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Abstract

:

Hypertension is an antecedent to cardiac disorders. According to the World Health Organization (WHO), the number of people affected with hypertension will reach around 1.56 billion by 2025. Early detection of hypertension is imperative to prevent the complications caused by cardiac abnormalities. Hypertension usually possesses no apparent detectable symptoms; hence, the control rate is significantly low. Computer-aided diagnosis based on machine learning and signal analysis has recently been applied to identify biomarkers for the accurate prediction of hypertension. This research proposes a new expert hypertension detection system (EHDS) from pulse plethysmograph (PuPG) signals for the categorization of normal and hypertension. The PuPG signal data set, including rich information of cardiac activity, was acquired from healthy and hypertensive subjects. The raw PuPG signals were preprocessed through empirical mode decomposition (EMD) by decomposing a signal into its constituent components. A combination of multi-domain features was extracted from the preprocessed PuPG signal. The features exhibiting high discriminative characteristics were selected and reduced through a proposed hybrid feature selection and reduction (HFSR) scheme. Selected features were subjected to various classification methods in a comparative fashion in which the best performance of 99.4% accuracy, 99.6% sensitivity, and 99.2% specificity was achieved through weighted k-nearest neighbor (KNN-W). The performance of the proposed EHDS was thoroughly assessed by tenfold cross-validation. The proposed EHDS achieved better detection performance in comparison to other electrocardiogram (ECG) and photoplethysmograph (PPG)-based methods.
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1. Introduction


Hypertension, also known as high blood pressure, is one of the most common risk factor for cardiovascular disease (CVD) [1]. It is a very common condition in which a large amount of force from the blood pushes on the walls of the arteries leading towards heart diseases [2]. The main risk factors for hypertension include age, genetics, gender, lack of physical activity, bad diet practices, high cholesterol, excessive salt consumption, less intake of vegetables and fruit, smoking, obesity, family history, and other diseases such as kidney disease or diabetes [3]. According to the World Health Organization (WHO) statistics, 1.13 million of the world population suffers from hypertension, and more men are affected than women. One out of every four men suffers from high blood pressure issues [3]. It is a silent killer that affects the most significant tissues of the human body [4]. Indeed, many people are not aware they have hypertension [5]. In the US, an estimated 13 million people are unaware of their condition [6], while in China, 59% of people with hypertension are unaware of their condition [5]. In Pakistan, 18% of the adults are affected by hypertension, and 33% of the adults above the age of 45 were affected according to the National Health Survey Pakistan [7]. Prevalence rates of hypertension based on genetic and ethnic variations ranges from about 29% for Asians, 45% for black men, and around 46.3% for women [8].



Table 1 describes a blood pressure ranges of normal and hypertension in terms of systolic and diastolic pressures. Some of the common symptoms of hypertension include headaches, dizziness, migraine, lightheadedness, changes in vision, or fainting episodes [9]. Hypertension serves as the first step towards CVDs, but the most chronic effect of unchecked hypertension is stroke, which can lead to permanent paralysis of certain body parts. Prolonged and undetected hypertension can be fatal; therefore, its detection in the preliminary stages is crucial.



Moreover, the world is currently suffering from the outbreak of a pandemic COVID-19 caused by the coronavirus SARS-CoV-2. It was reported that there are some specific comorbidities associated with a high risk of infection and increased severity of lung injury. Most of the common comorbidities in COVID-19 patients are hypertension (30%), cardiovascular disease (8%), and diabetes (19%) [10]. Therefore, it is not entirely surprising that the COVID-19 patients experiencing worst complications are hypertensive since hypertension is most frequent in older people and these elderlies are particularly at risk of being infected by a coronavirus [11]. Given the above information and statistics, it is clear that we need a technique for recognizing hypertension as early as possible to avoid significant damage to one’s body.



Various techniques including physiological signals such as electrocardiogram (ECG) and photoplethymograph (PPG) are currently being used to detect hypertension. Detection of hypertension from PPG signals (MIMIC database) using continuous wavelet transform (CWT) and the GoogLeNet deep learning model [12] achieved an F1 score of 92.55%. This work relies on a deep learning model so it requires high processing power, large scale data sets, and more training time. The authors of [13] proposed a method based on pulse arrival time (PAT) features extracted from PPG and ECG signals. The k-nearest neighbor (KNN) classification method was employed to predict hypertension with an F1 score of 94.84%. The research achieved acceptable results but missing consideration of preprocessing the PPG signals as PPG suffers from motion artifacts and variation in light intensity. Identification of hypertension [14] from heart rate variability (HRV) signals yielded an accuracy of 85.47% using standard deviation of all NN intervals and multiple instance learning (MIL). However, HRV feature extraction for long-term data requires significant processing resources. A model [15] to detect hypertension obtained 93.33% accuracy using Savitzky–Golay filtering (SGF), entropy features extracted from ECG, and a support vector machine (SVM) classifier. The method achieved a considerable performance on a comparatively small data set consisting of 48 participants.



In [16], the authors proposed a hypertension detection framework based on five principal components extracted from HRV signals to achieve the highest accuracy of 85.5% with quadratic discriminant analysis (QDA). Rajput et al. [17] proposed a scheme to identify the low and high risk of hypertension. The scheme yielded classification accuracy 100% using optimal orthogonal wavelet filter back (OWFB), log, and fractal dimension features extracted from ECG. Despite promising results, this work suffers from a data imbalance problem. The authors in [18] proposed a method to detect ECG hypertensive signals using empirical mode decomposition (EMD) for preprocessing of the signals, yielding an accuracy of 97.7% through the KNN classifier. The extracted features were selected physically, making this process laborious. The method was only trained on a small data set. A system to detect hypertension using morphological descriptors derived from PPG with 92.31% accuracy is discussed in [19]. Identification of hypertension patients from ballistocardiograms (BCG) is presented in [20]. The system achieved a mean accuracy of 84.4% using class association rules (CAR) classifier and morphological features. The BCG signals were collected from patients lying on a smart mattress which has a limited availability.



Medical devices in hospitals can easily get affected by electromagnetic interference (EMI) in a complex electromagnetic environment [21,22]. ECG signals are usually affected by the EMI and preconditioning circuits. Changes in temperature and ambient lighting conditions impact the PPG signal acquisition. PPG signal acquisition is exposed to motion artifacts as well [23]. The frequency of the PPG signal is about 1–3 Hz [24], so it also requires a high order filter for signal denoising. The motivation behind this research was to investigate the feasibility of a new signal modality, i.e., pulse plethysmograph (PuPG). In contrast to PPG that uses light to detect the volume of blood flow in the finger, the PuPG senses the pressure changes in blood flow.



Main Contributions


In this research, novel PuPG signals were used to design the hypertension detection system. The PuPG signal includes considerable cardiac health characteristic information [25,26,27]. The PuPG signals are recently being used for emotions classification [28] and biometric systems [29] as well. The main contributions of this work are listed as follows:




	
This is the first study that used PuPG-based signals for the detection of hypertension.



	
To accurately detect the hypertension pattern, we extract a large number of multi-domain features from preprocessed PuPG signals through discrete wavelet transform (DWT) and EMD.



	
To reduce the feature dimensions and redundancy while improving the discriminative power of features, we proposed a hybrid feature selection and reduction (HFSR) scheme.



	
The proposed expert hypertension detection system (EHDS) comprises preprocessing through EMD, followed by the feature extraction, kernel principal component analysis (KPCA), and weighted k-nearest neighbor (KNN-W) classifier, achieved an accuracy of 99.4%, sensitivity of 99.6%, and specificity of 99.4%.








The rest of this paper is structured as follows: Section 2 gives details about the materials used in this study. Section 3 describes the details about the methods. Next, we present the results in Section 4 and Section 5 discuss the proposed method and its comparative analysis. Section 6 concludes this research paper.





2. Materials


2.1. Data Acquisition


In this study, a portable pulse plethysmograph (PuPG) sensor PTN-104 (NISensors, iWorx Systems Inc., Dover, UK) in combination with NI myDAQ (National Instruments Corporation, Austin, TX, USA) was used for PuPG data acquisition. PTN-104 sensor is attached to the index finger of the subject to convert pulse pressure into an electrical voltage signal. The real-time integral of its output signal produces the same volume pulse signal as the expensive infrared PPG sensor. The PTN-104 is a rugged non-magnetic accelerometer, which is made up of piezoelectric material. IX-myDAQ (National Instruments Corporation, Austin, TX, USA) is a breakout board used for connecting the PTN-104 sensor and myDAQ (National Instruments Corporation, Austin, TX, USA) for data acquisition via mini DIN7 port. NI myDAQ is a low-cost data acquisition tool that converts analog signals to digital format and allows the users to analyze real-time data in NI LabVIEW software (National Instruments Corporation, Austin, TX, USA) on PC. The sampling frequency was set to be 1 kHz for PuPG data acquisition.



It is very essential to highlight the difference between PPG and PuPG signals and sensors. Both of them operate on completely different principles with different input parameters. Table 2 presents a comparison between various properties of both sensors such as input parameters, working principles, and the impact of noise on a signal acquisition. Figure 1 illustrates the output signals acquired from both sensors. It was observed that the PuPG signal carries more information as compared to the PPG signal since multiple frequencies contribute towards the dicrotic notch for PuPG.




2.2. Data Set Description


Raw PuPG signals were acquired from the subjects. The data acquisition was carried out for developing a two-class data bank; one was hypertension and the other normal. A total of 700 signals were collected from hypertension subjects and 709 signals from normal subjects, with a timestamp of 10 s per signal and a sampling frequency of 1000 Hz. Subjects were advised to keep calm and remain static during data acquisition activity. Informed consent was obtained from all participants included in the research. Recording activity was performed between breakfast and lunch time. None of the involved subjects were smokers or diabetic. Table 3 shows the details of the subjects and the acquired data for this study. Figure 2 shows a comparison of raw PuPG signals collected from a normal subject and a subject suffering from hypertension. Sometimes acquired signals (both normal and hypertension) were affected by the circuit noise. The noise/power line distortion incurred due the embedded electronics of data acquisition setup can be seen as a sinusoidal oscillatory component (50 Hz) in the normal PuPG Hat of Figure 2.





3. Methods


3.1. Design of the Study


The proposed methodology in this research adopts the machine learning paradigm shown in Figure 3. It consists of four main stages, namely (i) preprocessing; (ii) feature extraction; (iii) hybrid feature selection and reduction, and (iv) classification. These stages are separated through a dotted line in Figure 3. Each step is elaborated in detail in forthcoming sections. This research adopts a comparative approach between two pattern analysis frameworks, i.e., method I and method II. Method I is comprised of discrete wavelet transform (DWT)-based preprocessing while method II adopts empirical mode decomposition (EMD) for signal denoising. The rest of the framework for both methods is the same. The feature values extracted, reduced feature vectors, and the performance of the classifiers vary for both methods due to the difference in preprocessing methods. All experiments were performed on MATLAB 2018a (The MathWorks, Inc., Natick, MA, USA) running on a personal computer with Core i7 (Intel Corporation, Santa Clara, CA, USA) processors and 32 GB RAM.



	1.

	
Preprocessing: It removes the irrelevant information and artifacts from the acquired PuPG signal data of normal and hypertension classes. Method I employs discrete wavelet transform (DWT) for signal denoising through frequency and mean relative energy-based criteria. Method II adopts empirical mode decomposition (EMD) for noise elimination through analysis of mean frequencies and energies of individual signal components extracted from normal and hypertension classes.




	2.

	
Feature extraction: It extracts a combination of 102 features from preprocessed PuPG through DWT and EMD separately. These include time, frequency, spectral, texture, and cepstral features. The difference between signal classes is best captured through the extraction of a wide range of informative features.




	3.

	
Feature selection and reduction: This step eliminates features with redundant information through a hybrid feature selection and reduction (HFSR) method that is a combination of multiple feature ranking and transformation schemes. A high-dimensional feature vector is reduced through a new strategy of the averaging outcome of seven feature ranking methods, thus providing more reliable results. Next, we employed kernel principal component analysis (KPCA) to further decrease the feature dimension and represent significant information in fewer parameters. Extracted features in both method I and II are fed to the HFSR scheme to reduce the dimension of the resultant feature vector.




	4.

	
Classification:The final feature vectors extracted in both methods I and II of hypertension and normal classes are fed to a range of different classifiers, i.e, support vector machines (SVM), k-nearest neighbors (KNN), ensemble methods, decision trees (DT), and logistic regression (LR). Classification performance of both methods is evaluated through a baseline tenfold cross-validation strategy and compared with 5-, 15-, 20-, and 25-fold cross-validation.








3.2. Preprocessing


The acquired PuPG data were contaminated with noise and artifacts and include redundant information (Figure 2). These noise components needs to be eliminated for a robust performance of the proposed system. Therefore, we employed DWT and EMD-based preprocessing for signal denoising. Later on, we compared the preprocessing performance of both methods.



3.2.1. Discrete Wavelet Transform


The discrete wavelet transform (DWT) is a widely applied approach in biomedical signal processing applications [30,31,32]. DWT decomposes a signal into different resolutions by using a combination of high-pass and low-pass filters. Figure 4 illustrates the complete process of wavelet-based denoising [33] adopted in this research. Numerous filter coefficients have been developed for diverse types of signal analysis applications—for instance, Daubechies, Symlets, and Coiflets coefficients, etc.



In this study, we employed the Symlet wavelet due to its similarity with the shape of the PuPG signal under consideration [34,35]. Symlet wavelet yields the best results as compared to others due to its resemblances with the morphological characteristics of the PuPG signal.



Table 4 exhibits information about decomposition levels, frequency ranges, and mean relative energies of normal and hypertension data classes of PuPG signals. It can be observed that   D 1  ,   D 2  ,   D 3  , and   D 4   signal components have high frequency range and include low mean relative energies; therefore, these components were eliminated while reconstructing a denoised signal. This is also endorsed by the fact that the PuPG signal has a very low frequency (normally less than 60 Hz). Figure 5 provides a graphical illustration of wavelet decomposition for normal and hypertension PuPG signals. Figure 6 presents the denoised signal generated as a result of applying DWT. High frequency noise visible in raw PuPG signal (Figure 2) is eliminated in the denoised version.




3.2.2. Empirical Mode Decomposition


EMD is an adaptive method that derives fundamental functions directly from the data [36]. EMD does not require any previously known value of the signal for its computation. The principal task for computing EMD of a given signal is to empirically determine the intrinsic oscillatory components through their particular time scales in a signal and subsequently disintegrate the signal into intrinsic mode functions (IMFs) [37]. Therefore, EMD provides remarkably better results for nonlinear and non-stationary biomedical signals.



Selection criteria of IMF have to satisfy two conditions;



	
In the entire signal, the total number of local extrema and zero crossings must be equal to each other or differ by a maximum one.



	
The average of the envelopes computed through local minima and local maxima must be zero.






The systematic approach to disintegrate the signal into its IMFs is known as the “sifting” process, explained in Figure 7.



The basic objective of applying EMD for preprocessing the PuPG signal was to decompose the distorted signal into its constituent IMFs as depicted in Figure 8. Considering the fact that some IMFs carry discriminative and characteristic information about various data classes while others include redundant and noisy content, the determination of the proper number of IMFs is a crucial step towards creating an effective signal denoising strategy.



It is perceived from Figure 8 and Table 5 that the first IMF includes mainly high-frequency content. Table 5 provides mean frequency and energy information of each IMF for normal and hypertension data classes of the PuPG signal. The first IMF also holds very little mean relative energy components for both classes, i.e., 0.00% and 1.02% for normal and hypertension classes, respectively. Therefore, it was discarded while reconstructing the denoised signal. All other IMFs and residual signals were added to form a denoised version of the PuPG signal. Figure 9 illustrates the PuPG signal denoised through the EMD process for normal and hypertension data. It is clear that high frequency noise that was visible in raw PuPG signal (Figure 2) is eliminated now.





3.3. Feature Extraction


The objective of the feature extraction stage is to extract significant features from the biomedical signals of various classes that contributes towards an effective classification performance. In this study, a total of 102 features were separately computed from the PuPG signal denoised through DWT and EMD. Table 6 lists all the extracted features along with their statistical measures of mean and standard deviation (STD) for method I (DWT) and method II (EMD). We extracted time domain [38,39,40,41,42,43,44,45], spectral [46,47], fractal and chaos [48,49], chroma [50,51], cepstral [52], and texture features [53] and analyzed them statistically.



These features were subjected to the feature selection step (HFSR) to recognize the features with maximum discriminative content among normal and hypertension classes.




3.4. Hybrid Feature Selection and Reduction


Feature selection is one of the key steps in the modern pattern recognition and machine learning paradigms. The extracted features may include redundant information and irrelevant and noisy parameters. A two-stage hybrid feature selection and reduction (HFSR) strategy was designed to select and transform the best distinctive features as shown in Figure 10. The first stage ranks the input features through seven different methods and the second stage transforms the selected ranked features to further reduce dimensionality.



3.4.1. Feature Selection Scheme


Feature selection routines serve to enhance the performance of classifiers by reducing the feature dimensions as well as decreasing the computational time [54,55]. Feature selection methods are categorized as filter methods and wrapper methods. Filter type feature selection methods employ feature ranking techniques based on the applied statistical measure for selecting a suitable feature. In wrapper type feature selection techniques, a feature subset is selected recursively based on the overall model performance. The selection criterion computes the variation in model performance that decides the addition or removal of a feature from the subset.



To address the limitations of individual feature selection approaches, we employed a hybrid scheme of feature selection by combining seven feature ranking methods through a voting strategy. Figure 10 illustrates the hybrid scheme of feature selection and reduction. In this scheme, seven state-of-the-art feature ranking techniques, namely student t-test (TT), Kullback–Leibler distance (KLD) [56], Bhattacharya distance (BD) [57], Mann–Whitney’s test (MWT), ReliefF (RRF) [58], minimum redundancy maximum relevance (MRMR) [59,60], and receiver operating characteristic curve (ROC) were employed to rank the feature individually. Ranking assigned to each feature by all feature ranking methods is combined to calculate the mean rank (MR) value. A threshold is applied to MR value for feature selection.



Table 7 provides the sorted lists of the best forty features with the highest MR values for method I (features extracted from signal preprocessed through DWT). Rank assigned to individual features by each ranking method is also computed. The top 24 features are highlighted in Table 6 were forwarded to the next stage. It was perceived that if a feature ranking method assigns a high rank to a particular feature that failed to get high scores from other methods, it gets rejected due to the hybrid scheme of feature selection. For instance, consider the Root Sum of Squares feature that received the rank value of 99 from the ROC method, but gets scores of 53, 49, 52, 18, 58, and 72 from TT, KLD, BD, MWT, MRMR, and RRF, respectively. It achieved an MR value of 57.29 that is below the selection criterion, so it was rejected from the final feature vector of 1 × 24 dimensions. Table 8 enlists the top forty features with the highest MR values for method II, i.e., features extracted from the signal preprocessed through EMD. The rank value assigned by an individual feature ranking method to a specific feature can be examined. One to one comparison of the top ten MR values of method I in Table 7 and method II in Table 8 reveals that the magnitude of MR values of method II (81–70) is higher than that for method I (73–67).




3.4.2. Feature Reduction Using Kernel PCA


PCA applies orthogonal transformation to transform a group of likely correlated features into a set of linearly independent features known as principal components. These principal components represent the normalized linear combinations of the original features. It includes information about the most powerful variations present in the data set. The first principal component holds maximum variance information of the data set.



Kernel PCA (KPCA) [61,62] enhances the original PCA to non-linear data distribution problems through a kernel function. A kernel function projects low-dimensional feature data to a higher-dimensional feature space, where it becomes linearly separable [63].



The previous stage of hybrid feature selection reduced the feature dimensions to 1 × 24 which are fed to KPCA to further decrease dimensions for both methods I and II. Components of KPCA were selected recursively based on the classification performance through tenfold cross-validation. Separate sets of 5, 7, 10, 12, 15, and 17 components were picked for methods I and II to investigate the classification performance for differentiating normal and hypertension signal classes of PuPG signals.





3.5. Classification


To perform the classification of normal and hypertension classes of PuPG signal data set, this study employed a range of classification methods through tenfold cross-validation schemes. The classification methods opted in this study were SVM-Linear (SVM-L), SVM-Quadratic (SVM-Q), SVM-Cubic (SVM-C), SVM-Fine Gaussian (SVM-FG), SVM-Medium Gaussian (SVM-MG), KNN-Fine (KNN-F), KNN-Medium (KNN-M), KNN-Cosine distance (KNN-Cos), KNN-Cubic (KNN-C), KNN-Weighted (KNN-W), Decision Trees (DT), Linear Discriminant (LD), Logistic Regression (LR), Gaussian Naive Baise (NBG), Kernel Naive Baise (NBK), Ensemble Boosted Trees (Eboost), Ensemble Bagged Trees (EBT), Ensemble Subspace Discriminant (ESD), and Ensemble Subspace KNN (ESKNN). The tenfold cross-validation was also compared with 5-, 15-, and 20-fold cross-validation and 80–20% and 75–25% train-test experiments. All experiments were implemented on MATLAB 2018a on a personal computer with Core i7 with 32 GB RAM.





4. Results


In this study, the PuPG signal data set comprising two classes (Normal and Hypertension) was first preprocessed through DWT and EMD to develop methods I and II respectively. We obtained 102 features for each method, i.e., DWT and EMD. These features were subjected to the HFSR framework to reduce the computational complexity and feature vector dimensions. Standard statistical parameters of Accuracy (Acc), Sensitivity (Sen), Specificity (Sp), and Error rate (Err) were used to measure the classification performance.



4.1. Method I


In this research, a comparative analysis was performed via preprocessing the PuPG signal through DWT and EMD. This section presents the results yielded by preprocessing through DWT and succeeding processes of feature extraction, selection, and classification. Various feature sets, namely   S 1  ,   S 2  ,   S 3  ,   S 4  ,   S 5  , and   S 6   were formed by randomly choosing 5, 7, 10, 12, 15, and 17 transformed features. These feature components were fed to several classification methods to examine the diagnostic performance through tenfold cross-validation. Table 9 presents consolidated result analysis of various classification methods for features sets   S 1   (5 components),   S 2   (7 components), and   S 3   (10 components). Table 10 illustrates comprehensive analysis of classification performance over different classifiers for feature sets   S 4   (12 components),   S 5   (15 components), and   S 6   (17 components). As expressed in Table 10, Ensemble Subspace KNN classifier scores highest average accuracy of 98.4%, for 12 feature components, i.e.,   S 4   feature set.



Figure 11 shows the performance in terms of accuracy for different feature sets in various classifiers for distinguishing normal and hypertension classes using PuPG signals. Figure 12 demonstrates the specificity performance of several classifiers for various features sets from DWT based preprocessing method. Figure 13 presents a graphical comparison of the sensitivity performance of several classifiers for different feature combinations.



NBG classifier achieves highest specificity performance of 100% for feature sets   S 3  ,   S 4  ,   S 5  , and   S 6   (Figure 12), but it reaches maximum sensitivities of 26%, 26%, 32%, and 34% for the same feature sets (Figure 13); therefore, it results in significant reduction of overall classifier accuracy of NBG. The sensitivity performance is 100% for several classifiers (LD, LR, NBG, SVM-FG, SVM-MG, EBT) for feature set   S 1   (Figure 13), but the specificity performance is comparatively low.



Figure 14 shows the classification performance results in the form of a confusion matrix for best configurations such as ESKNN classifier with   S 4   (12 feature components). The sensitivity of classification is 99%, which means that out of 700 PuPG signals of hypertension, 693 were correctly predicted as hypertension data class while testing, whereas only seven were misclassified as healthy class. The classifier achieved a 98% specificity performance. Out of 709 healthy PuPG signal samples, 695 were accurately predicted as healthy class, whereas the remaining 14 signals were misclassified.



Table 11 includes the extensive experimentation results to avoid the classifier overfitting. The selected configuration was tested through 5-, 10-, 15-, and 20-fold cross-validation and 20% and 25% train-test holdout validations.




4.2. Method II


This section is primarily focused on the second method that is under discussion for this research. It encompasses the results of the classification of the features extracted after the preprocessing of the PuPG signal via EMD. A certain number of feature sets were chosen that were the result of the HFSR. The feature sets comprising of 5, 7, 10, 12, 15, and 17 transformed features were chosen and named   S 1  ,   S 2  ,   S 3  ,   S 4  ,   S 5  , and   S 6  , respectively. These feature components were fed to a various number of classifiers for classification and their performance was tested through tenfold cross-validation.



Table 12 depicts the results obtained after the classification of the feature set   S 1   (5 components),   S 2   (7 components), and   S 3   (10 components) on using a selection of various classifiers. Table 13 shows the outcomes of various classification techniques applied on feature sets   S 4   (12 components),   S 5   (15 components), and   S 6   (17 components). Analysis of both Table 12 and Table 13 show that a maximum average accuracy using the least number of features is 99.4%. This accuracy is the result of the weighted KNN classification method applied on the feature set   S 1  .



Figure 15 shows a comparison of the performance of various classifiers based on the accuracy achieved as a result of distinguishing hypertension and normal PuPG signal. Figure 16 depicts the comparison result of various classifiers based on their specificities after using EMD as the preprocessing technique. Figure 17 represents the comparison of the sensitivities of various classification methods. NBG classifier achieves the highest specificity performance of 100% for feature sets   S 3   (Figure 16), but it reaches maximum sensitivities of 26% for the same feature set (Figure 17). The sensitivity performance is 100% for several classifiers (LD, NBG, SVM-MG, ESD) for feature set   S 1   (Figure 17), but the specificity performance is comparatively low.



Figure 18 illustrates the best classification performance in the form of a confusion matrix for selected features set (  S 1  ) with KNN-W classifier. The sensitivity of classification is more than 99%, which means only one out of 700 PuPG signals was wrong predicted as hypertension data class, whereas the remaining 699 PuPG signals were correctly identified as hypertension. Out of 709 healthy PuPG signals, 702 were correctly predicted as healthy, achieving specificity of 99%. The overall average classification accuracy in the best configuration with the KNN-W classifier was 99.4%.



Table 14 includes the results of comprehensive experimentation which is performed to avoid the classifier overfitting. The selected framework was examined through 5-, 10-, 15-, and 20-fold cross-validation and 20% and 25% train-test holdout validations. For all experimental settings, the proposed scheme achieved more than 98% accuracy.




4.3. Method I versus Method II: A Comparative Analysis


This section aims to compare both methods I and II analytically. Based on this comparison, we figure out the best working solution for the detection of hypertension through PuPG signals. Method I comprises of preprocessing of PuPG signals through DWT, followed by feature extraction. Extracted features were subjected to the HFSR scheme and finally classified through Ensemble Subspace KNN. Method II consists of EMD-based signal preprocessing followed by feature extraction. Features were fed to KNN-W classifier for distinguishing normal and hypertension data classes after being reduced through the HFSR approach.



Table 15 shows the performance comparison of methods I and II in terms of average accuracy, sensitivity, specificity, error, and number of features. Method I achieves classification performance of 98.4% accuracy, 97% sensitivity, and 99% specificity using 12 transformed features. Method II obtains 99.4%, 99.2%, and 99.6% results of classification accuracy, sensitivity, and specificity respectively through only five reduced features.



Comparative analysis of both methods establishes that method II outperforms method I in terms of achieving better classification accuracy on a reduced number of features. This might be due to the fact that the accuracy achieved in the case of DWT highly depends on the proper wavelet basis selection [64]. The selection of an appropriate basis is challenging especially for non-stationary data [65]. On the other hand, EMD is a fully data-driven, adaptive, and basis-less transformation [66]. Moreover, the IMF selection process of EMD based on relative energy and mean frequency has assisted the selection of useful discriminative signal characteristics.



Figure 19 presents the finalized EHDS (expert hypertension detection system) based on PuPG signal analysis. EHDS first takes raw PuPG signal as input and performs preprocessing through EMD by rejecting the irrelevant IMFs. Next, only 24 significant features highlighted by the hybrid selection scheme are extracted and reduced through KPCA. The final transformed 1 × 5 feature vector is fed to KNN-W to distinguish the normal and hypertension data classes. Figure 20 illustrates the classification performance of the proposed EHDS as a function of the number of transformed features. It can be observed that the proposed EHDS achieves the optimum performance on only five transformed features. The classification performance shows no notable improvement with the increase in the number of features.





5. Discussion


Human blood vessels and the microcirculation system experience transformations with the rise in blood pressure (BP); these changes are exceptionally obvious for patients with severe hypertension. PuPG signals carry a wealth of information about the cardiac health [25,26,27]. The PuPG signal reflects physical changes in blood volume pressure in blood vessels during the cardiac cycle. The features extracted in this study indicate the changes in Normal and Hypertension PuPG signals acquired from various subjects. The high classification performance of EHDS reflects the association of extracted transformed features with the physiological characteristics of the cardiac condition of the subject. Thus, the proposed expert system may provide a good approximation of the presence or absence of non-communicable diseases such as hypertension.



Table 16 presents a performance comparison of the recent studies. A diagnostic index for the classification of low and high-risk hypertension classes attaining accuracy of 100% was proposed by [17]. In contrast, our work is targeted towards the classification of Normal and Hypertension classes through PuPG signals. In another study, [18] developed a computational intelligence tool based on ECG signals for the classification of normal and hypertension. EMD was employed in the signal preprocessing stage, followed by nonlinear feature extraction from the decomposed IMFs. Extracted features were ranked through Student’s t-test. The highest classification accuracy of 97.70% was obtained through the KNN classifier with tenfold cross-validation. A photoplethysmograph (PPG) based detection of hypertension was proposed by [19]. A total of 125 features of various types were extracted and reduced through MRMR. The authors reported the best classification performance with KNN-W, specifically to be 100%, 85.71%, and 92.31% for positive predictive value, sensitivity, and F1-score, respectively.



The current research is focused on the classification between normal and hypertension data through PuPG signals. To the best of author’s knowledge, this is the first study that uses the PuPG signals for discriminating among normal and hypertension with high precision. The current method achieves better performance than the existing ECG- [15,17,18], PPG- [12,19], HRV- [14,16], and BCG-based [20] approaches. Our method also outperforms the fusion-based method for detection of hypertension that utlized a combination of PPG and ECG [13].



The proposed expert system could play a vital role in the early detection of hypertension in low- and middle-income countries. It is important to mention that an estimated 1.04 billion population suffered from hypertension in 2010 [67]. A non-invasive technique based on PuPG signals analysis proposed in this research could be used for the detection of non-communicable diseases.




6. Conclusions


Early detection of hypertension or high blood pressure is extremely significant since it does not cause any obvious symptoms in many people; hence, it can harm the heart, the kidneys, and even the brain. In this study, we proposed an automated detection system for hypertension from PuPG signals for timely and precise screening of disease. First, PuPG signals were preprocessed through EMD, followed by feature extraction of various types. Highly discriminative features were selected through the proposed HFSR scheme that consisted of feature reduction and selection methods. The resultant reduced features of dimension 1 × 5 were subjected to various classification methods. The KNN-W classifier achieved the best performance in terms of accuracy, sensitivity, and specificity of 99.4%, 99.2%, and 99.6%, respectively. To compute the model performance and avoid overfitting, 5-, 10-, 15-, and 20-fold cross-validations were employed. The proposed method was also compared with the DWT based preprocessing scheme followed by the same feature extraction, selection (HFSR), and classification pipeline. The main advantages of this research are as follows:




	
The proposed EHDS system is based on the non-invasive methodology of PuPG signals.



	
The EHDS is reliable and less computational intensive with high accuracy.



	
The EHDS avoids overfitting as it is validated through 5-, 10-, 15-, and 20-fold cross-validation.



	
The proposed approach does not only rely on morphological characteristics of the acquired signal.



	
The method can be completely automated, and it works with all qualities of PuPG signals.








Despite the enormous advantages of the proposed method, it has a few limitations.



	
The data set used in this research is yet small, with each sample with a length of 10 s.



	
The procedure of initial feature extraction and selection of proper IMFs in EMD made the overall process strenuous and time-consuming.






The proposed study conducted a comprehensive comparison of preprocessing schemes (DWT and EMD), feature analysis, selection, and classification as illustrated in Figure 3. The computational complexity of the proposed is significantly low due to the fact that it operates on trained classifier models, therefore eliminating the training computational cost (Figure 19). The proposed system has the potential to be deployed in clinical environments and intensive care units where it can contribute to lessen the workload of medical professionals through its accurate detection and timely diagnosis. In future works, our research group aims to increase the data set size and apply deep learning models to automate the feature extraction process. The proposed framework is intended to be implemented on portable embedded platforms.
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Figure 1. Visual comparison of Photoplethysmograph (PPG) and Pulse Plethysmograph (PuPG) signals. 
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Figure 2. Raw PuPG signals of Normal and Hypertension classes. 
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Figure 3. Overall flow chart of the proposed design methodology for detection of hypertension through pulse plethysmograph signals. 
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Figure 4. Wavelet-based denoising. 
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Figure 5. Wavelet decomposition of raw PuPG signals. 
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Figure 6. Denoised version of PuPG signal for Normal and Hypertension through DWT. 






Figure 6. Denoised version of PuPG signal for Normal and Hypertension through DWT.



[image: Sensors 21 00247 g006]







[image: Sensors 21 00247 g007 550] 





Figure 7. EMD algorithm (flow chart). 
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Figure 8. EMD decomposition of raw PuPG signals. 
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Figure 9. Preprocessed signal using EMD. 
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Figure 10. Block diagram (feature selection and reduction method). 
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Figure 11. Performance of accuracy for different feature sets in various classifiers for PuPG signal through method I. 
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Figure 12. Performance of sensitivity for different feature sets in various classifiers for PuPG signal through method I. 
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Figure 13. Performance of specificity for different feature sets in various classifiers for PuPG signal through method I. 
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Figure 14. Confusion matrix for method I. 
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Figure 15. Performance of accuracy for different feature sets in various classifiers for PuPG signal through method II. 
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Figure 16. Performance of sensitivity for different feature sets in various classifiers for PuPG signal through method II. 
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Figure 17. Performance of specificity for different feature sets in various classifiers for PuPG signal through method II. 
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Figure 18. Confusion matrix for method II. 
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Figure 19. Proposed EHDS block diagram. 
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Figure 20. Performance of method II in terms of accuracy, sensitivity, and specificity for 1 to 24 transformed features. 
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Table 1. Categorization of blood pressure.
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	Class
	Systolic (mmHg)
	Diastolic (mmHg)





	Optimal
	Less than 120
	Less than 80



	Normal
	120 to 129
	80 to 84



	High Normal
	130 to 139
	85 to 89



	Hypertension
	More than or equal to 140
	More than or equal to 90
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Table 2. Difference between PPG and PuPG data acquisition.
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	Type
	Photoplethysmograph (PPG) Sensor
	Pulse Plethysmograph (PuPG) Sensor





	Input signal
	Optical signal
	Pressure changes



	Phenomenon
	Blood volumetric changes are detected by measuring the amount of light transmitted or reflected by the sensor.
	Blood volumetric changes are detected by the piezoelectric material of the sensor as pressure changes when the blood volume changes.



	Noise Impact
	Light signal can be easily impacted by any external light changes.

Dirty hand can distort the light intensities.
	Piezoelectric material based sensors are normaly temperature sensitive.

Dirty hands or foreign material on hand or fingers does not have significant impact.
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Table 3. Summary of the self-collected PuPG data set.
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Data Class

	
Subjects

	
Age Group

	
Samples






	
Hypertension

	
Male: 29

	
Male: 40–76

	
700




	
Female: 27

	
Female: 39–59

	




	
Normal

	
Male: 35

	
Male: 21–63

	
709




	
Female: 30

	
Female: 20–59

	




	
Overall

	
121

	
20–76

	
1409











[image: Table] 





Table 4. Comparison of mean relative energies and frequency ranges of various decomposition levels for Normal and Hypertension classes.
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Decomposition Levels 

	
Frequency Range (Hz) 

	
Mean Relative Energy (%)




	
Normal

	
Hypertension






	
   D 1   

	
250–500

	
0.07%

	
0.59%




	
   D 2   

	
122–256

	
0.09%

	
0.32%




	
   D 3   

	
61.1–128

	
0.19%

	
0.35%




	
   D 4   

	
30.6–63.9

	
0.46%

	
0.49%




	
   D 5   

	
15.3–31.9

	
1.93%

	
3.10%




	
   D 6   

	
7.65–16

	
14.77%

	
13.31%




	
   D 7   

	
3.84–7.97

	
31.03%

	
21.49%




	
   D 8   

	
1.94–3.99

	
29.11%

	
19.05%




	
   D 9   

	
1.03–1.99

	
21.11%

	
26.77%




	
   D 10   

	
0.594–0.958

	
0.16%

	
7.65%




	
   A 10   

	
0–0.431

	
1.08%

	
6.88%




	
   A 4   

	
0–31.2

	
99.19%

	
98.26%
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Table 5. Comparison of mean relative energies and frequency ranges of various intrinsic mode functions (EMD) for Normal and Hypertension classes. Bold font indicates the selected components.






Table 5. Comparison of mean relative energies and frequency ranges of various intrinsic mode functions (EMD) for Normal and Hypertension classes. Bold font indicates the selected components.





	
Components

	
Normal

	
Hypertension




	
Mean Frequency Range (Hz)

	
Mean Relative Energy (%)

	
Mean Frequency Range (Hz)

	
Mean Relative Energy (%)






	
   I M  F 1    

	
103–483

	
0.00

	
86.5–484

	
1.02




	
   I M  F 2    

	
11.3–60.2

	
0.14

	
40.7–219

	
0.35




	
   I M  F 3    

	
3.09–14

	
30.34

	
3.3–61

	
2.04




	
   I M  F 4    

	
2.99–12.2

	
4.97

	
3.34–23.3

	
6.65




	
   I M  F 5    

	
1.28–10

	
22.76

	
2.98–11.4

	
14.95




	
Residual

	
0.129–5.55

	
41.78

	
0.0197–4.33

	
74.99
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Table 6. Statistical data of all extracted features for both methods.
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Method I

	
Method II




	
Feature 

	
Normal

	
Hypertension

	
Normal

	
Hypertension




	
Mean

	
STD

	
Mean

	
STD

	
Mean

	
STD

	
Mean

	
STD






	
Mean

	
0.008

	
0.027

	
0.017

	
0.031

	
0.001

	
0.049

	
0.013

	
0.053




	
Standard Deviation

	
0.253

	
0.032

	
0.250

	
0.046

	
0.254

	
0.032

	
0.248

	
0.045




	
Skewness

	
−1.959

	
0.522

	
−2.144

	
0.651

	
−1.997

	
0.576

	
−2.220

	
0.641




	
Kurtosis

	
6.993

	
1.499

	
8.083

	
3.864

	
7.139

	
1.688

	
8.297

	
3.944




	
Peak to Peak Value

	
1.380

	
0.199

	
1.398

	
0.140

	
1.377

	
0.178

	
1.375

	
0.144




	
Root Mean Square

	
0.255

	
0.033

	
0.252

	
0.047

	
0.258

	
0.038

	
0.254

	
0.046




	
Crest Factor

	
1.659

	
0.939

	
1.635

	
0.381

	
1.587

	
0.991

	
1.523

	
0.536




	
Shape Factor

	
1.484

	
0.134

	
1.458

	
0.159

	
1.522

	
0.163

	
1.465

	
0.167




	
Impulse Factor

	
2.435

	
1.297

	
2.382

	
0.593

	
2.371

	
1.376

	
2.171

	
0.632




	
Margin Factor

	
15.22

	
14.64

	
15.12

	
7.27

	
15.16

	
15.56

	
13.39

	
6.45




	
Energy

	
389.6

	
209.7

	
437.4

	
207.6

	
393.9

	
207.4

	
448.5

	
222.5




	
Peak to RMS Value

	
3.894

	
0.623

	
4.094

	
0.991

	
3.921

	
0.663

	
4.108

	
1.102




	
Root Sum of Squares

	
18.933

	
5.600

	
20.292

	
5.089

	
19.069

	
5.525

	
20.480

	
5.412




	
Shannon Energy

	
549.7

	
312.3

	
618.2

	
279.7

	
526.6

	
295.8

	
686.5

	
414.4




	
Log Energy

	
−27,888

	
15,515

	
−34,569

	
18,644

	
−28,509

	
16,289

	
−32,613

	
16,387




	
Mean Absolute Deviation

	
0.169

	
0.026

	
0.169

	
0.043

	
0.169

	
0.028

	
0.168

	
0.043




	
Median Absolute Deviation

	
0.074

	
0.026

	
0.071

	
0.030

	
0.071

	
0.033

	
0.059

	
0.024




	
Average Frequency

	
0.002

	
0.001

	
0.001

	
0.001

	
0.002

	
0.003

	
0.002

	
0.002




	
Jitter

	
137.1

	
180.9

	
85.5

	
150.4

	
159.0

	
248.8

	
52.0

	
95.8




	
Spectral Mean

	
3.144

	
5.928

	
0.771

	
1.960

	
8.623

	
15.700

	
2.764

	
6.372




	
Spectral Standard Deviation

	
3.401

	
4.833

	
1.549

	
3.463

	
7.571

	
11.498

	
3.031

	
6.016




	
Spectral Skewness

	
2.361

	
1.496

	
3.763

	
1.295

	
0.996

	
1.360

	
1.797

	
1.908




	
Specral Kurtosis

	
11.331

	
8.235

	
20.190

	
9.589

	
5.588

	
4.947

	
10.564

	
8.751




	
Spectral Centroid

	
9.442

	
0.202

	
9.915

	
1.481

	
9.771

	
1.576

	
10.768

	
2.216




	
Spectral Flux

	
0.008

	
0.002

	
0.008

	
0.002

	
0.008

	
0.002

	
0.008

	
0.002




	
Spectral Roll-off

	
91.699

	
1.010

	
96.587

	
8.383

	
97.036

	
10.371

	
136.257

	
44.372




	
Spectral Flatness

	
0.025

	
0.014

	
0.051

	
0.035

	
0.063

	
0.065

	
0.171

	
0.138




	
Spectral Crest

	
0.642

	
0.012

	
0.621

	
0.040

	
0.631

	
0.030

	
0.593

	
0.059




	
Spectral Decrease

	
−4.333

	
0.228

	
−4.013

	
0.658

	
−4.169

	
0.538

	
−3.656

	
0.830




	
Spectral Slope

	
−0.023

	
0.003

	
−0.023

	
0.003

	
−0.024

	
0.003

	
−0.023

	
0.005




	
Spectral Spread

	
18.505

	
0.199

	
19.029

	
1.178

	
19.328

	
1.617

	
23.521

	
5.818




	
Mean Frequency

	
4.347

	
0.949

	
4.999

	
3.451

	
4.989

	
3.063

	
6.446

	
4.440




	
Median Frequency

	
3.574

	
0.803

	
2.972

	
0.880

	
3.811

	
3.573

	
2.846

	
0.753




	
Spurious-free Dynamic Range

	
3.073

	
6.019

	
2.196

	
2.107

	
3.163

	
6.451

	
2.056

	
1.812




	
Signal to Noise Distortion

	
−0.885

	
6.041

	
−2.036

	
3.101

	
−0.755

	
6.819

	
−2.097

	
3.030




	
Total Harmonic Distortions

	
−2.376

	
5.452

	
−0.938

	
4.964

	
−3.144

	
6.562

	
−0.396

	
4.110




	
1st Coeffient of MFCC

	
−44.99

	
0.37

	
−44.716

	
0.512

	
−44.84

	
0.60

	
−44.45

	
0.80




	
2nd Coeffient of MFCC

	
6.268

	
0.523

	
6.661

	
0.714

	
6.480

	
0.846

	
7.028

	
1.122




	
3rd Coeffient of MFCC

	
5.976

	
0.499

	
6.350

	
0.683

	
6.169

	
0.802

	
6.690

	
1.066




	
4th Coeffient of MFCC

	
5.508

	
0.462

	
5.851

	
0.634

	
5.671

	
0.733

	
6.148

	
0.976




	
1st Coeffient of GFCC

	
−7.183

	
0.430

	
−6.762

	
0.610

	
−7.027

	
0.793

	
−6.220

	
1.266




	
2nd Coeffient of GFCC

	
1.844

	
0.063

	
1.869

	
0.071

	
1.522

	
0.419

	
1.119

	
0.574




	
3rd Coeffient of GFCC

	
0.553

	
0.138

	
0.367

	
0.269

	
0.643

	
0.105

	
0.492

	
0.206




	
4th Coeffient of GFCC

	
0.301

	
0.024

	
0.266

	
0.033

	
0.392

	
0.109

	
0.408

	
0.109




	
1st Coefficient of Chroma Vector

	
0.383

	
0.235

	
0.750

	
0.501

	
0.653

	
0.532

	
2.126

	
1.930




	
2nd Coefficient of Chroma Vector

	
0.416

	
0.258

	
0.773

	
0.518

	
0.663

	
0.546

	
2.130

	
1.948




	
3rd Coefficient of Chroma Vector

	
0.433

	
0.269

	
0.842

	
0.575

	
0.742

	
0.672

	
2.129

	
2.144




	
4th Coefficient of Chroma Vector

	
0.623

	
0.378

	
1.297

	
0.942

	
0.700

	
0.568

	
2.011

	
2.046




	
5th Coefficient of Chroma Vector

	
0.564

	
0.337

	
1.212

	
0.872

	
0.691

	
0.534

	
2.044

	
1.935




	
6th Coefficient of Chroma Vector

	
0.527

	
0.320

	
1.230

	
0.987

	
0.748

	
0.563

	
2.227

	
2.267




	
7th Coefficient of Chroma Vector

	
0.483

	
0.296

	
1.069

	
0.760

	
0.705

	
0.524

	
2.107

	
1.893




	
8th Coefficient of Chroma Vector

	
0.451

	
0.279

	
0.982

	
0.696

	
0.686

	
0.528

	
2.071

	
1.863




	
9th Coefficient of Chroma Vector

	
0.429

	
0.268

	
0.908

	
0.638

	
0.679

	
0.529

	
2.099

	
1.929




	
10th Coefficient of Chroma Vector

	
0.400

	
0.251

	
0.878

	
0.609

	
0.651

	
0.537

	
2.087

	
1.848




	
11th Coefficient of Chroma Vector

	
0.373

	
0.232

	
0.776

	
0.537

	
0.668

	
0.522

	
2.106

	
1.954




	
12th Coefficient of Chroma Vector

	
0.348

	
0.225

	
0.705

	
0.474

	
0.622

	
0.522

	
2.078

	
1.890




	
Enhanced Mean Absolute Value

	
0.297

	
0.039

	
0.302

	
0.055

	
0.294

	
0.052

	
0.301

	
0.049




	
Enhanced Wavelength

	
236.4

	
133.5

	
413.7

	
319.8

	
284.3

	
198.6

	
665.7

	
515.0




	
Wavelength

	
36.83

	
21.94

	
85.59

	
96.94

	
54.42

	
46.94

	
193.47

	
186.80




	
Slope Sign Change

	
45.1

	
86.9

	
508.4

	
549.0

	
1039.5

	
1657.6

	
3463.1

	
2792.1




	
Average Amplitude Change

	
0.006

	
0.003

	
0.010

	
0.009

	
0.009

	
0.009

	
0.021

	
0.018




	
Difference Absolute Std. Dev.

	
0.009

	
0.003

	
0.013

	
0.010

	
0.014

	
0.010

	
0.027

	
0.021




	
Log Detector

	
0.108

	
0.030

	
0.118

	
0.037

	
0.107

	
0.043

	
0.117

	
0.036




	
Modified Mean Absolute Value

	
0.130

	
0.025

	
0.133

	
0.034

	
0.130

	
0.033

	
0.132

	
0.030




	
Modified Mean Absolute Value 2

	
0.083

	
0.022

	
0.089

	
0.026

	
0.084

	
0.027

	
0.087

	
0.020




	
Pulse Percentage Rate

	
0.939

	
0.029

	
0.953

	
0.027

	
0.937

	
0.045

	
0.957

	
0.035




	
Simple Square Integral

	
389.6

	
209.7

	
437.4

	
207.6

	
393.9

	
207.4

	
448.5

	
222.5




	
Willison Amplitude

	
1153.6

	
765.6

	
2670.8

	
2603.9

	
1836.0

	
1707.6

	
4551.3

	
3502.4




	
Maximum Fractal Length

	
−0.463

	
0.384

	
−0.136

	
0.740

	
−0.174

	
0.594

	
0.428

	
1.121




	
Root Squared Zero Order Moment

	
2.592

	
0.032

	
2.600

	
0.026

	
2.593

	
0.031

	
2.601

	
0.028




	
Root Squared 2nd Order Moment

	
2.068

	
0.066

	
2.036

	
0.062

	
1.984

	
0.115

	
1.913

	
0.130




	
Root Squared 4th Order Moment

	
2.045

	
0.077

	
2.001

	
0.078

	
1.891

	
0.159

	
1.794

	
0.205




	
Sparseness

	
0.535

	
0.064

	
0.582

	
0.086

	
0.655

	
0.137

	
0.747

	
0.188




	
Irregularity Factor

	
−0.464

	
0.037

	
−0.445

	
0.047

	
−0.446

	
0.058

	
−0.406

	
0.061




	
Waveform Length Ratio

	
−0.065

	
0.703

	
−0.354

	
0.230

	
−0.648

	
0.604

	
−0.721

	
0.727




	
Complexity

	
0.502

	
0.222

	
0.706

	
0.253

	
0.897

	
0.524

	
1.314

	
0.515




	
Mobility

	
0.038

	
0.011

	
0.057

	
0.038

	
0.055

	
0.035

	
0.115

	
0.079




	
Higuchi’s Fractal Dimension

	
1.054

	
0.052

	
1.149

	
0.119

	
1.183

	
0.240

	
1.490

	
0.401




	
Katz Fractal Dimension

	
1.000

	
0.000

	
1.000

	
0.000

	
1.000

	
0.000

	
1.000

	
0.000




	
Lyapunov Exponent

	
437.4

	
49.5

	
394.8

	
49.3

	
362.9

	
78.8

	
239.1

	
92.2




	
Approximate Entropy

	
0.104

	
0.049

	
0.155

	
0.134

	
0.127

	
0.080

	
0.316

	
0.312




	
Correlation Dimension

	
1.687

	
0.168

	
1.733

	
0.191

	
1.676

	
0.202

	
1.731

	
0.300




	
1st Coefficient of LTP

	
259.6

	
128.8

	
291.5

	
122.1

	
259.6

	
128.8

	
291.5

	
122.1




	
2nd Coefficient of LTP

	
40.790

	
30.943

	
56.809

	
35.998

	
40.790

	
30.943

	
56.809

	
35.998




	
3rd Coefficient of LTP

	
24.574

	
23.717

	
41.723

	
32.083

	
24.574

	
23.717

	
41.723

	
32.083




	
4th Coefficient of LTP

	
16.381

	
15.761

	
30.738

	
22.667

	
16.381

	
15.761

	
30.738

	
22.667




	
5th Coefficient of LTP

	
18.472

	
15.755

	
33.411

	
24.881

	
18.472

	
15.755

	
33.411

	
24.881




	
6th Coefficient of LTP

	
25.205

	
21.607

	
45.518

	
33.715

	
25.205

	
21.607

	
45.518

	
33.715




	
7th Coefficient of LTP

	
17.699

	
16.352

	
29.035

	
22.609

	
17.699

	
16.352

	
29.035

	
22.609




	
8th Coefficient of LTP

	
26.261

	
23.075

	
39.645

	
28.386

	
26.261

	
23.075

	
39.645

	
28.386




	
9th Coefficient of LTP

	
47.483

	
32.844

	
58.163

	
35.132

	
47.483

	
32.844

	
58.163

	
35.132




	
10th Coefficient of LTP

	
207.278

	
94.769

	
201.809

	
72.537

	
207.278

	
94.769

	
201.809

	
72.537




	
11th Coefficient of LTP

	
269.5

	
137.7

	
302.1

	
121.7

	
269.5

	
137.70

	
302.1

	
121.7




	
12th Coefficient of LTP

	
41.733

	
31.354

	
59.773

	
38.092

	
41.733

	
31.354

	
59.773

	
38.092




	
13th Coefficient of LTP

	
24.006

	
23.096

	
41.071

	
31.294

	
24.006

	
23.096

	
41.071

	
31.294




	
14th Coefficient of LTP

	
16.784

	
15.900

	
30.199

	
23.471

	
16.784

	
15.900

	
30.199

	
23.471




	
15th Coefficient of LTP

	
18.506

	
15.140

	
33.390

	
25.583

	
18.506

	
15.140

	
33.390

	
25.583




	
16th Coefficient of LTP

	
26.148

	
22.755

	
44.177

	
31.682

	
26.148

	
22.755

	
44.177

	
31.682




	
17th Coefficient of LTP

	
16.898

	
16.559

	
30.149

	
21.910

	
16.898

	
16.559

	
30.149

	
21.910




	
18th Coefficient of LTP

	
25.790

	
22.892

	
39.312

	
26.784

	
25.790

	
22.892

	
39.312

	
26.784




	
19th Coefficient of LTP

	
46.534

	
33.045

	
56.298

	
33.647

	
46.534

	
33.045

	
56.298

	
33.647




	
20th Coefficient of LTP

	
197.773

	
85.090

	
191.858

	
74.487

	
197.773

	
85.090

	
191.858

	
74.487
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Table 7. List of features extracted for method I and sorted with respect to mean rank (MR) value. Bold font indicates the top 24 ranked features.
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	Feature
	TT
	KLD
	BD
	ROC
	MWT
	MRMR
	RRF
	MR





	3rd Coefficient of LTP
	12
	93
	93
	83
	32
	102
	98
	73.29



	6th Coefficient of Chroma Vector
	38
	98
	76
	79
	78
	94
	49
	73.14



	Lyapunov Exponent
	93
	92
	92
	70
	81
	10
	70
	72.57



	Sparseness
	70
	90
	90
	30
	62
	79
	84
	72.14



	Jitter
	78
	58
	58
	74
	77
	85
	74
	72.00



	9th Coefficient of LTP
	57
	83
	83
	75
	82
	92
	24
	70.86



	Spectral Decrease
	62
	28
	61
	85
	75
	93
	83
	69.57



	4th Coefficient of MFCC
	96
	41
	41
	95
	40
	72
	99
	69.14



	Irregularity
	35
	94
	100
	57
	88
	90
	13
	68.14



	1st Coeffient of MFCC
	99
	23
	23
	100
	37
	96
	97
	67.86



	Waveform Length Ratio
	13
	100
	94
	91
	9
	100
	66
	67.57



	3rd Coeffient of MFCC
	79
	97
	97
	84
	39
	55
	17
	66.86



	1st Coefficient of Chroma Vector
	71
	86
	86
	98
	26
	48
	53
	66.86



	Spectral Roll-off
	81
	43
	79
	66
	56
	59
	81
	66.43



	Spectral Crest
	61
	80
	60
	26
	92
	71
	75
	66.43



	6th Coefficient of Chroma Vector
	100
	76
	99
	31
	61
	45
	52
	66.29



	7th Coefficient of Chroma Vector
	37
	99
	98
	1
	96
	42
	86
	65.57



	Median Frequency
	88
	35
	78
	71
	102
	78
	2
	64.86



	2nd Coefficient of Chroma Vector
	89
	7
	96
	89
	41
	81
	51
	64.86



	Spectral Centroid
	76
	79
	43
	39
	86
	69
	58
	64.29



	Difference Absolute Std. Dev. Value
	84
	38
	37
	81
	79
	63
	64
	63.71



	Shape Factor
	59
	53
	53
	54
	72
	80
	73
	63.43



	Spectral Mean
	43
	77
	77
	96
	46
	40
	61
	62.86



	Simple Square Integral
	4
	72
	72
	22
	89
	89
	92
	62.86



	3rd Coefficient of GFCC
	95
	29
	88
	94
	34
	53
	45
	62.57



	4th Coefficient of Chroma Vector
	40
	96
	30
	87
	85
	52
	47
	62.43



	Root Mean Square
	45
	56
	56
	77
	43
	87
	69
	61.86



	Signal to Noise Distortion
	97
	69
	69
	47
	74
	31
	42
	61.29



	9th Coefficient of Chroma Vector
	72
	12
	95
	88
	27
	76
	57
	61.00



	Mean Absolute Deviation
	58
	48
	48
	49
	76
	82
	62
	60.43



	Root Squared 2nd Order Moment
	91
	82
	71
	8
	59
	20
	91
	60.29



	Root Squared 4th Order Moment
	101
	71
	82
	82
	4
	66
	14
	60.00



	10th Coefficient of Chroma Vector
	36
	95
	85
	28
	73
	41
	56
	59.14



	12th Coefficient of Chroma Vector
	90
	89
	89
	59
	10
	37
	38
	58.86



	1st Coefficient of GFCC
	69
	87
	87
	61
	66
	38
	3
	58.71



	Mean
	80
	26
	26
	80
	80
	68
	44
	57.71



	Enhanced Mean Absolute Value
	21
	73
	73
	62
	58
	54
	63
	57.71



	Root Sum of Squares
	53
	49
	52
	99
	18
	58
	72
	57.29



	2nd Coefficient of LTP
	82
	70
	70
	35
	36
	12
	95
	57.14



	Katz Fractal Dimension
	67
	3
	3
	67
	90
	75
	90
	56.43
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Table 8. List of features extracted for method II and sorted with respect to MR value. Bold font indicates the top 24 ranked features.
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	Feature
	TT
	KLD
	BD
	ROC
	MWT
	MRMR
	RRF
	MR





	7th Coefficient of Chroma Vector
	100
	98
	98
	26
	96
	97
	55
	81.43



	4th Coefficient of Chroma Vector
	89
	96
	76
	73
	85
	52
	96
	81.00



	Mobility
	93
	64
	64
	67
	68
	91
	95
	77.43



	Spectral Centroid
	68
	78
	78
	77
	45
	98
	88
	76.00



	Enhanced Mean Absolute Value
	71
	95
	95
	28
	98
	56
	87
	75.71



	9th Coefficient of LTP
	64
	101
	101
	64
	93
	79
	19
	74.43



	1st Coefficient of GFCC
	95
	35
	97
	98
	38
	99
	54
	73.71



	7th Coefficient of LTP
	57
	93
	93
	57
	101
	24
	89
	73.43



	Slope Sign Change
	74
	73
	89
	79
	89
	89
	13
	72.29



	Maximum Fractal Length
	3
	72
	74
	91
	90
	90
	70
	70.00



	3rd Coefficient of MFCC
	38
	97
	22
	95
	102
	80
	53
	69.57



	6th Coefficient of Chroma Vector
	69
	80
	96
	90
	27
	68
	56
	69.43



	8th Coefficient of Chroma Vector
	61
	99
	99
	69
	66
	49
	40
	69.00



	Enhanced Wavelength
	81
	85
	85
	68
	94
	16
	50
	68.43



	Pulse Percentage Rate
	4
	94
	100
	42
	73
	76
	77
	66.57



	Root Squared Zero Order Moment
	63
	84
	84
	30
	69
	72
	46
	64.00



	Crest Factor
	51
	68
	68
	80
	72
	32
	72
	63.29



	Modified Mean Absolute Value 2
	42
	90
	90
	7
	88
	64
	62
	63.29



	Spectral Crest
	87
	58
	45
	40
	47
	85
	75
	62.43



	2nd Coeffient of MFCC
	37
	69
	69
	84
	77
	48
	51
	62.14



	1st Coeffient of MFCC
	77
	9
	9
	100
	99
	38
	102
	62.00



	Average Frequency
	80
	29
	54
	47
	54
	86
	82
	61.71



	4th Coefficient of LTP
	34
	65
	65
	65
	42
	74
	84
	61.29



	Willison Amplitude
	91
	74
	72
	15
	16
	77
	83
	61.14



	Spectral Spread
	99
	47
	58
	85
	60
	9
	68
	60.86



	3rd Coefficient of LTP
	65
	91
	91
	5
	65
	2
	101
	60.00



	Root Squared 4th Order Moment
	70
	66
	71
	14
	97
	62
	36
	59.43



	Lyapunov Exponent
	32
	63
	63
	8
	62
	81
	100
	58.43



	2nd Coeffient of GFCC
	40
	87
	87
	89
	40
	50
	14
	58.14



	3rd Coeffient of GFCC
	73
	22
	10
	66
	39
	96
	99
	57.86



	Correlation Dimension
	14
	70
	70
	101
	57
	1
	91
	57.71



	Root Squared 2nd Order Moment
	101
	5
	66
	36
	31
	100
	61
	57.14



	5th Coefficient of Chroma Vector
	20
	76
	80
	97
	4
	36
	86
	57.00



	2nd Coefficient of Chroma Vector
	75
	41
	41
	88
	78
	73
	2
	56.86



	11th Coefficient of Chroma Vector
	66
	39
	39
	74
	95
	47
	37
	56.71



	Log Energy
	45
	75
	52
	53
	19
	88
	60
	56.00



	10th Coefficient of Chroma Vector
	90
	38
	38
	19
	100
	69
	38
	56.00



	5th Coefficient of LTP
	8
	82
	82
	83
	5
	101
	30
	55.86



	1st Coefficient of LTP
	11
	92
	92
	24
	83
	57
	31
	55.71
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Table 9. Consolidated result analysis of feature sets (  S 1  ,   S 2  ,   S 3  ) for method I with various classifiers.






Table 9. Consolidated result analysis of feature sets (  S 1  ,   S 2  ,   S 3  ) for method I with various classifiers.





	
Classifier 

	
   S 1    (5 Components)

	
   S 2    (7 Components)

	
   S 3    (10 Components)




	
Acc

	
Sp

	
Sen

	
Err

	
Acc

	
Sp

	
Sen

	
Err

	
Acc

	
Sp

	
Sen

	
Err






	
DT

	
0.874

	
0.89

	
0.89

	
0.126

	
0.924

	
0.92

	
0.93

	
0.076

	
0.934

	
0.94

	
0.93

	
0.066




	
LD

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312

	
0.669

	
0.3

	
0.97

	
0.331




	
LR

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312




	
NBG

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312

	
0.59

	
1

	
0.26

	
0.41




	
NBK

	
0.804

	
0.91

	
0.72

	
0.196

	
0.83

	
0.92

	
0.76

	
0.17

	
0.893

	
0.91

	
0.88

	
0.107




	
SVM-L

	
0.479

	
0.56

	
0.41

	
0.521

	
0.587

	
0.11

	
0.97

	
0.413

	
0.498

	
0.37

	
0.6

	
0.502




	
SVM-Q

	
0.527

	
0.65

	
0.43

	
0.473

	
0.527

	
0.08

	
0.89

	
0.473

	
0.546

	
0.41

	
0.65

	
0.454




	
SVM-C

	
0.47

	
0.4

	
0.53

	
0.53

	
0.555

	
0.03

	
0.98

	
0.445

	
0.524

	
0

	
0.94

	
0.476




	
SVM-FG

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.30

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312




	
SVM-MG

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.30

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312




	
KNN-F

	
0.937

	
0.9

	
0.97

	
0.063

	
0.972

	
0.96

	
0.98

	
0.028

	
0.984

	
0.97

	
0.99

	
0.016




	
KNN-M

	
0.792

	
0.68

	
0.88

	
0.208

	
0.864

	
0.81

	
0.91

	
0.136

	
0.905

	
0.86

	
0.94

	
0.095




	
KNN-Cos

	
0.685

	
0.3

	
0.99

	
0.315

	
0.681

	
0.3

	
0.99

	
0.319

	
0.685

	
0.3

	
0.99

	
0.315




	
KNN-C

	
0.672

	
0.68

	
0.66

	
0.328

	
0.871

	
0.83

	
0.9

	
0.129

	
0.896

	
0.84

	
0.94

	
0.104




	
KNN-W

	
0.921

	
0.88

	
0.95

	
0.079

	
0.965

	
0.96

	
0.97

	
0.035

	
0.978

	
0.97

	
0.98

	
0.022




	
Eboost

	
0.918

	
0.89

	
0.94

	
0.082

	
0.864

	
0.74

	
0.96

	
0.136

	
0.555

	
0

	
1

	
0.445




	
EBT

	
0.688

	
0.3

	
1

	
0.312

	
0.972

	
0.95

	
0.99

	
0.028

	
0.943

	
0.93

	
0.95

	
0.057




	
ESD

	
0.94

	
0.92

	
0.95

	
0.06

	
0.688

	
0.3

	
1

	
0.312

	
0.681

	
0.3

	
0.99

	
0.319




	
ESKNN

	
0.915

	
0.91

	
0.91

	
0.085

	
0.984

	
0.98

	
0.99

	
0.016

	
0.981

	
0.97

	
0.99

	
0.019
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Table 10. Consolidated result analysis of feature sets (  S 4  ,   S 5  ,   S 6  ) for method I with various classifiers. Bold font indicates best results.






Table 10. Consolidated result analysis of feature sets (  S 4  ,   S 5  ,   S 6  ) for method I with various classifiers. Bold font indicates best results.





	
Classifier 

	
   S 4    (12 Components)

	
   S 5    (15 Components)

	
   S 6    (17 Components)




	
Acc

	
Sp

	
Sen

	
Err

	
Acc

	
Sp

	
Sen

	
Err

	
Acc

	
Sp

	
Sen

	
Err






	
DT

	
0.959

	
0.96

	
0.96

	
0.041

	
0.959

	
0.94

	
0.98

	
0.041

	
0.972

	
0.96

	
98

	
0.028




	
LD

	
0.581

	
0.3

	
0.99

	
0.419

	
0.662

	
0.3

	
0.95

	
0.338

	
0.691

	
0.32

	
0.99

	
0.309




	
LR

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312

	
0.675

	
0.35

	
0.94

	
0.325




	
NBG

	
0.59

	
1

	
0.26

	
0.41

	
0.625

	
1

	
0.32

	
0.375

	
0.631

	
1

	
0.34

	
0.369




	
NBK

	
0.868

	
0.85

	
0.89

	
0.132

	
0.877

	
0.92

	
0.84

	
0.123

	
0.88

	
0.91

	
0.95

	
0.12




	
SVM-L

	
0.524

	
0.26

	
0.74

	
0.476

	
0.543

	
0.12

	
0.88

	
0.457

	
0.536

	
0.07

	
0.91

	
0.464




	
SVM-Q

	
0.552

	
0.22

	
0.82

	
0.448

	
0.536

	
0.33

	
0.7

	
0.464

	
0.546

	
0.02

	
0.97

	
0.454




	
SVM-C

	
0.524

	
0.8

	
0.88

	
0.476

	
0.517

	
0

	
0.93

	
0.483

	
0.514

	
0.05

	
0.89

	
0.486




	
SVM-FG

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312

	
0.7

	
0.33

	
1

	
0.3




	
SVM-MG

	
0.665

	
0.3

	
1

	
0.335

	
0.688

	
0.3

	
1

	
0.312

	
0.694

	
0.31

	
1

	
0.306




	
KNN-F

	
0.981

	
0.97

	
0.99

	
0.019

	
0.975

	
0.97

	
0.98

	
0.025

	
0.915

	
0.88

	
0.94

	
0.085




	
KNN-M

	
0.918

	
0.85

	
0.97

	
0.082

	
0.912

	
0.85

	
0.96

	
0.088

	
0.659

	
0.7

	
0.63

	
0.341




	
KNN-Cos

	
0.688

	
0.3

	
1

	
0.312

	
0.688

	
0.3

	
1

	
0.312

	
0.685

	
0.3

	
0.99

	
0.315




	
KNN-C

	
0.905

	
0.85

	
0.95

	
0.095

	
0.909

	
0.85

	
0.95

	
0.091

	
0.909

	
0.89

	
0.93

	
0.091




	
KNN-W

	
0.981

	
0.98

	
0.98

	
0.019

	
0.975

	
0.97

	
0.98

	
0.025

	
0.978

	
0.97

	
0.98

	
0.022




	
Eboost

	
0.555

	
0

	
1

	
0.445

	
0.555

	
0

	
1

	
0.445

	
0.555

	
0

	
1

	
0.445




	
EBT

	
0.965

	
0.94

	
0.98

	
0.035

	
0.972

	
0.97

	
0.97

	
0.028

	
0.94

	
0.92

	
0.95

	
0.06




	
ESD

	
0.688

	
0.3

	
1

	
0.312

	
0.666

	
0.3

	
0.96

	
0.334

	
0.681

	
0.3

	
0.99

	
0.319




	
ESKNN

	
0.984

	
0.97

	
0.99

	
0.016

	
0.975

	
0.97

	
0.98

	
0.025

	
0.981

	
0.99

	
0.99

	
0.019
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Table 11. Validation of the selected scheme of method I.
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Evaluation

	
Classes

	
Accuracy

	
True Positive Rate

	
False Negative Rate






	
5-Fold Cross-Validation 

	
Healthy

	
0.983

	
0.98

	
0.02




	
Hypertension

	
0.99

	
0.01




	
10-Fold Cross-Validation 

	
Healthy

	
0.984

	
0.98

	
0.02




	
Hypertension

	
0.99

	
0.01




	
15-Fold Cross-Validation 

	
Healthy

	
0.984

	
0.98

	
0.02




	
Hypertension

	
0.99

	
0.01




	
20-Fold Cross-Validation 

	
Healthy

	
0.984

	
0.98

	
0.02




	
Hypertension

	
0.99

	
0.01




	
20% Hold Out Validation 

	
Healthy

	
0.978

	
1

	
0




	
Hypertension

	
0.94

	
0.06




	
25% Hold Out Validation 

	
Healthy

	
0.989

	
0.98

	
0.02




	
Hypertension

	
1

	
0
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Table 12. Feature analysis table (  S 1  ,   S 2  ,   S 3  ) for method II. Bold font indicates the best results.






Table 12. Feature analysis table (  S 1  ,   S 2  ,   S 3  ) for method II. Bold font indicates the best results.





	
Classifier 

	
   S 1    (5 Components)

	
   S 2    (7 Components)

	
   S 3    (10 Components)




	
Acc

	
Sp

	
Sen

	
Err

	
Acc

	
Sp

	
Sen

	
Err

	
Acc

	
Sp

	
Sen

	
Err






	
DT

	
0.974

	
0.98

	
0.97

	
0.026

	
0.983

	
0.98

	
0.99

	
0.017

	
0.989

	
0.98

	
0.99

	
0.011




	
LD

	
0.619

	
0.24

	
1

	
0.381

	
0.619

	
0.24

	
1

	
0.381

	
0.568

	
0.24

	
0.9

	
0.432




	
LR

	
0.679

	
0.97

	
0.39

	
0.321

	
0.679

	
0.97

	
0.39

	
0.321

	
0.679

	
0.97

	
0.39

	
0.321




	
NBG

	
0.619

	
0.24

	
1

	
0.381

	
0.619

	
0.24

	
1

	
0.381

	
0.268

	
1

	
0.26

	
0.732




	
NBK

	
0.946

	
0.97

	
0.92

	
0.054

	
0.946

	
0.98

	
0.91

	
0.054

	
0.94

	
0.97

	
0.91

	
0.06




	
SVM-L

	
0.48

	
0.49

	
0.47

	
0.52

	
0.497

	
0.59

	
0.41

	
0.503

	
0.523

	
0.52

	
0.53

	
0.477




	
SVM-Q

	
0.51

	
0.53

	
0.5

	
0.49

	
0.511

	
0.24

	
0.78

	
0.489

	
0.497

	
0.46

	
0.53

	
0.503




	
SVM-C

	
0.49

	
0.3

	
0.69

	
0.51

	
0.491

	
0.22

	
0.77

	
0.509

	
0.491

	
0.23

	
0.76

	
0.509




	
SVM-FG

	
0.668

	
1

	
0.34

	
0.332

	
0.662

	
1

	
0.32

	
0.338

	
0.665

	
0.99

	
0.34

	
0.335




	
SVM-MG

	
0.619

	
0.24

	
1

	
0.381

	
0.614

	
0.51

	
0.72

	
0.386

	
0.597

	
0.73

	
0.46

	
0.403




	
KNN-F

	
0.99

	
0.99

	
0

	
0.01

	
0.893

	
0.98

	
0.984

	
0.107

	
0.991

	
0.99

	
0.99

	
0.009




	
KNN-M

	
0.957

	
0.93

	
0.98

	
0.043

	
0.969

	
0.95

	
0.99

	
0.031

	
0.972

	
0.95

	
0.99

	
0.028




	
KNN-Cos

	
0.631

	
0.27

	
0.99

	
0.369

	
0.639

	
0.3

	
0.98

	
0.361

	
0.636

	
0.3

	
0.98

	
0.364




	
KNN-C

	
0.957

	
0.93

	
0.98

	
0.043

	
0.966

	
0.94

	
0.99

	
0.034

	
0.969

	
0.94

	
0.99

	
0.031




	
KNN-W

	
0.994

	
0.992

	
0.996

	
0.006

	
0.986

	
0.94

	
0.99

	
0.014

	
0.992

	
0.99

	
0.99

	
0.008




	
Eboost

	
0.489

	
0.39

	
0.59

	
0.511

	
0.489

	
0.39

	
0.59

	
0.511

	
0.489

	
0.39

	
0.59

	
0.511




	
EBT

	
0.98

	
0.97

	
0.99

	
0.02

	
0.986

	
0.98

	
0.99

	
0.014

	
0.986

	
0.98

	
0.99

	
0.014




	
ESD

	
0.619

	
0.24

	
1

	
0.381

	
0.619

	
0.24

	
1

	
0.381

	
0.571

	
0.24

	
0.9

	
0.429




	
ESKNN

	
0.991

	
0.99

	
0.99

	
0.009

	
0.983

	
0.99

	
0.98

	
0.017

	
0.991

	
0.99

	
0.99

	
0.009
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Table 13. Feature analysis table (  S 4  ,   S 5  ,   S 6  ) for method II.






Table 13. Feature analysis table (  S 4  ,   S 5  ,   S 6  ) for method II.





	
Classifier 

	
   S 4    (12 Components)

	
   S 5    (15 Components)

	
   S 6    (17 Components)




	
Acc

	
Sp

	
Sen

	
Err

	
Acc

	
Sp

	
Sen

	
Err

	
Acc

	
Sp

	
Sen

	
Err






	
DT

	
0.992

	
0.99

	
0.99

	
0.008

	
0.972

	
0.95

	
0.99

	
0.028

	
0.983

	
0.98

	
0.98

	
0.017




	
LD

	
0.548

	
0.32

	
0.78

	
0.452

	
0.565

	
0.34

	
0.8

	
0.435

	
0.665

	
1

	
0.33

	
0.335




	
LR

	
0.679

	
0.97

	
0.39

	
0.321

	
0.679

	
0.97

	
0.39

	
0.321

	
0.676

	
0.97

	
0.38

	
0.324




	
NBG

	
0.636

	
0.97

	
0.39

	
0.364

	
0.662

	
1

	
0.32

	
0.338

	
0.665

	
1

	
0.33

	
0.335




	
NBK

	
0.92

	
0.96

	
0.88

	
0.08

	
0.926

	
0.97

	
0.89

	
0.074

	
0.909

	
0.95

	
0.87

	
0.091




	
SVM-L

	
0.531

	
0.27

	
0.79

	
0.469

	
0.486

	
0.23

	
0.74

	
0.514

	
0.5

	
0.24

	
0.76

	
0.5




	
SVM-Q

	
0.503

	
0.19

	
0.82

	
0.497

	
0.469

	
0.15

	
0.79

	
0.531

	
0.514

	
0.15

	
0.88

	
0.486




	
SVM-C

	
0.472

	
0

	
0.94

	
0.528

	
0.472

	
0.1

	
0.85

	
0.528

	
0.486

	
0

	
0.97

	
0.514




	
SVM-F

	
0.662

	
1

	
0.32

	
0.338

	
0.662

	
1

	
0.32

	
0.338

	
0.696

	
1

	
0.39

	
0.304




	
SVM-MG

	
0.665

	
1

	
0.33

	
0.335

	
0.662

	
1

	
0.32

	
0.338

	
0.696

	
1

	
0.39

	
0.304




	
KNN-F

	
0.991

	
0.99

	
0.99

	
0.009

	
0.983

	
0.98

	
0.98

	
0.017

	
0.989

	
0.98

	
0.99

	
0.011




	
KNN-M

	
0.949

	
0.94

	
0.96

	
0.051

	
0.96

	
0.94

	
0.98

	
0.04

	
0.94

	
0.97

	
0.91

	
0.06




	
KNN-Cos

	
0.639

	
0.28

	
1

	
0.361

	
0.628

	
0.28

	
0.97

	
0.372

	
0.645

	
0.3

	
0.99

	
0.355




	
KNN-C

	
0.946

	
0.94

	
0.95

	
0.054

	
0.963

	
0.94

	
0.98

	
0.037

	
0.94

	
0.98

	
0.9

	
0.06




	
KNN-W

	
0.991

	
0.99

	
0.99

	
0.009

	
0.986

	
0.99

	
0.98

	
0.014

	
0.993

	
0.99

	
0.99

	
0.007




	
Eboost

	
0.489

	
0.39

	
0.59

	
0.511

	
0.534

	
0.48

	
0.59

	
0.466

	
0.489

	
0.39

	
0.59

	
0.511




	
EBT

	
0.989

	
0.98

	
0.99

	
0.011

	
0.966

	
0.97

	
0.96

	
0.034

	
0.986

	
0.99

	
0.98

	
0.014




	
ESD

	
0.577

	
0.26

	
0.89

	
0.423

	
0.563

	
0.39

	
0.73

	
0.437

	
0.665

	
1

	
0.33

	
0.335




	
ESKNN

	
0.991

	
0.99

	
0.99

	
0.009

	
0.983

	
0.98

	
0.98

	
0.017

	
0.991

	
0.99

	
0.99

	
0.009
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Table 14. Validation of the selected scheme of method II.






Table 14. Validation of the selected scheme of method II.





	
Evaluation

	
Classes

	
Accuracy

	
True Positive Rate

	
False Negative Rate






	
5 Fold Cross-Validation 

	
Healthy

	
0.986

	
0.99

	
0.01




	
Hypertension

	
0.98

	
0.02




	
10 Fold Cross-Validation 

	
Healthy

	
0.994

	
0.99

	
0.01




	
Hypertension

	
>0.99

	
<0.01




	
15 Fold Cross-Validation 

	
Healthy

	
0.994

	
0.99

	
0.01




	
Hypertension

	
>0.99

	
<0.01




	
20 Fold Cross-Validation 

	
Healthy

	
0.997

	
0.99

	
0.01




	
Hypertension

	
1

	
0




	
20% Hold Out Validation 

	
Healthy

	
0.986

	
1

	
0




	
Hypertension

	
0.97

	
0.03




	
25% Hold Out Validation 

	
Healthy

	
0.989

	
0.98

	
0.02




	
Hypertension

	
1

	
0
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Table 15. Performance comparison of methods I and II.






Table 15. Performance comparison of methods I and II.





	Performance
	Method I
	Method II





	Accuracy
	98.40%
	99.40%



	Sensitivity
	97.00%
	99.20%



	Specificity
	99.00%
	99.60%



	Error
	0.02%
	0.60%



	# of features
	12
	5
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Table 16. Comparison with previous works.






Table 16. Comparison with previous works.















	Ref.
	Modality
	Preprocessing
	Features
	Feature Reduction
	Classification
	Data Set
	Results





	[12]
	PPG
	CWT
	GoogLeNet
	-
	GoogLeNet
	MIMIC
	F1 score: 92.55%



	[13]
	PPG and ECG
	-
	PAT and morphological features
	-
	KNN
	MIMIC
	F1 score: 94.84%



	[14]
	HRV
	-
	Standard deviation of NN intervals
	-
	MIL
	Self-collected data set Hypertension 24 and Normal: 19
	Accuracy: 85.47%



	[15]
	ECG
	SGF
	Entropy features
	-
	SVM
	Self-collected data set Hypertension: 61 and Normal: 67
	Accuracy: 93.33%



	[16]
	HRV
	-
	Statistical, spectral, geometrical, wavelet, fractal, and non-linear features
	PCA
	QDA
	Self-collected data set Hypertension: 41 Normal: 30
	Accuracy: 85.5%



	[17]
	ECG
	OWFB
	Fractal dimension and energy features
	Student’s t-test
	Diagnosis index
	PhysioNet database High-risk Hypertension: 17 subjects

Low-risk Hypertension: 122 subjects

Total: 139 subjects
	100% between low-risk and high-risk classes



	[18]
	ECG
	EMD
	Entropy features
	Student’s t-test
	KNN classifier
	MIT BIH Sinus rhythm database, SHAREE

database: Normal: 18 signals

Hypertension: 139 signals
	Accuracy: 97.70%

Sensitivity: 98.90%

Specificity: 89.10%



	[19]
	PPG
	Chebyshev II
	Time and morphological features
	MRMR
	KNN-W
	Hypertension: 35 Normal: 48 Total: 83
	Positive Predictive Value: 100% Sensitivity: 85.71% F1-score: 92.31%



	[20]
	BCG
	
	Morphological features
	-
	CAR
	Self-collected data set Hypertension: 61 and Normal: 67
	Accuracy: 84.4%



	This study
	PuPG
	EMD
	Time, frequency, cepstral, fractal, and chaotic features
	HFSR
	KNN-W
	Self-collected data set Hypertension: 56 Normal: 65
	Accuracy: 99.7%

Sensitivity: 99.2%

Specificity: 99.4%
















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
oo
¥
H)=x(1), n=0
v
(e S
- xn;[l);x»«(l)
i
XO=cO) | | ey x) p@)






media/file4.png
Normal (Raw)

o

o
o
T

Amplitude

q 1 l !
0.5 1.0

Time (s)

Hypertension (Raw)

Amplitude

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time (s)





media/file30.png
Classification accuracy for method |l
M S1 (5 Components) M S2 (7 Components) ¥ S3 (10 Components) ¥ S4(12 Components) H S5 (15 Components) M S6 (17 Components)

o
()

0.8

7

> 0.6
o

0.5

0

(] 0 Y Q D
Q N & A R
S & @ @\ @\ @ ; &S s* ,5 ,@ s* < S

o

Accura
(=]
i =Y

o
w

o
N





media/file39.jpg
Petrmance

sy

< speaty

o, ofComponentsofKerna 2





media/file18.png
Normal (Pre-Processed by EMD)

o
~
1

o
o N
T

Amplitude

o
o

0.15 1.10 I1.5 | 2.0
Time (s)
Hypertension (Pre-Processed by EMD)

-05

Amplitude

| | | | | | =
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time (s)





media/file35.jpg
sty

i
H

I

T vacudsass i
(a) Confusion matrix in terms of percentage (b) Confusion matrix in terms of numbers





media/file21.jpg
e ——)
515 Componnt #5207 Conpaent 45310 Conponert) =412 Cmponent 85515 Goner) 85604 omport)

jmin

A S e






media/file26.png
Classification Specificity for Method |

B S1(5 Components) M S2 (7 Components) M S3(10 Components) M S4(12Components) M S5 (15 Components) M S6 (17 Components)

£ 9 &

© N g (o 67 < Q S
2SN & & ¥ S

Specificity
©O o o o o
()] ()] ~ o] (=]

o
o~

o
w

o
N

o
Y

X\





media/file27.jpg
| = @
il

'

| - o

() Confusion matrix in terms of numbers

oy

ey

Mothod |

1%

ey ‘Hyportension =3 £

Predctod class
(b) Confusion matrix in terms of percentage





media/file3.jpg
Amplitude

Amplitude

05

Normal (Raw)

10 15
Time (s)

Hypertension (Raw)

05

10

15 20 25 30 35

Time (s)

a0

a5

50





media/file22.png
Classification accuracy for Method |

B S1 (5 Components) H S2(7 Components) ™ S3 (10 Components) ™ S4(12 Components) M S5 (15 Components) M S6 (17 Components)

1

, o" ‘1»0 ée
$§\ <;9 ‘o < ‘*

Accuracy
o o o o o o o o
N w s n o 0 ©

o
[y

\« X (,
& @ @ \@ @\ @ @e *é & @é





media/file19.jpg
Al extracted features (1x102)

! ' 1] 1] I

i
o e e o o
e o [ [ | [

=Tl

Compute Mean Rank (MR)

P ‘

Feature vector size: 1x24

v

Kernel Principal Component Analysis

¥ ;

Reduced and transformed features






media/file7.jpg
@ Y DWT
(1) 7
nesigall ] Mo sms
SIS TS TN N
o, [ b | A

==

‘sqtwolog’ based hard thresholding

Threshold: /2 X 10g(X)

IDWT

Wavelet: (SymS5) —-{
Level: 4





media/file28.png
Method |

>
=
2 695 14
T
n
N
L
O
o
~
|_
c
L
2]
5
2 7 693
g
>
T
Healthy Hypertension

Predicted class

(a) Confusion matrix in terms of numbers

True class

Hypertension

Healthy

Method |
98% 2% 98% 2%
1% 99% 99% 1%
Healthy Hypertension TPR FNR

(b) Confusion matrix in terms of percentage

Predicted class





media/file10.png
Wavelet Delcompositionl (Normal)

D2 ©
5 M
l l l l :
2 [

D1 ¢
2 ;
4= | | | | —‘

500 1000 1500 2000

(a) Wavelet decomposition of Normal

ngeletl Decolmposﬁtion (Hypeﬂensiqn)

X10-3 | [ [ |
5 _
D2 o
-5|‘ | | | | ]
%107
5" [ [ I [ [ [ ]
D1 ©

| | | | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(b) Wavelet decomposition of Hypertension





media/file40.png
0.95

Performance
© © © ©
~ [o] o] O
(6, ] o (V)] o

e
N
=]

0.65

0.60

9

10 11 12 13 14 15
No. of Components of Kernal-PCA

16

17

18

19 20

=0- Accuracy

—=0—Sensitivity

—0-Specificity

21

22

23

24





media/file33.jpg
195515 Components) 5 17 Component)

‘ I ‘m ‘

27 componens

\uth.

COE RS IS S SIS 0S





media/file32.png
Classification Sensitivity for method |l

m S1 (5 Components) m S2 (7 Components) ™ S3 (10 Components) ™ S4(12 Components) M S5 (15 Components) M S6 (17 Components)
1

0.9
0.8
0.7
Z06
* 0.5
(7, ]
c
0.4
0.3
0.2
0.1
0

(9 N9
S & 3 S E
& & & @‘ @ & & & g





media/file14.png
( Start )
v

Input Signal

v

r(t)=x(), n=0

v

x(t) =c(t)

\ 4

Compute the upper
and lower envelopes

A

v

Xup(t) + xio(t)

p(t) =

2
v

ct) x(1) u@)

No

Does c(t) satisfy the

conditions of IMF?

n=n+1
gn = c(1)
r(t)=r(t)—qgn

Is r(t) a monotonic

x(t)=r(t)

A

function?

( Finish >






media/file11.jpg
Normal (Pre-Processed by DWT)

Amplitude

[ 10 15 20
Time (s)
Hypertension (Pre-Processed by DWT)

Amplitude

05 10 15 20 25 30 35 <40 45 50

Time (s)





media/file6.png
Pulse Plethysmograph

Signal Data

Stage |: Preprocessing

Discrete Wavelet

Empirical Mode

Stage I: Apply Empirical Mode
Decomposition and Wavelet
Transform on the raw PuPG

Highest Results ?

Method 1

- )
\\\ Trans_form Decomposition y Signals.
o i Stage II: Feature extraction W \ Stage II: Extract all features
/ \ from preprocessed signals
. | Feature Extraction Feature Extraction | | separately, ie. signal
\ / preprocessed through EMD
\\ . 102 A
Features: 1028 ______________|Featuresi02 and through DWT.
_____________________________________ ) A
/// Stage lll: Feature selection \and reduction (HFSR) block N
\
/ | - = 7 : . \ Stage lll: Select the most
[ N . . pe
] denps || ultbacks ([ Mann- E significant features through
: st dI:e':bler distanceyy ROC Whtitn::y's MRMR ReliefF : proposed ranking scheme.
: e I il | Then, reduce the selected
: | I | | features using Kernel PCA.
! [
| 4 ¢ 4 VL v L v |
! [
i Compute Mean Rank (MR) |
|
| ] 1 |
: Features: 1x24iL iL Features: 1x24 :
! [
' . . |
'\ _ | Kernel Principal Component | _ !
\ - Analysis B /
N Y //
__ _Feature§:57,10,121517 _________Features tg,z,;gl_z,_lgﬂ Stage IV: Evaluate classifiers
// \ 4 Stage IV: Classification \ \\ by varying the number of
! \ features to find the best
| Classification Classification ! combination of feature set
: : and classifier.
| |
| |
' - 10-Fold Cross
Change the \ S F(.)Id (;ross I Change the
'Y Validation Validation y
number of N i N ’ number of
components | T T T T T TTTTTTTTTTTTTTTTTTTTTTTTTTOE T components
A A
N

Highest Results ?

Method 2

Proposed Method
is Method 1

A 4

Comparison

Method1l >
Method 2

Proposed Method

NO=p is Method 2






media/file36.png
True class

Hypertension

Healthy

Method Il
99% 1% 99% 1%
<1% 99% 99% <1%
Healthy Hypertension

Predicted class TPR FNR

(a) Confusion matrix in terms of percentage

Method Il

>
=
s 702 7
T
n
n
8
o
o
~
|_
[ =
=
2
2 1 699
8
>
I
Healthy Hypertension

Predicted class

(b) Confusion matrix in terms of numbers





media/file15.jpg





media/file37.jpg
Pulse Plethysmograph
Signal Dataset

'

Empirical Mode
Decomposition

orop .Mnl

Feature extraction

Features:24 l

Kernel-PCA

Features:sl

Weighted-KNN

N

Healthy | [Hypertension

Input PuPG to the Proposed
EHDS

Preprocess the raw signal by,
selecting relevant IMFs and
dropping noisy IMFs

Extract only 24 features
selected through hybrid
feature selection scheme

Transform the selected
features to reduce

Differentiates signal into
Healthy and Hypertension
class






nav.xhtml


  sensors-21-00247


  
    		
      sensors-21-00247
    


  




  





media/file16.png
Amplitude

Amplitude
IMF 5

Normal
Empirical Mode Decomposition

Signal

IMF 1
o

A

IMF 2

IMF 3

IMF 4

-0.2

IMF 5
o

01—

0.1 :/"*7

0.1

IMF 6
o
|

11
&b
——

Residual
S
o
[

<
N

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Samples

(a) Normal

Hypertension
Empirical Mode Decomposition

Signal

9
01—\010

o
o

T o

IMF 1

-0.05

0.01 |
0

IMF 2

-0.01 |
-0.02

o
(V)

ol

-0.2

0.2

IMF 4
o

0.2

0.2

-0.2 -
-04 =

0.2

IMF 6
o

-0.2 —

IMF 7
o

_Zﬁi\/\ﬂ/\/\ —

005

-0.05
-0.1

IMF 8
o
||I|

01—
0.05 —

Residual

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Samples

(b) Hypertension





media/file2.png
Dicrotic notch

Systolic Peak ~ Diastolic peak
Systolic Peak / —~ '\
\ /\A -
\
Diastolic Peak \
/ Dicrotic notch
........ X X
Width
y

v i \ 4 4

(a) Photoplethysmograph signal (b) Pulse Plethysmograph signal





media/file20.png
All extracted features (1x102)

v

v

¢ \ 4

v

v

, Kullback-Leibler Bhattacharyya Mann- .
BNt ttest distance distance §oc Whitney's test VIR geiielr
| | — —

NEEREN:

Compute Mean Rank (MR)

Feature vector size: 1x24

|

Kernel Principal Component Analysis

v

Reduced and transformed features






media/file23.jpg
"fii:“jefa"f&"@f“%"

o

-

o





media/file5.jpg





media/file24.png
Classification sensitivity for Method |
m S1(5 Components) mS2(7 Components) = S3 (10 Components) = S4(12 Components) M S5 (15 Components) M S6 (17 Components)
1

.9 ||| | || || ||| | | ‘ ||| || | || || || |||||| ||||||
0 || ‘II ‘“ ‘ ‘

N~ Co
Q

sensitivity
N w - (¥, [+)] ~ -]

o
=

6"'(’ 9@:,
I3 S
§§\§§§¢9Q’Q’





media/file29.jpg
EM
i

) 253 10 o
5207 compon

R F

v&«"
FELESS S





media/file1.jpg
Dicrotic notch

systolic Peak mlk —

(a) Photoplethysmograph signal (b) Pulse Plethysmograph signal





media/file31.jpg
NI IIS LSS

| ||\|| |\ il





media/file25.jpg
st spucicy o ihed

Ll

SIS F SIS0

1





media/file12.png
Amplitude

Amplitude

0.2

-0.2
-0.4
-0.6

-0.8

Normal (Pre-Processed by DWT)

0.|5 11.0 115 2l.0
Time (s)
Hypertension (Pre-Processed by DWT)

| |
1.5 2.0 2.5 3.0 3.5 ‘£ 4.0 4.5 5.0

Time (s)





media/file9.jpg





media/file0.png





media/file38.png
Pulse Plethysmograph
Signal Dataset

4

Empirical Mode
Decomposition

Drop IIVIFll

Feature extraction

Features:24 l

Kernel-PCA

Features:Sl

Weighted-KNN

P

Healthy | Hypertension |

 emmeecmcaa,
.

e

Input PuPG to the Proposed

EHDS

dropping noisy IMFs

Extract only 24 features

selected through hybrid

feature selection scheme

Transform the selected
features to reduce
dimensions

Differentiates signal into

Healthy and Hypertension
class

" Preprocess the raw signal by
selecting relevant IMFs and

e

e

e





media/file8.png
x(t)
_ Wavelet: Sym5
Raw Signal Level: 4

DWT

‘sqtwolog’ based hard thresholding

Threshold: /2 X log(x)

IDWT

Level: 4

Wavelet: (Sym5)

\ 4






media/file34.png
Classification specificity for method |l

¥ S1 (5 Components) M S2 (7 Components) © S3 (10 Components) " S4(12 Components) B S5 (15 Components) M S6 (17 Components)

1
0 ||| ‘Il ||

Ny

o
o]

o
00

o
~

o
()]

specificity
o
(8}

o
iy

o

o
N

o
[y

(o o '\ Q S
Q? @ o )
S S @ & \\Q A@ R év\ é E (@ %sw\ @ S & (_3@





media/file17.jpg
Amplitude

02

Amplitude

Normal (Pre-Processed by EMD)

05 ) 10 B 15 20
Time (s)
Hypertension (PregProcgssed by EMD)

95 10 15 20 25 30 35 a0 45 50
Time (s)





