018.08.009
http://dx.doi.org/10.1016/j.scs.2020.102328
http://dx.doi.org/10.1016/j.rser.2019.109663
http://dx.doi.org/10.1109/ACCESS.2020.2984461
http://dx.doi.org/10.1109/JIOT.2017.2647881


Sensors 2021, 21, 160 21 of 21

6. Technavio. Top 10 Building Management System Companies in the World. 2019. Available online: https://blog.technavio.com/
blog/top-10-building-management-system-companies-worldwide (accessed on 13 October 2020).

7. Alaa, M.; Zaidan, A.; Zaidan, B.; Talal, M.; Kiah, M. A review of smart home applications based on Internet of Things. J. Netw.
Comput. Appl. 2017, 97, 48–65. [CrossRef]

8. Mofidi, F.; Akbari, H. Intelligent buildings: An overview. Energy Build. 2020, 223, 110192. [CrossRef]
9. Marinakis, V.; Karakosta, C.; Doukas, H.; Androulaki, S.; Psarras, J. A building automation and control tool for remote and real

time monitoring of energy consumption. Sustain. Cities Soc. 2013, 6, 11–15. [CrossRef]
10. Valinejadshoubi, M.; Moselhi, O.; Bagchi, A.; Salem, A. Development of an IoT and BIM-based automated alert system for

thermal comfort monitoring in buildings. Sustain. Cities Soc. 2020, in press. [CrossRef]
11. Wang, J.; Fu, Y.; Yang, X. An integrated system for building structural health monitoring and early warning based on an Internet

of things approach. Int. J. Distrib. Sens. Netw. 2017, 13, 1–14. [CrossRef]
12. Sheikhnejad, Y.; Gonçalves, D.; Oliveira, M.; Martins, N. Can buildings be more intelligent than users?- The role of intelligent

supervision concept integrated into building predictive control. Energy Rep. 2020, 6, 409–416. [CrossRef]
13. Majewski, J.; Wojtyna, R. Results of applying evolutionary algorithms to frequency-domain signal analysis. In Proceedings of the

2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 20–22 September
2017; pp. 121–124.

14. Elbi, M.D.; Kizilkaya, A. Multicomponent signal analysis: Interwoven Fourier decomposition method. Digit. Signal Process. 2020,
104, 102771. [CrossRef]

15. Ren, W.X.; Sun, Z.S. Structural damage identification by using wavelet entropy. Eng. Struct. 2008, 30, 2840–2849. [CrossRef]
16. Li, D.; Cai, Z.; Qin, B.; Deng, L. Signal frequency domain analysis and sensor fault diagnosis based on artificial intelligence.

Comput. Commun. 2020, 160, 71–80. [CrossRef]
17. Sharma, R.R.; Pachori, R.B. A new method for non-stationary signal analysis using eigenvalue decomposition of the Hankel

matrix and Hilbert transform. In Proceedings of the 2017 4th International Conference on Signal Processing and Integrated
Networks (SPIN), Noida, India, 2–3 February 2017; pp. 484–488.

18. Zhu, K.; Wong, Y.S.; Hong, G.S. Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results.
Int. J. Mach. Tools Manuf. 2009, 49, 537–553. [CrossRef]

19. Lu, Q. The processing of the rolling bearing’s fault signal based on wavelet analysis. In Proceedings of the 2012 International
Conference on Image Analysis and Signal Processing, Hangzhou, China, 9–11 November 2012; pp. 1–5.

20. Ma, Q.; Solís, M.; Galvín, P. Wavelet analysis of static deflections for multiple damage identification in beams. Mech. Syst. Signal
Process. 2021, 147, 107103. [CrossRef]

21. Yeap, Y.M.; Geddada, N.; Satpathi, K.; Ukil, A. Time- and Frequency-Domain Fault Detection in a VSC-Interfaced Experimental
DC Test System. IEEE Trans. Ind. Inform. 2018, 14, 4353–4364. [CrossRef]

22. Sejdić, E.; Djurović, I.; Jiang, J. Time–frequency feature representation using energy concentration: An overview of recent
advances. Digit. Signal Process. 2009, 19, 153–183. [CrossRef]

23. Mirnaghi, M.S.; Haghighat, F. Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods:
A comprehensive review. Energy Build. 2020, 229, 110492. [CrossRef]

24. Lughofer, E.; Zavoianu, A.C.; Pollak, R.; Pratama, M.; Meyer-Heye, P.; Zörrer, H.; Eitzinger, C.; Radauer, T. On-line anomaly
detection with advanced independent component analysis of multi-variate residual signals from causal relation networks. Inf. Sci.
2020, 537, 425–451. [CrossRef]

25. Smiti, A. A critical overview of outlier detection methods. Comput. Sci. Rev. 2020, 38, 100306. [CrossRef]
26. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [CrossRef]
27. Ariyaluran Habeeb, R.A.; Nasaruddin, F.; Gani, A.; Targio Hashem, I.A.; Ahmed, E.; Imran, M. Real-time big data processing for

anomaly detection: A survey. Int. J. Inf. Manag. 2019, 45, 289–307. [CrossRef]
28. Prosystemy. About Us. Available online: http://prosystemy.sk/index.php?lang=en (accessed on 15 October 2020).

https://blog.technavio.com/blog/top-10-building-management-system-companies-worldwide
https://blog.technavio.com/blog/top-10-building-management-system-companies-worldwide
http://dx.doi.org/10.1016/j.jnca.2017.08.017
http://dx.doi.org/10.1016/j.enbuild.2020.110192
http://dx.doi.org/10.1016/j.scs.2012.06.003
http://dx.doi.org/10.1016/j.scs.2020.102602
http://dx.doi.org/10.1177/1550147716689101
http://dx.doi.org/10.1016/j.egyr.2019.08.081
http://dx.doi.org/10.1016/j.dsp.2020.102771
http://dx.doi.org/10.1016/j.engstruct.2008.03.013
http://dx.doi.org/10.1016/j.comcom.2020.05.034
http://dx.doi.org/10.1016/j.ijmachtools.2009.02.003
http://dx.doi.org/10.1016/j.ymssp.2020.107103
http://dx.doi.org/10.1109/TII.2018.2796068
http://dx.doi.org/10.1016/j.dsp.2007.12.004
http://dx.doi.org/10.1016/j.enbuild.2020.110492
http://dx.doi.org/10.1016/j.ins.2020.06.034
http://dx.doi.org/10.1016/j.cosrev.2020.100306
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.ijinfomgt.2018.08.006
http://prosystemy.sk/index.php?lang=en

	Introduction
	Motivation
	Signal Analysis and Anomaly Detection Methods

	A Novel Dynamic Control System Platform
	Structure of the Control System Platform
	Hardware and Software of Dynamic Control Unit

	Advanced Supervision Server and Its Functions
	Signal Analysis Procedure
	Main Functions of the Signal Analysis Procedure
	Outputs, Other Features and Offline Simulation of the Procedure

	Practical Case Study
	Experimental Setup
	Experimental Results and Discussion

	Conclusions
	Input and Output Data File Example
	Scilab Console List during the signalCheck() Procedure
	Results of signalCheck() Function Simulations
	References

