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Abstract: Sensor-based human activity recognition (HAR) has attracted enormous interests due to
its wide applications in the Internet of Things (IoT), smart homes and healthcare. In this paper,
a low-resolution infrared array sensor-based HAR approach is proposed using the deep learning
framework. The device-free sensing system leverages the infrared array sensor of 8× 8 pixels to
collect the infrared signals, which can ensure users’ privacy and effectively reduce the deployment
cost of the network. To reduce the influence of temperature variations, a combination of the J-
filter noise reduction method and the Butterworth filter is performed to preprocess the infrared
signals. Long short-term memory (LSTM), a representative recurrent neural network, is utilized to
automatically extract characteristics from the infrared signal and build the recognition model. In
addition, the real-time HAR interface is designed by embedding the LSTM model. Experimental
results show that the typical daily activities can be classified with the recognition accuracy of 98.287%.
The proposed approach yields a better result compared to the existing machine learning methods,
and it provides a low-cost yet promising solution for privacy-preserving scenarios.

Keywords: human activity recognition (HAR); low-resolution infrared array sensor; long short-term
memory (LSTM)

1. Introduction

Human activity information plays a crucial role in human health monitoring and life
enhancement in intelligent buildings. The advent of the Internet of Things (IoT) era has
integrated human activity recognition (HAR) with intelligent life, bringing great changes
to human life [1]. For example, home automation tasks, e.g., intelligent control of the
lighting and air conditioning, can be achieved by HAR. Moreover, it can be implemented
in monitoring the health of the elderly to obtain their health condition indirectly.

The conventional approach to detect human activities mainly relies on wearable
devices [2], where users monitor their activity by wearing a wearable device on their bodies.
For example, accelerometers have been applied to joints and torso positions to recognize
the movements of each part [3–5]. Inertial sensors and gyroscopes have been incorporated
into movable devices for HAR [6]. Igor B et al. [7] proposed a method based on an
accelerometer combined with the SVM algorithm to identify common behaviors of humans.
Gui H et al. [8] proposed a wearable device using RFID combined with a three-dimensional
accelerometer to realize the recognition of human activities. Xue Q et al. [9] proposed a
hidden Markov model (HMM)-based data analysis approach, where the approach learns
from raw RFID data and applies this to analyze the data. HAR based on RFID is also a
wearable device approach. The difficulty for the portability and convenience of wearable
devices to meet the requirements of most use scenarios is readily apparent. The camera-
based approach has been applied to HAR with artificial intelligence, and image recognition
has made enormous strides [10]. Images were collected automatically by camera for HAR
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to liberate humans from wearable devices [11]. Ni et al. [12] comprehensively evaluated
these extended feature representation methods based on the combination of color cameras
and depth sensors and applied them to HAR by combining the color and depth information
of human actions. Sanal K et al. [13] used the genetic algorithm and random forest (RF)
for feature classification such as directed gradient histograms (HOGs), color and GIST of
HAR. The camera-based approach relies on the light conditions. It is seriously affected
by poor light conditions or occlusion. In addition, it is easy for the camera to invade
humans’ privacy, and it is destined to be restricted in places with higher privacy, such as
bedrooms and toilets [14]. It is obviously impractical to adopt the camera-based approach
in the privacy-sensitive environment of certain rooms. The WiFi signal for HAR research
has attracted more attention because of the popularity of routers and wireless network
coverage. There have been advancements in WiFi research. Kun Z et al. [15] proposed
WiFi-based channel state information (CSI) on an HAR system. The characteristics of
the different activities were extracted through unsupervised machine learning methods.
This approach lowered labor costs whilst efficiently identifying different human activities.
Schfer J et al. [16] conducted fine-grained detection of HAR based on CSI and combined
machine learning and deep learning networks to recognize human behavior in line-of-sight
scenes and non-line-of-sight scenes in indoor environments. Wei W et al. [17] proposed a
CSI activity model based on HMM that quantifies the relation between human movement
speeds and human activities. Most CSI-based methods need the deployment of multiple
expensive sensors for networking.

Infrared sensors have attracted more and more attention from HAR researchers
for the advantages such as convenient deployment, low cost and privacy protection.
LIL G et al. [18] employed different heats detected by infrared signals for HAR research.
Chen et al. [19] put infrared sensors on the ceiling and walls to capture the three-dimensional
image information of humans and detect their fall behavior. Yun J et al. [20] detected the
human movement direction based on analog pyroelectric infrared (PIR) sensor signals.
However, more complex HAR is difficult to achieve because PIR is limited by the number
of infrared signals. Cai L et al. [21] utilized three PIR sensors in developing an infrared
sensing system which aims to handle the difficulties caused by occlusion and a limited
coverage area. Qiu G et al. [22] used the Gaussian mixture hidden Markov model (GS-
HMM) to process the infrared signals of four PIR sensors for HAR. An infrared array sensor
that can provide more infrared signals than one PIR was proposed [23]. The increase in
signal dimensions deems it possible for the sensor to be used in HAR. Munk. G et al. [24]
proposed a device-free unobtrusive indoor human posture recognition system leveraging
the infrared sensor of 48 × 16 pixels and a deep convolutional neural network (DCNN).
Chi S et al. [25] obtained thermal images from high-resolution infrared sensors of 120 ×
160 and fed them into the super-resolution convolutional neural network (SRCNN) model
to recognize the different activities. Md U et al. [26] proposed a thermal image-based
HAR approach using features and a deep neural network. Bat G et al. [27] proposed an
HAR method based on thermal images, which uses a convolutional neural network (CNN)
to identify human activities without a light source. The deployment of lower-resolution
infrared sensors makes it possible not only to reduce costs but also to protect the privacy
of users to a large extent. The infrared data collected by lower-resolution sensors have
lower dimensions, and it is more difficult to extract the infrared signal features. It is a
great challenge for lower-resolution infrared array sensors to achieve similar accuracy to
higher-resolution infrared array sensors.

In this paper, a deep learning-based HAR approach is developed using a low-cost
and low-resolution infrared array sensor. The signals of 8× 8 pixel thermal images from
the infrared sensor are used to identify the human activities. The low-resolution infrared
sensor can maintain the users’ privacy and considerably reduce the hardware costs. How-
ever, it is challenging to extract the characteristics of different activities from the limited
low-dimensional infrared signal. To address this issue, the 8× 8 pixel thermal images
are converted to a temporal sequence for training. A long short-term memory (LSTM)
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neural network, a powerful variation of the recurrent neural network (RNN) architecture,
is utilized to learn the representative features from the sequential infrared signals and
build the classification model. LSTM has great advantages in dealing with time series
data. The infrared signal used for training is composed of time series data. The input of
LSTM is composed of three parts, namely, the input at the current moment, the output
at the previous moment and the long-term state at the previous moment which saves
the long-term information. In particular, the long-term state retains information from the
previous moment.

In addition, LSTM has three special gate structures: a forget gate, an input gate and an
output gate. Therefore, the network has the function of long-term memory, which improves
the relevance of time series data. To reduce the influence of temperature variations, a noise
reduction method called J-filter is combined with the Butterworth filter to handle the
original infrared signals. In addition, a real-time HAR interface equipped with the LSTM
model is designed to realize high-accuracy recognition processes.

The main contributions of this paper are as follows:

1. A low-resolution infrared array sensor of 8×8 pixels is applied. It is a low-cost,
privacy-protective and device-free sensor that establishes a good trade-off between
performance and cost.

2. A noise reduction method called J-filter is proposed to address the heterogeneity
issue of the background temperature for infrared signal preprocessing. The original
absolute infrared signals are replaced by the relative values extracted by J-filter to
eliminate the influence of the temperature and improve the robustness for HAR.

3. A deep learning model based on LSTM is used to extract infrared signal features.
The features of low-dimensional infrared signals can be depth mined in the model
training process. The well-trained LSTM model can quickly and accurately recognize
the human activities through the designed real-time interface.

The rest of this paper is organized as follows. In Section 2, we describe the proposed
framework of HAR. The experimental results and analysis are presented in Section 3.
Section 4 draws conclusions from the results and discusses our future work plan.

2. System Framework Overview and Methodology
2.1. System Framework Overview

An HAR method based on deep learning is proposed. A low-resolution infrared
array sensor of 8× 8 pixels is leveraged in the HAR approach. The system is divided
into four steps, as shown in Figure 1: infrared signal acquisition, signal segmentation and
preprocessing, model training and real-time detection. The infrared signals of different
activities are collected by the infrared array sensor installed on the ceiling of the room.
With the Message Queuing Telemetry Transport (MQTT) protocol, the data receiver obtains
data by subscribing to related topics directly. After collecting the data, the data stream is
segmented according to a specific number of frames, and the signal samples corresponding
to different activities are represented by continuous multi-frame data. After the segmenta-
tion, the data are preprocessed, and the J-filter eliminates the background noise caused by
the temperature variation. The data are converted into a standard data format and then
enter the feature extraction process. The infrared signal is trained through the constructed
model based on deep learning, and the effect of the model is tested. After training the
model, the infrared signal collected in real time is input to the real-time detection module
for judgment. Then, the information of human activities is output.

2.2. Infrared Signal Acquisition

The Grid-EYE AMG8833, a low-resolution infrared array sensor of 8× 8 pixels, made
by Panasonic is used in this study. As shown in Figure 2, the sensor contains 64 ther-
mocouples with 8 vertical rows and 8 horizontal rows. The output temperature of the
thermocouples ranges from −20 to 80 ◦C, and the temperature accuracy is ±2.5 ◦C. It
has a detection range of 7 m [28]. It is suitable for HAR because of its low price, ease of
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installation and steady performance. The synchronous serial bus I2C can be supported by
the sensor, and the temperature value obtained by the sensor is returned to the connected
microprocessor through I2C. The microprocessor chooses ESP8266, as it has the advan-
tages of low power consumption and stable performance [29]. The processor supports the
standard IEEE 802.11 b/g/n protocol, and NodeMcu can be developed through the WiFi
serial port communication module.

Figure 1. Schematic diagram of HAR method based on deep learning.

Figure 2. The 8× 8 pixel low-resolution infrared array sensor of the Grid-EYE AMG8833 module.

The infrared signals of different activities are collected by the low-resolution infrared
array sensor. Then, the signals are sent to ESP8266. The sensor collects signals at a
fixed frequency to generate sequential infrared signals. The sequential infrared signal is
published and transmitted through the WiFi serial port communication module of the
microprocessor and the MQTT protocol. The sequential infrared signal corresponding to
different activities of humans is obtained after the data receiver subscribes to the topic. A
server acts as a data receptor, and the sequential infrared signal is stored in the server. Data
analysis and processing are performed concurrently on this server.

2.3. Signal Segmentation and Preprocessing
2.3.1. Segmentation

Human activity occurs in a time frame. A single infrared signal frame cannot com-
pletely reflect human activity changes, particularly for dynamic activity. Therefore, a period
of infrared signals (hereinafter referred to as sequential infrared signals) is used to reflect
the human activity. Infrared signals are collected for a period of time for each activity to
ensure data continuity. It becomes a necessary step to segment the sequential infrared
signals. Human activity is not shown for small-cut length data, while if the length of each
sample is too large, the cost of training increases. It is challenging to cut the sequential
infrared signals into suitable size samples. As shown in Figure 3, the sequential infrared
signals of m frames are divided into a sliding window of length L. In other words, a
sequential infrared signal with m frames is segmented. The segmented sequential signal
generates a sample with L frames. Eventually, there are m/L samples that can be generated
in total by the sequential signal with m frames.



Sensors 2021, 21, 3551 5 of 17

Figure 3. Segmentation of the sequential infrared signals.

2.3.2. Signal Preprocessing

The infrared signal is interfered with by many factors during the collection process:
for example, the influence of temperature changes and thermal dissipation of electrical
equipment. It is essential to filter and reduce the noise from the collected infrared signals.
Figure 4 shows the heatmaps of infrared signals corresponding to the standing activity
collected by the sensor at 14 ◦C, 17 ◦C and 20 ◦C. Through observation, it can be found
that a larger disturbance appears in the heatmaps when the room temperature changes. It
can be seen that the temperature change has a great influence on the infrared signal under
the same activity, leading to the difficulty in extracting features under different activities.
Reducing the effect of temperature changes on infrared signals is an absolute priority. A
more realistic noise reduction method is proposed specifically for infrared signals, called J-
filter. After the infrared signal of a frame is input to the J-filter, the elements of the frame are
sorted by size first, and the smallest value Tmin is selected. Tmin is the lowest temperature
signal detected by the sensor at this moment, and the current indoor temperature can
be indirectly reflected by Tmin. Then, the relative change value T′n of each element in the
frame at the current temperature is obtained by subtracting Tmin from the element Tn in
the frame. The element at the original position in the frame is covered by T′n. Finally, the
updated infrared signal of the frame is used as the output after noise reduction. Figure 5
corresponds to the original infrared signals of Figure 4 and heatmaps of the infrared signal
after noise reduction by the J-filter. Through observation and comparison, it can be found
that the infrared signals corresponding to the same activity at different temperatures after
J-filter processing have a more obvious characteristic distribution. Under the application of
the J-filter, the influence of temperature changes is eliminated to a large extent, which is
more beneficial to the data feature extraction in subsequent model training. The effect of
the J-filter will be demonstrated in subsequent chapters.

Figure 4. The heatmaps of the original infrared signals corresponding to standing at different
temperatures: (a) at 14 ◦C; (b) at 17 ◦C; (c) at 20 ◦C.

Figure 5. The heatmaps of the infrared signals processed by the J-filter method for standing at
different temperatures: (a) at 14 ◦C; (b) at 17 ◦C; (c) at 20 ◦C.
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The fluctuation of the sensor itself and the random noise generated in the environment
can easily cause signal mutation. This signal mutation is not caused by changes in human
activity or location. The Butterworth filter can reduce fluctuations to achieve smooth
data [30]. For an abrupt infrared signal, the Butterworth filter is used to reduce its influence
on the real signal. The effect of the Butterworth filter on the infrared signal is shown in
Figure 6. Figure 6a is the original sequential infrared signal corresponding to the activities
of lying, sitting, standing and walking. Figure 6b is the infrared signal processed by the
J-filter and the Butterworth filter. By comparison, it can be easily found that the infrared
signals corresponding to various activities have more obvious differences after being
processed by the J-filter and the Butterworth filter. Due to the complexity of human activity
and the influence of factors such as the changes in human location, it is impossible to
accurately achieve HAR through the similarity matching of infrared signals. The deep
learning method is used to extract the features of the data automatically and train the
model to obtain the depth-sensing HAR model of the sequential infrared signals.

Figure 6. The infrared signal comparison chart before and after data processing. (a) The original
infrared signal. (b) The infrared signal processed by J-filter and Butterworth filter.

2.4. Model Training

LSTM has the ability to process long-term information [31]. It solves the problem
of gradient disappearance in recurrent neural networks (RNN) [32]. In particular, it has
achieved great success in processing time series data [33]. LSTM is selected to train time
series infrared signals. The structure of LSTM is shown in Figure 7.

Figure 7. The structure of LSTM.

The main structure of the network is the rectangular part in the middle. There are
three inputs in LSTM totally, which are the input value xt at time t, the output value ht−1 at
the previous time and the long-term state Ct storing long-term information at the previous
time. Compared with an RNN, there are three more control structures in LSTM: a forget
gate, an input gate and an output gate, in order to realize the control of the long-term state
Ct. It is thanks to these special structures that LSTM has control over the long-term state Ct.
The forget gate controls the long-term state Ct−1 at the previous moment, and it controls
how many long-term states Ct−1 at the previous moment are retained for the long-term
state Ct at the current moment by calculating the probability, which can be expressed as

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)
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where ft is the output of the forget gate, σ represents the use of sigmoid as the activation
function in the forget gate, W f is the weight matrix and b f is the bias term of the forget gate.
The input gate mainly controls the input at the current moment. How many inputs will be
saved to the current long-term state Ct is also controlled by calculating the probability. The
input gate consists of two parts: they are sigmoid activation and tanh activation. The first
part uses the sigmoid function to process the data and then outputs them. The second part
uses the tanh function to process the data and obtain the output C̃t. The corresponding
processing formula is as follows:{

it = σ(Wi · [ht−1, xt] + bi)
C̃t = tanh(WC · [ht−1, xt] + bC)

(2)

where Wi and WC are the weight matrices of the sigmoid activation part and the tanh
activation part in the input gate, and bi and bC represent the bias terms of the two activation
parts. Combine the two parts:

Ct = ft ∗ Ct−1 + it ∗ C̃t (3)

Ct is the updated product of the combination of the current time and the long-term
state C̃t and Ct−1 at the previous time. Then, the output ht−1 at the previous time and xt at
the current time are processed by the activation function sigmoid to obtain the output ot:

ot = σ(Wo · [ht−1, xt] + bo) (4)

where Wo is the weight matrix of the output gate, and bo is the bias matrix. Further, through
the tanh activation function, the long-term state Ct at the current moment is processed by
the product of the value and ot to obtain the output ht at the current moment:

ht = ot ∗ tanh(Ct) (5)

Each one-dimensional input sample will obtain an output, and the sequential infrared
signals corresponding to the L frame will obtain L output values ht. The softmax [34]
activation function is further used to normalize the output at the current moment:

ŷt = τ
(
∑ Vht + c

)
(6)

where ŷt is the output value obtained after the above processing of the sequential infrared
signals of the L frames, τ is the activation function softmax, V is the weight matrix and c is
the bias matrix. Through the above formula, the output of each moment will be integrated
into the calculation of the next moment. Thanks to the correlation between the input
and output of the previous moment and the current moment in the LSTM, the network
has the "memory" ability. Finally, the output ŷt at the last moment is used as the final
output. The ŷt is a one-dimensional vector whose element values are between 0 and 1, and
each element corresponds to an activity label. The element value is the probability value
calculated by Formula (9). Next, compare the size of each element and output the element
position k corresponding to the largest value. It is the activity tag value corresponding to
the sequential infrared signal of the L frame. By comparing the output value with the label
value, the gradient descent [35] method is used to iteratively update the parameters in the
network through the backpropagation [36] process of the network. The collected sequential
infrared signals will be trained through the above method. The model is tested and saved
during each step of training. The training is over, and the optimal parameters and results
obtained during the training process are fixed and saved.

2.5. Real-Time Detection

The collected infrared signals are sent to the server through the MQTT protocol in real
time. Once the collected infrared signals reach the set number of frames, they are converted
into a format that conforms to the model input and sent to the trained LSTM model to obtain
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probability values corresponding to the activities. The value of the tag corresponding to the
largest probability is selected as the predicted value and input into the real-time detection
module. It has a picture switching function in the real-time detection module. This function
can switch to the corresponding picture according to the activity corresponding to the
input value of the prediction and display the real-time activity through the picture. The
received data are cleared and repeat the above steps to achieve real-time detection.

3. Experimental Evaluation
3.1. Experimental Setup and Data Description

The proposed method was verified in an indoor environment, as shown in Figure 8.
The detection area was in the rectangular red area in Figure 8, with an area of approximately
6.6 m2, and a length and width of 3.3 m and 2 m, respectively. The infrared array sensor
of 8× 8 pixels, Grid-EYE AMG8833, was installed about 3 m directly above the center
of the detection area. The sensor was connected with ESP8266 for data collection, and
the frequency was 20 frames/s. The infrared signal was trained and tested in the server,
and it was uploaded to the server through a TP-Link886N router. The main hardware
configuration of this server has the following: Intel Core i7-8750H CPU, 16G memory and
an NVIDIA GeForce GTX1060 GPU. Regarding the software, the server was equipped
with the Windows 10 operating system, the deep learning framework was based on Keras
2.2.4 and the construction of the network structure and programming were carried out in
Python 3.6.4.

Figure 8. The layout of the experimental environment.

There are five states of lying, standing, sitting, walking and empty. The four activities
and the corresponding infrared signals’ heatmaps correspond to (a), (b), (c) and (d) in
Figure 9. During the experiment, an experimenter acted as the experiment area. The
experimenter was a male 175 cm tall and 75 kg in weight, a typical body shape in the
population. The experimenter collected the infrared signals of lying at the six sampling
points shown in Figure 10a. The infrared signals of standing and sitting were collected at 12
sampling points in Figure 10b. The human walked irregularly in the detection area to collect
walking infrared signals. In the process of data acquisition, the participant performed
different activities in as many different directions as possible. The dataset contains the
signal in different directions for each activity.

The infrared signals with different activities in the room temperature range of 14 to
20 ◦C were fed into the model for training. The robustness and effectiveness of the model
were improved. A low-pass Butterworth filter was utilized in this paper, and the cut-off
frequency and order were 0.15 and 5, respectively. There were 43,200 frames of infrared
signals collected in each of the five states, and the total of the infrared signals in the five
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states was 216,000 frames. Every 20 frames of infrared signals were taken as a sample, and
the total number of samples was 10,800. After processing the collected data with the J-filter
and the Butterworth filter mentioned in Section 2, the samples of each state were labeled.
The label values of the five states of lying, standing, sitting, walking and empty correspond
to 0, 1, 2, 3 and 4. The sample was randomly shuffled and divided into the training set and
testing set according to the ratio of 80% and 20%.

Figure 9. Four types of HAR and heatmaps corresponding to infrared signals. (a) Lying. (b) Sitting.
(c) Standing. (d) Walking.

Figure 10. Schematic diagram of signal acquisition point. (a) Sampling point for lying. (b) Sampling
point for sitting and standing.

3.2. Results

Before training, the sequential infrared signals need to be processed into a type suitable
for model input. A sample has 20 frames of data, and each frame of data has 64 infrared
signals. Each 20× 64 dimension matrix signal is converted into a 1× 1280 dimension vector.
Therefore, there are 1280 nodes in the input layer of LSTM. Other structural parameters
of LSTM are as follows: the number of nodes in the hidden layer is 640 and each hidden
layer node is connected to a full connection layer with 100 backward nodes, and there is a
ReLU [37] activation layer behind the full connection layer. Finally, the softmax activation
function is used to normalize the data to obtain the output. Additionally, the timesteps of
LSTM are set to 16.

The training steps total 500 times. After each training is completed, the testing set is
used to test the effect of the model and save the training and test results of each step. The
training and testing results of each step are plotted. As shown in Figure 11, the model was
trained to step 99, and the recognition accuracy of the training set reached 100%. At the end
of the training, the recognition accuracy of the testing set based on the model constructed by
LSTM reached 98.287%. Specifically, it can be seen from the confusion matrix in Figure 12
that the test accuracy of the model for the five states is as high as 96% or more. In particular,
the recognition accuracy of lying reached 100%, and only a very small number of false
recognition cases occurred in the other states. Through the above results, the proposed
method effectively extracts the data characteristics of infrared signals in different human
activities and achieves high recognition accuracy for different human activities.
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Figure 11. The results of each step in the model training process.

Figure 12. Confusion matrix of the final test result of the model.

It is worth mentioning the tested samples include infrared signals collected at room
temperature from 14 to 20 ◦C. The effectiveness of the J-filter at different indoor temper-
atures is further verified. The strong robustness of the proposed method and model has
been verified.

The PyQt5 package was used to write a visualization program to verify the actual
detection effect of the proposed method. PyQt5 uses Python to encapsulate all classes of
Qt. The server obtains the infrared signals collected by the sensor by subscribing to MQTT.
Once 20 frames of infrared signals are collected, they are processed by the J-filter and the
Butterworth filter and sent to the trained model for detection. As shown in Figure 13, the
real-time predicted value can be seen on the left, and the display interface on the right
shows the picture corresponding to the recognized activity. Through the setting of the slot
function, the picture switching function required for the compilation interface display is
realized. The current activity of humans in the detection area is shown through the display
interface. The real-time detection module is used to test the activity detection of an on-site
human. During the real-time detection process, the experimenters performed the following
four activities in the detection area: lying, standing, sitting and walking. The situation in
the empty state is also detected. The experimental results are presented in Figure 14. The
predicted value of real-time detection is consistent with the real movement, and it is very
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effective for real-time detection in lying, standing, walking and empty states. According
to statistics, the real-time recognition accuracy rates of lying, standing, sitting, walking
and empty states reached 100%, 96.250%, 85%, 98.750% and 99.583%, respectively, and the
overall recognition accuracy reached 95.917%. The results show the proposed method is
still effective in practical applications and achieves a high real-time detection accuracy. The
high practical value of this method has been proved.

Figure 13. The interface of real-time detection program.

Figure 14. The real-time detection results corresponding to each activity.

3.3. Impact of the Frames in the Sample

The various frames of samples are used as research objects. Different numbers of
frames are selected as samples for experimentation. The frame numbers of 10, 20, 40 and 80
are selected as the number of frames for each sample. The more frames the sample contains,
the longer it takes to train the model, as shown in Figure 15. The increase in the number
of frames does not lead to an increase in the accuracy of HAR but shows a downward
trend when the number of frames exceeds 20. Ten frames of infrared signals are used as a
sample, although the training time of the model is the shortest, and the 96.644% accuracy
of the model at this time is not as good as the 98.287% accuracy of 20 frames as a sample.
The experimental results are analyzed, and the sequential infrared signals’ characteristics
corresponding to different human activities cannot be well extracted by the model with
the length of signal segmentation being too small. Nonetheless, the cost of model training
increases if the signal segmentation is too large. The number of frames for each sample of
20 is chosen after considering the model performance and training cost.
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Figure 15. Experimental results of different numbers of frames.

3.4. Impact of the Number of Hidden Layer Nodes

Although some parameters of the deep learning network cannot play a decisive role
in the effect of the training model, they still have a greater impact on the detection results.
The impact of the number of hidden layer nodes on the model effect was researched. Five
types of numbers are selected for the experiment, and the number of hidden layer nodes is
set to 160, 320, 640, 800 and 1280. Figure 16 shows the experimental results under different
numbers of hidden layer nodes. The number of hidden layer nodes increases from 160 to
640, and the test accuracy of the model increases from 95.093% to 98.287%. The loss of the
model is also reduced from 0.2668 to 0.1257. The number of nodes is further increased,
yet the test accuracy of the model shows a downward trend, and the loss value gradually
increases. The increase in the number of hidden layer nodes improves the test accuracy and
effectively extracts features of the data. The model also has better data-fitting capabilities
and appears to over-fit, resulting in a decrease in test accuracy if there are too many nodes.
The experimental results show the hidden layer nodes at 640 are the best choice.

Figure 16. Experimental results of different numbers of hidden layer nodes.

3.5. Impact of the Timesteps

Timesteps [38] are one of the important parameters of LSTM. The impact of timesteps
on the model was studied. The timesteps were set to 4, 8, 16, 32 and 64 for model training.
After 500 steps of training, the impact of the model on the accuracy of HAR under different
timesteps can be seen in Figure 17. Although the recognition accuracy of the model was
95.046% with the timesteps set to 4, the training time of the model was the longest—the
training model took 14.45× 10∧3 s. It is easy to find that the training time of the model
decreases with the increase in timesteps, but the downward trend gradually slows down.
However, the highest recognition accuracy reached 98.287%, and the training time was
reduced to 7.59× 10∧3 s as the timesteps increased to 16. Compared with timesteps set to 4,
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the recognition accuracy of the model is not only improved by 3.241% but also the training
time is reduced by nearly half. The recognition accuracy of the model did not increase with
the increase in the timesteps but rather declined. The change in timesteps has an impact
on the recognition accuracy of the model; the impact on the training time is particularly
significant. Comprehensive consideration of the recognition accuracy and training time of
the model and setting the timesteps to 16 represent a cost-effective choice.

Figure 17. Experimental results of different timesteps.

3.6. Impact of the Filtering Algorithms

The impact of the preprocessing of infrared data on the experimental results is dis-
cussed. The effectiveness of the combination of the J-filter and the Butterworth filter
method is also verified in this section. The raw data and the data processed by background
subtraction, removing the average pixel temperature and just the J-filter were fed into the
same model for training. The training results are shown in Table 1.

Table 1. Comparison of results with different data processing.

Raw Data
Background
Subtraction

Remove Average
Temperature J-Filter

J-Filter and
Butterworh

Accuracy(%) 84.259 90.556 92.269 96.644 98.287
Recall(%) 84.080 90.498 92.226 96.658 98.290

F1-score(%) 84.169 90.527 92.247 96.651 98.289

The data processed by the J-filter and the Butterworth filter have a higher accuracy,
recall and F1-score than the others. Compared with background subtraction and the
method of removing the average pixel temperature, the accuracy of the proposed method is
improved by 7.731% and 6.018%, respectively. In addition, it can observed that the accuracy
of just the J-filter reaches 96.644%, which is obviously better than background subtraction
(90.556%) and removing the average pixel temperature (92.269%). It can be proved that the
J-filter is a very suitable filtering approach for infrared signals.

3.7. Comparative Analysis

To further prove the efficiency of the proposed method, a comparison was carried
out between the proposed approach based on LSTM and other machine learning methods.
Extreme learning machine (ELM) [39], support vector machine (SVM) [40], k-nearest
neighbors (KNN) [41] and convolutional neural networks (CNNs) [42] were selected to
train and test the same sequential infrared signals. The recognition results of each algorithm
in different activities are presented in Figure 18.
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Figure 18. Comparison of the recognition results of various activities by different algorithms.

The recognition accuracy of the algorithms is ranked from high to low: for the recogni-
tion algorithms based on LSTM, CNN, KNN, SVM and ELM, the corresponding recognition
accuracy is 98.287%, 89.242%, 87.490%, 79.108% and 53.402%. It is easy to observe the
proposed method is higher than the other algorithms in terms of the recognition accuracy
of a single activity and the overall recognition accuracy. The algorithm proposed can still
achieve more than 96% accurate recognition of walking in the case of other algorithms
misrecognizing walking. The equilibrium of the proposed algorithm to the recognition
effect of different activities is verified. Compared with other algorithms, the advantages
of the algorithm proposed are more obvious. The results in this paper are compared with
wearable device-based [7], WiFi-based [17] and other infrared-based approaches [22,25,27].
The same activities, sitting and standing, are selected as the references and shown in Table 2.
Compared with WiFi- and wearable device-based approaches, only one sensor is needed to
achieve higher accuracy with the proposed method . The low-resolution infrared sensor
proposed in this paper achieves accuracy similar to the higher-resolution infrared method.
It can be observed that the proposed method can utilize low cost and, meanwhile, maintain
the optimal performance.

Table 2. Comparison of the results between different resolutions.

Method Number of Sensors Pixel Mean Accuracy

Accelerometer+SVM [7] 1 - 91.00%
CSI signals+HMM [17] 2 - 96.50%

PIR sensors+GS-HHMM [22] 4 8 × 16 91.00%
Thermal sensor+SRCNN [25] 1 120 × 160 92.31%

Thermal videos+CNN [27] 1 640 × 480 95.97%
The proposed method 1 8 × 8 97.92%

4. Conclusions

This paper presented an HAR approach based on a low-resolution infrared array
sensor using a deep learning network. In the proposed HAR method, the infrared thermal
images of 8× 8 are collected from the infrared sensor for recognition. In the data processing
stage, the combination of the J-filter and the Butterworth filter is performed to reduce the
noise of the raw infrared signal and eliminate the impact of temperature fluctuations. The
infrared signal matrix is converted to a temporal sequence for the training stage. The LSTM
model network is utilized to automatically extract the characteristics of the infrared signal
and train the detection model. The results indicate that the daily activities of lying, standing,
sitting, walking and empty can be accurately distinguished with an accuracy of 98.287%.
Our approach yields a better performance compared with other machine learning methods.
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The proposed device-free HAR system offers a low-cost and high-accuracy sensing solution
for application in privacy-preserving smart home scenarios. Future work is needed to
extend the system to more participants and conduct the research about transition activities.
The performance assessment of infrared sensors at different heights is also planned for
the future.
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