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Abstract: To reduce the amount of herbicides used to eradicate weeds and ensure crop yields,
precision spraying can effectively detect and locate weeds in the field thanks to imaging systems.
Because weeds are visually similar to crops, color information is not sufficient for effectively detecting
them. Multispectral cameras provide radiance images with a high spectral resolution, thus the ability
to investigate vegetated surfaces in several narrow spectral bands. Spectral reflectance has to be
estimated in order to make weed detection robust against illumination variation. However, this is
a challenge when the image is assembled from successive frames that are acquired under varying
illumination conditions. In this study, we present an original image formation model that considers
illumination variation during radiance image acquisition with a linescan camera. From this model,
we deduce a new reflectance estimation method that takes illumination at the frame level into
account. We experimentally show that our method is more robust against illumination variation than
state-of-the-art methods. We also show that the reflectance features based on our method are more
discriminant for outdoor weed detection and identification.

Keywords: multispectral imaging; snapscan camera; reflectance estimation; precision farming;
crop/weed detection and identification; segmentation; supervised pixel classification

1. Introduction

Nowadays, one of the biggest topics in precision farming is to increase yield pro-
duction while reducing the quantity of chemicals. In order to optimize the application of
herbicides in crop fields, less toxic and expensive weed control alternatives can be con-
sidered due to recent advances in imaging devices. During the last decade, sophisticated
multispectral sensors have been manufactured and deployed in crop fields, leading to
weed detection [1–3].

Multispectral cameras collect data over a wide spectral range and they provide the
ability to investigate the spectral responses of soils and vegetated surfaces in narrow
spectral bands. Two main categories of devices can be distinguished in multispectral image
acquisition. “Snapshot” (multi-sensor or filter array-based) devices build the image from a
single shot [4]. Although this technology provides multispectral images at a video frame
rate, the few acquired channels and low spatial resolution may not be sufficient for fully
exploring the vegetation spectral signatures. “Multishot” (tunable filter or illumination-
based, push-broom, and spatio-spectral linescan) devices build the image from several and
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successive frame acquisitions [5–7]. Despite being restricted to still scenes, they provide
images with a high spectral and spatial resolution. We use a multishot camera, called
the “Snapscan” to acquire outdoor multispectral radiance images of plant parcels in a
greenhouse under skylight [8]. From this radiance information, reflectance is estimated
as an illumination-invariant spectral signature of each species. Several methods have
been proposed for computing reflectance thanks to prior knowledge regarding cameras or
illumination conditions [9–11]. In field conditions, the typical methods first estimate the
illumination by including a reference device (a white diffuser or a color-checker chart) in the
scene [2,12–14]. Subsequently, reflectance is estimated at each pixel p by the channel-wise
division of the value of the radiance image at p by the pixel values that characterize the
white diffuser or the color-checker white patch. In [15], an extension to the multispectral
domain of four algorithms traditionally applied to RGB images is proposed for estimating
the illumination. In [16], a Bragg-grating-based multispectral camera acquires outdoor
radiance images and reflectance is estimated from two white diffusers, one along the image
bottom border and another fully visible one. A coarse reflectance is computed first, and then
rescaled using illumination-based scaling factors. Finally, the resulting reflectance image
is normalized channel-wise by the average reflectance value that is computed over pixels
of the second white diffuser that is present in the scene. In [17], a multispectral camera is
used in conjunction with a skyward pointing spectrometer to estimate the reflectance from
the acquired scene radiance.

These methods require additional devices and knowledge regarding the spectral sensitiv-
ity functions (SSFs) of the sensor filters. They also often assume constant incident illumination
throughout a few seconds. However, in outdoor conditions, illumination may vary signifi-
cantly during the successive frame acquisitions (scans) that last for several seconds.

In this paper, we propose a reflectance estimation method that is robust to illumination
variations during the multispectral image acquisition that was performed by the Snapscan
camera. In Section 2, we provide details regarding multispectral radiance image acquisition
with this device and propose an original model for such image formation. In Section 3, this
model is first used to study reflectance estimation under constant illumination. We also
show that, when outdoor illumination varies during the frame acquisitions, the assumption
about spatio-spectral correlation does not hold. Based on this model, we then propose
a new method for estimating the scene reflectance from a multispectral radiance image
acquired in uncontrolled and varying illumination conditions (see Section 4). Section 5
presents an experimental evaluation of the proposed reflectance estimation, and Section 6
shows the results of weed/crop segmentation using the estimated reflectance.

2. Multispectral Radiance Image Acquisition by Snapscan Camera

In this section, we first detail how the Snapscan camera achieves radiance measure-
ment and frame acquisition. Subsequently, we explain how a multispectral image is
obtained from the successively acquired frames. We propose an original multispectral
image formation model that handles how illumination is associated to both the considered
band and pixel because the radiance that is associated to a given spectral band at a pixel is
measured in a frame that is acquired at a specific time. From this new model, we show that
the spatio-spectral correlation assumptions do not hold when illumination varies during
the frame acquisitions.

2.1. Radiance Measurement

The Snapscan is a multispectral camera manufactured by IMEC that embeds a single
matrix sensor that is covered by a series of narrow stripes of Fabry-Perot integrated filters.
It contains B = 192 optical filters whose central wavelengths range from λ0 = 475.1 nm to
λB−1 = 901.7 nm with a variable center step (from 0.5 nm to 5 nm). Specifically, each filter
of index b ∈ [0, B− 1] is associated with five adjacent rows of 2048 pixels that form a filter
stripe, and it samples a band from the visible or near infra-red spectral domain according
to its SSF Tb(λ) with a full width at half maximum between 2 nm and 10 nm.
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The Snapscan camera acquires a sequence of frames to provide a multispectral image.
During frame acquisitions, the object and camera both remain static while the sensor
moves and illumination may change. Therefore, the measurement of the radiance that
is reflected by a given lambertian surface element s of the scene varies according to the
frame acquisition time t, although s is projected at a fixed point q of the image plane. Let us
denote, as Et(λ) ∈ [0, 1], the relative spectral power distribution (RSPD) of the illumination
at t and assume that it homogeneously illuminates all of the surface elements of the scene.
The radiance that is reflected by s and refracted by the camera lens projects onto the image
plane at q as a stimulus Lt,q(λ):

Lt,q(λ) = Et(λ) · Rq(λ) · Aq(λ), (1)

where Rq(λ) ∈ [0, 1] is the spectral reflectance of the surface element s that is observed by
q, and Aq(λ) ∈ [0, 1] is the optical attenuation of the camera lens at q. All of these functions
depend on the wavelength λ. The sensor moves forward on the image plane according
to the direction perpendicular to the filter stripes (see Figure 1a). Between two successive
frame acquisitions, it moves by a constant step v = 5 (in pixels) that is equal to the number
of rows in each stripe. Therefore, the radiance that is measured at q is filtered by a different
Fabry–Perot filter of index bt,q (0 ≤ bt,q < B) at each acquisition time t. The radiance at
q is fully sampled over N frame acquisitions, provided that each of them measures the
radiance there, i.e., N ≥ B. Let the coordinates of point q be (xq, yq)C in the camera 2D
coordinate system (O, x, y) whose origin O corresponds to the intersection between the
optical axis and image plane. The unit vectors of x and y are given by the photo-sensitive
element size (i.e., axis units match with pixels), and y is oriented opposite to the sensor
movement. At a given point q, the filter index bt,q can then be expressed as:

bt,q = t +
⌊

yq − y0

v

⌋
, (2)

where y0 is the coordinate along y of the first filter row at first acquisition time t = 0. Note
that the light stimulus Lt,q is only associated to a filter at a given point q when t0

q ≤ t < tB
q .

The lower bound t0
q =

⌊
(y0 − yq)/v

⌋
is the acquisition time at which the first optical filter

of the sensor observes Lt,q. The upper bound tB
q =

⌊
(y0 − yq)/v

⌋
+ B is the time at which

all of the sensor filters have observed Lt,q.
Besides , at a given time t, the coordinate yq of point q that is associated to a photo-

sensitive element of the sensor satisfies:

y0 − t · v ≤ yq < y0 + (B− t) · v, (3)

since 0 ≤ bt,q < B. Given these restrictions, the radiance St,q that is then measured at q by
the sensor at acquisition time t is expressed as:

St,q = Q
(

τ
∫

Ω
Lt,q(λ) · Tbt,q(λ) dλ

)
, (4)

where Q is the quantization function according to the camera bit depth, τ is the integration
time of the frames, and Ω is the working spectral domain. Note that τ is set to the highest
possible value that provides no saturated pixel.

2.2. Frame Acquisition

The radiance that is measured at q is stored by the camera as a pixel value ft,q = St,q
in frame ft (see Figure 1b). We define the coordinate system (O′, x′, y′) attached to the
sensor, such that origin O′ is the first (top-left) photo-sensitive element location, axis y′

corresponds to y, and x′ is parallel to x, in order to compute the coordinates of q relative to
the frame. In this frame system, the coordinates of q are (x′q, y′q)F = (xq, yq − y0 + t · v)F.
Note that Equation (3) allows us to check that 0 ≤ y′q < B · v.
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Figure 1. (a) Side view of Snapscan camera observing a surface element s of a static scene. (b) The loca-
tion of the measured radiance observed at point q associated to s in frames acquired at t = 0, t0

q, tB−1
q .

Conversely , any given pixel p(x′p, y′p)F of a frame ft is mapped to the coordinates in
the camera coordinate system as:

(xp, yp)C = (x′p, y′p + y0 − t · v)C, (5)

at which the stimulus Lt,p(λ) of a surface element radiance is filtered by the filter of index
bp = by′p/vc. From this point of view, each frame pixel value is, therefore, also expressed as:

ft,p = St,p = Q
(

τ
∫

Ω
Lt,p(λ) · Tbp(λ) dλ

)
. (6)

Before the frame acquisitions, the Snapscan uses its internal shutter to acquire a dark
frame fdark whose values are subtracted pixel-wise from the acquired frames. Therefore,
we assume that the pixel value that is expressed by Equation (6) is free from thermal noise.

Let us also point out that, at two (e.g., successive) acquisition times t1 and t2, the sensor
is at different locations. Therefore it acquires the values ft1,p and ft2,p from the stimuli Lt1,p
and Lt2,p of two different surface elements at a given pixel p whose coordinate yp in the
camera system is time-dependent (see Equation (5)). Besides, the stimuli Lt1,p and Lt2,p are
filtered by the same filter whose index only depends on the pixel coordinate y′p in the frame
system. Equations (4) and (6) model the radiance that is measured at a given point in the
image plane and stored at a given pixel of a frame, respectively. Both of the equations take
account of illumination variation during the frame sequence acquisition, but differently
take the sensor movement into account. Indeed, the filter index changes at a given point
of the image plane during the frame acquisition (see Equation (4)), whereas the observed
surface element changes at a given pixel in the successive frames (see Equation (6)).
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2.3. Stripe Assembly

We now determine the first and last acquisition times of the frame sequence that
is required to capture an object of interest whose projection points on the image plane
are bounded along the y axis by qa(xqa , yqa)C and qm(xqm , yqm)C, with yqa > yqm . Given
the initial coordinate y0 of the sensor along y, we can compute the first and last frame
acquisition times t0

qa and tB−1
qm , so that the measured radiances at the points between qa

and qm are consecutively filtered by the B sensor filters (see the top part of Figure 2). The

acquisition of the multispectral image from the frame sequence { ft}
tB−1
qm

t=t0
qa

takes account of

the spatial and spectral organizations of each frame. A frame ft is spatially organized as
juxtaposed stripes of v adjacent pixel rows. A stripe f b

t , b = 0, . . . , B− 1, of v adjacent pixel
rows contains the spectral information of the scene radiance that is filtered according to the
SSF Tb(λ) of filter b centered at wavelength λb. All of the stripes that are associated with
filter b in the acquired frames are stacked by the assembly function

⊕
to provide a stripe

assembly defined as:

{ f b
t }

tB−1
qm

t=t0
qa

def
=
⊕(

{ ft}
tB−1
qm

t=t0
qa

, b
)
= [ f b

tB−1
qm

, . . . , f b
t+1, f b

t , f b
t−1, . . . , f b

tq0
a
]ᵀ. (7)
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Figure 2. Frame acquisition and stripe assembly for channel I0 (a) and multispectral image with B
spectral channels (b).

The size of each stripe assembly is 2048 pixels in width and N · v pixels in height,
where N =

⌊(
tB−1
qm − t0

qa

)
/∆
⌋
+ 1 is the number of acquired frames and ∆ is the frame

acquisition period.
To form the multispectral image I(B) = {Ib}B−1

b=0 of the object of interest, only the scene
part that is common to all stripe assemblies is considered by the camera (see the bottom
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part of Figure 2). Specifically, the retained stripes in the b-th assembly are acquired between
tb
qa and tb

qm to form each channel Ib:

Ib = { f b
t }

tb
qm

t=tb
qa

. (8)

The multispectral image I(B) has its own coordinate system. For convenience, in the
sequel, we denote a pixel as p(x, y) in this system, since the camera and frame coordinate
systems are not used any longer.

2.4. Formation Model of a Multispectral Image Acquired by Snapscan Camera

We can now infer an image formation model for multishot linescan cameras, such as
the Snapscan. At any pixel p, the radiance value Ib

p that is associated to a channel index
b ∈ [0, B− 1] is acquired at t = tb

p, with tb
qa ≤ tb

p ≤ tb
qm (see Equation (8)). It results from the

light stimulus Ltb
p ,p that was filtered according to Tb (whose index dependence upon p is

dropped by stripe assembly step), and is therefore defined from Equations (1) and (6), as:

Ib
p = Q

(
τ
∫

Ω
Etb

p
(λ) · Rp(λ) · Ap(λ) · Tb(λ) dλ

)
. (9)

The term Etb
p
(λ) shown in Equation (9) points out that illumination is associated to

both a channel index and a pixel. These dependencies may weaken the spatio-spectral
correlation assumptions of the measured scene radiance.

Spectral correlation relies on the assumption that the SSFs that are associated to
adjacent spectral channels strongly overlap. Thus, radiance measures at a given pixel in
these channels should be very similar (or correlated). Let us consider the radiance values
in two channels b1 and b2 at a given pixel p. Even if the SSFs Tb1(λ) and Tb2(λ) strongly
overlap (and are equal in the extreme case), the illumination conditions at tb1

p and tb2
p are

different, hence Ib1
p 6= Ib2

p .
Spatial correlation relies on the assumption that the reflectance across locally close

surface elements of a scene does (almost) not change. Thus, under the same illumination,
the radiance measures at their associated pixels within a channel are correlated. Let us
consider two pixels, p1(xp1 , yp1) and p2(xp2 , yp2), which observe surface elements of a
scene with the same reflectance Rp1(λ) = Rp2(λ) for all λ ∈ Ω. If |yp1 − yp2 | ≥ v, then the
radiances at p1 and p2 are acquired at different times tb

p1
and tb

p2
associated to different

illumination conditions Etb
p1

and Etb
p2

, hence Ib
p1
6= Ib

p2
.

Therefore, the spatio-spectral correlation assumption does not hold in the image
formation model of the Snapscan camera when illumination varies.

3. Reflectance Estimation with a White Diffuser under Constant Illumination

This short section introduces how to estimate reflectance by a classical (white diffuser-
based) method and how the result should be post-processed to ensure its consistency.

3.1. Reflectance Estimation

In order to estimate spectral reflectance from radiance images that were acquired
under an illumination that is almost constant over time, one classically uses the image
I(B)[WD] of a white diffuser acquired in full field beforehand and assumes that:

(i) The illumination is spatially uniform and it does not vary during the frame acquisitions,
thus Etb

p
(λ) = E(λ) for all b ∈ [0, B− 1] and p ∈ I(B), and Equation (9) becomes:

Ib
p = τ ·

B−1

∑
l=0

E(λl) · Rp(λ
l) · Ap(λ

l) · Tb(λl). (10)
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Note that the quantization function Q is omitted here, since the different terms are
considered as being already quantized.

(ii) Each of the Fabry-Perot filters has an ideal SSF Tb(λ) = δ(λ− λb) =

{
1 if λ = λb,
0 otherwise,

such that Equation (10) becomes:

Ib
p = τ · E(λb) · Rp(λ

b) · Ap(λ
b). (11)

Reflectance is then derived for any pixel p that is associated to a spectral band centered
at λb as:

Rp(λ
b) =

Ib
p

τ · E(λb) · Ap(λb)
. (12)

The white diffuser is supposed to be perfectly diffuse and reflect the incident light
with a constant diffuse reflection factor ρwd. Hence, for I(B)[WD], we can write:

ρwd =
Ib
p[WD]

τwd · E(λb) · Ap(λb)
, (13)

where τwd is the frame integration time of I(B)[WD]. Plugging Equation (13) into (12) yields
the reflectance image that is estimated from a B-channel radiance image I(B):

R̂b
p = ρwd ·

Ib
p

Ib
p[WD]

· τwd
τ

. (14)

This reflectance estimation model implicitly compensates the vignetting effect, since
the white diffuser and object (scene of interest) occupy the same (full) field of view. Accord-
ingly, Ib

p and Ib
p[WD] are affected by the same optical attenuation whose effect vanishes

after division.
The estimated B-channel reflectance image R̂(B) should then undergo two post-

processing steps: spectral correction and negative value removal.

3.2. Spectral Correction

Each of the Snapscan Fabry–Perot filters is designed to sample a specific spectral
band from the spectrum according to its SSF Tb(λ). However, because of the SSFs and
optical properties of some filters (angular dependence [18], high-energy harmonics), several
spectral bands are redundant, which limits the accuracy of the spectral imaging system.
This leads to redundancy in spectral bands and introduces spectral information bias.
Therefore, the reflectance image with B = 192 spectral channels is spectrally corrected and
only K = 141 channels are kept in practice.

The spectral correction of R̂(B) provides a spectrally corrected K-channel reflectance

image R̂(K) that is expressed at each pixel p as:

R̂(K)
p = M · R̂(B)

p , (15)

where M is the sparse K × B correction matrix that is provided by the calibration file of

our Snapscan camera. The linear combinations of the channel values of R̂(B) according to
Equation (15) are designed by the manufacturer to remove the redundant channels and
attenuate second-order harmonics. This spectral correction provides new centers {λk}K−1

k=0
for the bands (referred to as “virtual” bands by IMEC) that are associated to the image
channels, but the spectral working domain Ω = [475.1 nm, 901.7 nm] is unchanged.
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3.3. Negative Value Removal

The acquired radiance image contains negative values due to dark frame subtraction,
when the value of a dark frame pixel is higher than the measured radiance at this pixel.
This generally occurs in low-dynamics channels, where the central wavelengths are in the
range [475.1 nm, 560.4 nm] (before spectral correction). These negative values may lay on
vegetation pixels and corrupt reflectance estimation at these pixels. Because we intend to
classify vegetation pixels, this could lead to unexpected prediction errors. Negative values

also occur—for even more pixels—in the spectrally-corrected reflectance image R̂(K) (see
Equation (15)), because the correction matrix M contains negative coefficients.

Negative values have no physical meaning and they must be discarded. Because our
images mostly contain smooth textures (vegetation, reference panels, soil), we consider
that, unlike radiance, reflectance values are highly correlated over close surface elements.

Thus, we propose correcting negative values in image R̂(K) by conditionally using a 3× 3
median filter, as:

R̂k
ref,p =

median
3×3

{R̂k
p} if R̂k

p < 0,

R̂k
p otherwise,

(16)

where R̂k
ref,p is the final reflectance value at pixel p for channel k. Because we consider the

reflectance that is estimated by this model (Equations (14)–(16)) as a reference, it is denoted

as R̂(K)
ref .

4. Outdoor Reflectance Estimation with Reference Devices in the Scene

Because illumination varies during the acquisitions of outdoor scene images, the
reflectance estimation method that is described by Equation (14) is not adapted to linescan
cameras, such as the Snapscan. In such a case, one solution is to use several reference
devices [16].

As a first reference device, we use a white diffuser tile mounted on the acquisition
system, so that the sensor vertically observes a portion of it (see Figure 3a). Therefore,
the pixel subset WD contains (about 10%) right border pixels that represent the white
diffuser, as shown in Figure 3b. BecauseWD spans all the image rows, we further extract
a small white squareWS that represents a sample of this reference device. Each acquired
image also contains a GretagMacbeth™ ColorChecker that is principally used to assess
the performances that are reached by reflectance estimation methods. The pixel subset
WP representing the ColorChecker white patch is used as a second reference device
by the double white diffuser (dwd) method [16] that we have adapted to our Snapscan
acquisitions, as described in Appendix A.

Although the vignetting effect only depends on the intrinsic camera properties, this
method corrects it in each acquired image. In Section 4.1, we propose performing this
correction by the analysis of the white diffuser image I(B)[WD]. Subsequently, we present
state-of-the art estimation reflectance methods that only require one reference device in the
scene, but assume that the illumination is constant during the frame acquisition. We finally
propose a single-reference method to estimate reflectance in the case of varying illumination.
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Figure 3. (a) The acquisition setup with the camera mounted on its top. (b) Channel of a radiance
image with the ColorChecker and a white diffuser along its right border. Pixel subsetsWD,WS ,
andWP are displayed in red, green, and cyan, respectively.

4.1. Vignetting Correction

The dwd method acquires a full-field white diffuser image before each scene image
acquisition in order to correct the vignetting effect [16]. However, this procedure can
be cumbersome, since it requires an external intervention in order to place/remove the
full-field white diffuser. Other methods that are presented in the following only require
correcting it only once. Because we consider that vignetting only depends on the intrinsic
geometric properties of the camera, we propose correcting it thanks to the analysis of a
single full-field white diffuser image I(B)[WD] acquired in a laboratory under controlled
illumination conditions.

The vignetting effect refers to a loss in the intensity values from the image center
to its borders due to the geometry of the sensor optics. To highlight how the vignetting
effect would affect radiance measurements, let us rewrite Equation (9) under the Dirac SSF
assumption as:

Ib
p = τ · Etb

p
(λb) · Rp(λ

b) · Ap(λ
b). (17)

In order to compensate for the spatial variation of Ap(λb), we compute a correction
factor at p, because it requires no knowledge regarding the optical device behavior [19].
Being deduced from the full-field white diffuser image I(B)[WD], the correction factor is
channel-wise and pixel-wise computed as:

Cb
p =

Ib[WD]

Ib
p[WD]

, (18)

where Ib[WD] is the median value of the m pixels (m = 11 in our experiments) with
the highest values over Ib

p[WD], which discards saturated or defective pixel values. The
correction factors are stored in a B-channel multispectral image, denoted as C.

Because C is deduced from a single white diffuser image, it would be corrupted by
noise (even after thermal noise removal during the frame acquisitions). Thus, we propose
to directly denoise C by convolving each of its channels Cb with an 11× 11 averaging
filterH:

C̃b = H ∗ Cb. (19)
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The vignetting effect in the B-channel radiance image I(B) is corrected channel-wise
and pixel-wise using the smoothed correction factors:

Ĩb
p = C̃b

p · Ib
p, (20)

where Ib
p and Ĩb

p are the intensity values before and after vignetting correction. This
procedure should reduce noise while preserving image textures. We assume that the
attenuation is spatially uniform after vignetting correction (i.e., Ap(λb) · C̃b

p = αb ∈ R for
any given channel index b and pixel p), such that each value of the vignetting-free radiance
image is expressed from Equation (17) as:

Ĩb
p = τ · Rp(λ

b) · Etb
p
(λb) · αb. (21)

4.2. Reflectance Estimation with One Reference Device under Constant Illumination

The illumination Etb
p
(λb) that is associated to p can be determined using the radiance

measured at a white diffuser pixel pWD ∈ WD. To determine illumination thanks to a
single white diffuser as reference device, the methods in the literature often assume that
illumination is constant, i.e., Etb

p
(λb) = Etb

pWD
(λb) = E(λb). Equation (21) then becomes

Ĩb
p = τ · Rp(λb) · E(λb) · αb and, specifically, Ĩb

pWD
= τ · ρwd · E(λb) · αb, since the white

diffuser has a homogeneous diffuse reflection RpWD (λ
b) = ρwd (95% in our case). The

reflectance at p is then deduced from Ĩb
p and Ĩb

pWD
as:

Rp(λ
b) = ρwd ·

Ĩb
p

Ĩb
pWD

. (22)

To be robust against spatial noise, the white-average (wa) method [2,20] averages all
of the values over the white diffuser pixel subsetWS (see Figure 3b) and estimates the
reflectance at each image pixel as:

R̂b
wa,p = ρwd ·

Ĩb
p

1
|WS| ∑s∈WS Ĩb

s

, (23)

where | · | is the set cardinal.
Similarly, the max-spectral (ms) method [15] assumes that the pixel with maximum

value within each channel can be considered to be a white diffuser pixel for estimating the
illumination. While ignoring the diffuse reflection factor, reflectance is estimated at each
pixel in each channel by the ms method, as:

R̂b
ms,p =

Ĩb
p

maxs∈X Ĩb
s

, (24)

where X contains all of the image pixels, exceptWD, and those of the ColorChecker.
The wa and ms-based B-channel reflectance images undergo spectral correction and

negative value removal (see Equations (15) and (16)) to provide the final K-channel re-

flectance images R̂(K)
wa and R̂(K)

ms .

4.3. Reflectance Estimation with One Reference Device under Varying Illumination

In varying illumination conditions, the Snapscan acquires each row at a given time,
hence under a specific illumination (see Section 2.4). Hence, reflectance can no longer be
estimated, as in Equation (14). Instead, we propose determining the illumination that is
associated to each row of the vignetting-free image Ĩ(B) from the white diffuser pixel set



Sensors 2021, 21, 3601 11 of 23

WD [21]. The underlying assumption is that illumination is spatially uniform over each
row at both the white diffuser and scene pixels (that may be not verified in the case of
shadows).

Based on this row uniformity assumption for illumination, we estimate reflectance
from Ĩ(B) in a row-wise manner, as follows. At pixel p with spatial coordinates xp and yp,
Equation (21) can be rewritten as:

Rp(λ
b) =

Ĩb
p

τ · Etb
yp
(λb) · αb . (25)

To determine the illumination Etb
yp
(λb) that is associated to the row of p for channel

index b, we use a white diffuser pixel rWD ∈ WD located on the same row as p. At rWD, the
reflectance is equal to the white diffuser reflection factor ρwd, and Equation (21) provides
the vignetting-free radiance as:

Ĩb
rWD

= τ · ρwd · Etb
rWD

(λb) · αb. (26)

Because p and rWD are located on the same row, tb
yp = tb

rWD
and Etb

yp
(λb) = Etb

rWD
(λb)

according to the assumption regarding the spatial uniformity over each row. Therefore,
Equation (26) can be rewritten as:

Etb
yp
(λb) =

Ĩb
rWD

τ · ρwd · αb , (27)

which can be considered to be an estimation of the illumination that is associated to pixel p.
For robustness sake, we propose computing it from the median value Ĩb

WD,yp of the m
highest pixel values that represent the white diffuser subsetWD in yp, rather than from
a single value Ĩb

rWD
. Plugging Equation (27) in (25) yields our row-wise (rw) reflectance

estimation at pixel p for channel index b:

R̂b
rw,p = ρwd ·

Ĩb
p

Ĩb
WD,yp

. (28)

In practice, setting m = 11 pixels is a good compromise for accurately estimating the
illumination for each row and each channel.

5. Experiments about Outdoor Reflectance Estimation

We now present the experimental setup and metrics that were used to objectively
evaluate the estimated reflectance. The accuracy results are obtained and discussed for the
previously described estimation methods as well as for the extra training-based method
described in the present section.

5.1. Experimental Setup

An acquisition campaign that was conducted in a greenhouse under skylight (see
Figure 4a) provided 109 radiance images of 2048× 2048 pixels × 192 channels of 10-bit
depth. Among the targeted plants are crops (e.g., beet) and weeds (e.g., thistle and goose-
foot). The images were acquired at different dates of May and June 2019, and different day
times (see Figure 4b). Figures 6a and 7a show a RGB rendering of two of them with the
D65 illuminant.
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Number of acquisitions

D
ay

Learning

Test

Reflectance
evaluation

(a) (b)

Figure 4. (a) Our experimental site and apparatus for vegetation image acquisitions. (b) The acquisition dates and times of
the 109 images that were provided by our 2019 acquisition campaign. The text along each bar gives the acquisition time
range and a coarse estimation of global solar irradiance (W·m−2) at the median acquisition time in parentheses [22]. The
images used to assess supervised beet (crop) and weed detection/identification (see Section 6) are shown in red and green,
other images in blue. All of the images are used to assess reflectance estimation quality. Series are stacked for readability
and their order is not meaningful in regards to any acquisition time order.

All of the images contain a GretagMacbeth™ ColorChecker that is composed of
24 patches. From I(B)[WD] and a radiance image I(B)[CC] of our ColorChecker acquired in
a laboratory under controlled illumination, we estimate the K-channel reference reflectance

image R̂(K)
ref [CC] of the ColorChecker according to Equations (14)–(16). From R̂(K)

ref [CC], we
compute the K-dimensional reflectance vector (see Figure 5b,c) of each patch Pj as:

R̂k
ref,Pj

[CC] =
1
|Pj|∑p∈Pj

R̂k
ref,p[CC], (29)

where |Pj| is the number of pixels that characterize the considered patch.
Among the 24 color patches of the ColorChecker chart, we use a learning subset P l

of 12 patches for the learning procedure and the remaining 12 test patches P t for testing
the quality of reflectance estimation (see Figure 5). The learning patches of P l are selected
using an exhaustive search.

Among the 2,704,156 tested combinations, we retain the one that provides the lowest
(mean absolute) reflectance estimation error (see Section 5.4).

The test subset P t is used to assess the performances that are reached by reflectance
estimation methods, and the learning one P l is fed into a training-based reflectance estima-
tion method, as described in the following.

5.2. Training-Based Reflectance Estimation

The linear Wiener (wn) estimation technique can be applied to estimate reflectance
thanks to a learning procedure [23]. It is based on a matrix G that transforms radiance
spectra into reflectance. From any radiance image I(B) in the database, we compute the
spectrally-corrected vignetting-free radiance image Ĩ(K) while using Equations (15) and (20),
and then estimate the K-channel reflectance image as:

R̂(K)
wn,p = G · Ĩ(K)p . (30)
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To compute G, we use the spectra of the ColorChecker learning patches (P l subset)
that are represented in each of our images. The estimation matrix G that is associated to
each input radiance image is determined as:

G = Tre f · Tᵀ
rad

(
Trad · Tᵀ

rad

)−1
, (31)

where Tre f and Trad are the K× 12 matrices that are formed by horizontally stacking the

centered and transposed reference reflectance vectors (from R̂(K)
ref [CC]) and radiance vectors

(from the current image Ĩ(K)) of the learning patches, and ᵀ denotes the transpose.

5.3. Evaluation Metrics

To evaluate the accuracy of reflectance estimation, we use the patches of the Col-

orChecker test subset P t (see Figure 5). Let R̂(K)
∗,P t

j
, ∗ ∈ {rw, wa, ms, dwd, wn} denote the

reflectance image that is estimated for patch P t
j ∈ P t by either the proposed rw method

(see Equation (28)) or the four implemented state-of-art methods (see Equations (23)–(30)).

2423222119

1716151413

121110987

6541 2

20

18

P l Pt

(a) ColorChecker with learning and test patch sets.
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e
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l j
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(12)
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(16)
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(16)
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(18)
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(21)

Blue− sky
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e
f
,P
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(22)
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Purple− Blue
(8)

Dark− skin
(1)

(b) Reflectance spectra of learning patches. (c) Reflectance spectra of test patches.

Figure 5. (a) ColorChecker patch numbers and (b,c) reference reflectance spectra.

This vector is compared to the reference reflectance R̂(K)
ref,P t

j
[CC] of the same patch

computed according to Equation (29). The spectra of the ColorChecker patches should be
similar (and ideally superposed) to their laboratory counterparts when outdoor reflectance
is well estimated.

We objectively assess each estimated reflectance image thanks to the mean absolute
error (MAE) and angular error ∆θ of each test patch P t

j ∈ P t given by:

MAE(R̂(K)
ref,P t

j
[CC], R̂(K)

∗,P t
j
) =

1
K

K

∑
k=1

∣∣∣∣R̂k
ref,P t

j
[CC]− R̂k

∗,P t
j

∣∣∣∣, (32)
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and:

∆θ(R̂(K)
ref,P t

j
[CC], R̂(K)

∗,P t
j
) = arccos


〈

R̂k
ref,P t

j
[CC], R̂k

∗,P t
j

〉
∥∥∥∥R̂(K)

ref,P t
j
[CC]

∥∥∥∥
2
·
∥∥∥∥R̂(K)
∗,P t

j

∥∥∥∥
2

, (33)

where ‖·‖2 is the Euclidean norm. When ∆θ between two vectors (spectra in our case) is
equal to zero, it means that these two vectors are collinear.

5.4. Results

We compute the mean absolute error MAE∗ and angular error ∆θ∗ averaged over all
of the test patches of all reflectance images estimated from the whole database to obtain
aggregated metrics. Table 1 presents the results for the five tested methods.

Table 1. The reflectance estimation errors. Bold shows the best result and italics the second best one.

Method
Illumination-Based Training-Based

rw wa ms dwd wn

MAE∗(%) 4.315 5.883 14.670 3.236 3.628
∆θ∗ (rad) 0.046 0.046 0.309 0.063 0.063

The MAE and ∆θ are complementary metrics and they, respectively, highlight two
important properties: the scale and shape of the estimated spectra. Indeed, while MAE is
mainly sensitive to the scale of the estimated spectra, ∆θ especially focuses on the shape
of the spectra, because it is a scale-insensitive measure. Consequently, there might be no
correlation between the results that were obtained by the MAE measure and those obtained
by ∆θ.

No method provides the best results according to the two metrics, as we can see from
Table 1. Indeed, the wn and dwd methods provide better results than rw and wa according
to the MAE, but the rw and wa methods provide better results in terms of ∆θ.

The ms method provides the worst results, because it only analyzes pixels of back-
ground and vegetation that strongly absorb the incident light in the visible domain. Hence,
the biased illumination estimation in this domain affects the performance of ms method.
It is worthwhile to mention that the wn method performance might also be biased, since
it uses some of the ColorChecker patches as training references (to build estimation ma-
trix G), while the other patches of the same chart are used to evaluate the reflectance
estimation quality.

Among illumination-based methods that analyze a single reference device, rw pro-
vides similar results to wa in terms of ∆θ, as well as better MAE results. This shows that
taking account of the illumination variation during the frame acquisitions improves the
reflectance estimation quality.

6. Multispectral Image Segmentation

Now, we evaluate the contribution of our proposed rw-based reflectance estimation
method for supervised crop/weed detection and identification. For this experiment, we
focus on the beet (crop) that must be distinguished from thistle and goose-foot (weeds).
First, vegetation pixels are detected and ground truth (labels) regarding vegetation pixels
is provided by an expert in agronomy (Section 6.1). In order to evaluate the robustness
of each considered feature against illumination conditions, we use a data set composed
of 37 radiance (13 single-species and 24 mixed) images that we split into a learning and
test set, denoted as S learn (23 images) and S test (14 images) (Section 6.2). The illumination
conditions are various in the two sets and S test mostly includes images that are acquired on
different days from those of S learn (see Figure 4). Note that, as a consequence, vegetation
in the learning and test image sets may not be exactly at the same growth stages. We first
compare the discrimination power of reflectance features provided by our rw method against
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radiance features to assess each reflectance estimation method for crop/weed identification
and detection. Subsequently, we compare it with reflectance features that are estimated using
each of the four considered state-of-the-art methods (wa, ms, wn, and dwd) (Sections 6.3–6.5).

6.1. Vegetation Pixel Extraction and Labelling

Only vegetation pixels are analyzed because we aim to detect/identify crops and
weeds. They are distinguished from the background (white diffuser, ColorChecker, and
soil pixels) using the normalized difference vegetation index (NDVI) [24]. We compute the

NDVI values from the rw-based reflectance image R̂(K)
rw , since the rw method considers

illumination variation, but the images provided by any other reflectance estimation method
should yield similar vegetation pixel detection results. We consider p to be a vegetation
pixel if its NVDI value is greater than a threshold γ:

R̂139
rw,p − R̂67

rw,p

R̂139
rw,p + R̂67

rw,p
≥ γ, (34)

with the Snapscan “virtual” band centers λ67 = 678.2 nm and λ139 = 899.2 nm. Set-
ting γ = 0.45 experimentally provides a good compromise between under- and over-
segmentation of vegetation pixels. Noisy vegetation pixels are filtered out as much as
possible by morphological opening. The vegetation pixels are then manually labelled by an
expert in agronomy to build the segmentation ground truth for each multispectral image.

6.2. Learning and Test Vegetation Pixels

From the learning set S learn, we randomly extract N learning pixels per class. For
a given class Ci, i = [0, . . . , NC − 1], the number of extracted learning pixels per image
depends on the number of images where class Ci is represented in S learn (occurrences).
Among the 23 learning images, the beet (crop) class appears in 17 images, thistle in nine
images, and goosefoot in 12 images.

In the test set S test, beet, thistle, and goosefoot are represented, respectively, in 12, 10,
and four images. For the weed detection task, we extract 2N learning pixels, half for crop
and half for weed class. Because we merge thistle and goosefoot prototype pixels to build
a single weed class, we extract N/2 learning pixels for thistle and N/2 for goosefoot.

Each pixel is characterized by a K-dimensional (K = 141) feature vector of reflectance
(or radiance) values. The reflectance/radiance images are averaged channel-wise over
a 5 × 5 pixel window to reduce noise and within-class variability. Table 2 shows the
number of learning and test pixels per class for weed detection and beet/thistle/goosefoot
identification. All of the available pixels in S test are used to assess the generalization power
of a supervised classifier.

Table 2. The number of learning and test pixels for crop/weed detection (left sub-column) and
beet/thistle/goosefoot identification (right sub-column) (N = 400, 000 pixels in this experiment).

S learn (23 Images) S test (14 Images)

Class Ci #Occurrences # Learning Pixels #Occurrences #Test Pixels
per Occurrence per Class

Crop Beet 17 N/17 12 5,714,326

Weed Thistle
Goosefoot

9
12

N/9
N/12

(N/2)/9
(N/2)/12

10
4 6,744,633 5,461,013

1,283,620

6.3. Evaluation Metrics

The classical accuracy score can be a misleading measure to evaluate a classifier
performance when the number of test pixels that are associated to each class is highly
skewed (like in Table 2) [25] (p. 114). A classification model that predicts the majority
class for all test pixels reaches a high classification accuracy. However, this model can also
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be considered as weak when misclassifying pixels of the minority classes is worse than
missing pixels from the majority classes. In order to overcome this so-called “accuracy
paradox”, the performance of a classification model for imbalanced datasets should be
summarized with appropriate metrics, such as precision/recall curve [25] (pp. 53–56,
114). Although some metrics may be more meaningful and easy to interpret, there is no
consensus in the literature for choosing a single optimal metric. In our case, we want to
correctly detect weed pixels without over-detection, because this would imply spraying
crops with herbicides. Therefore, the performance of our classification model on both crop
and weed detection/identification should be comparable. For this purpose, we use the
per-class accuracy score and the weighted overall accuracy score. We also compute the
F1-score that combines the precision and recall measures. These three measures should
summarize the classification performance of imbalanced sets of test pixels well.

Let us denote the true test pixel labels as y and the set of predicted labels as ŷ. The
per-class accuracy score for class Ci, i = [0, . . . , NC − 1], is:

AccuracyCi
=

1
|yCi |

|yCi |−1

∑
j=0

δ(ŷCij = yCij), (35)

where yCij and ŷCij are the true and predicted labels for the j-th test pixel of class Ci,
respectively, and |yCi | is the number of test pixels of class Ci.

The weighted overall accuracy for binary and multiclass classifications is defined as:

Accuracy =
∑NC−1

i=0 ωCi ·AccuracyCi

∑NC−1
i=0 ωCi

, (36)

where ωCi = 1/|yCi | is the weight that is associated to class Ci and computed as the inverse
of its size, so as to handle imbalanced classes.

Because the F1-score privileges the classification of true positives pixels (weed pixels
in our case), we compute the overall F1-score as the population-weighted F1-score, so that
the performances over all classes are considered:

F1 =
∑NC−1

i=0 ωCi · F1Ci

∑NC−1
i=0 ωCi

. (37)

The F1-score of class Ci is computed as:

F1Ci = 2 · PrecisionCi · RecallCi

PrecisionCi + RecallCi

, (38)

where

PrecisionCi =
∑
|yCi |−1
j=0 δ(ŷCij = yCij)

|ŷCi |
, (39)

and

RecallCi =
∑
|yCi |−1
j=0 δ(ŷCij = yCij)

|yCi |
. (40)

6.4. Classification Results

The parametric LightGBM (LGBM) and non-parametric Quadratic Discriminant Anal-
ysis (QDA) classifiers are applied for supervised weed detection and identification prob-
lems. The choice of these two non-linear classifiers is motivated by their processing time
during the learning and prediction procedures and their fundamentally different decision
rules. Indeed, LGBM is a parametric tree-based classifier that requires a learning procedure
to model a complex classification rule, whereas QDA is a simple non-parametric classifier
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that is based on Bayes’ theorem to perform predictions. For LGBM, we retain the default
parameter values (learning rate of 0.05, 150 leaves) and use the log loss function as the
learning evaluation metric. LGBM uses a histogram-based algorithm to bucket the features
into discrete bins, which drastically reduces the memory and time consumption. The
number of bins is set to 255 and the number of boosting operations to 100. Additionally,
the feature fraction and bagging fraction parameters are set to 0.8 to increase LGBM speed
and avoid over-fitting.

Table 3 shows the classification results that were obtained with LGBM and QDA
classifiers for each considered feature. Figures 6 and 7 show the color-coded vegetation
pixel classification of two test images using the LGBM classifier in weed detection and
identification tasks, respectively.

Let us first compare the classification performance of reflectance against radiance
features for the weed detection task. From the results that are given in Table 3, we can
see that reflectance features estimated by illumination-based methods (rw, wa, ms, and
dwd) provide better classification results than radiance features in terms of the average F1
and accuracy scores, whatever the classifier. The worst classification results are obtained
with reflectance features that are estimated using the wn method. Training-based methods,
such as wn, can provide an accurate reflectance estimation of scene objects whose optical
properties are close to those of the training samples. In our case, the optical properties of
vegetation are very different from that of the training ColorChecker patches. Thus, wn pro-
vides inaccurate reflectance estimations at vegetation pixels, which affects its classification
performance. Figure 6 illustrates the satisfying Accuracy and F1 scores that are obtained
thanks to the analysis of illumination-based reflectance features by LGBM. Indeed, this
figure shows that weed is globally well detected by these methods.

For weed identification, the classification performances of all the features are degraded,
because they provide weak performances on the goosefoot class (see Figure 7). This lack
of generalization might be due to the high within-class dispersion (since we consider
vegetation at various growth stages) and/or the physiological vegetation changes.

Table 3. Crop/weed detection and beet/thistle/goosefoot identification results with the QDA and
LGBM classifiers. Bold shows best result and italics second best one.

Radiance Reflectance Features

Classifier Feature Illumination-Based Training-Based

rw wa ms dwd wn

Crop/weed
detection

Accuracy (%)
QDA 71.6 76.0 73.3 79.2 76.9 48.1

LGBM 77.0 86.1 84.7 81.8 83.4 71.0

F1 (%)
QDA 67.9 76.0 73.0 77.8 76.5 48.0

LGBM 76.2 85.4 84.4 81.6 83.1 71.3

Beet/thistle/goosefoot
identification

Accuracy (%)
QDA 34.4 45.1 41.8 26.0 37.3 47.8

LGBM 39.5 49.7 50.3 46.5 46.0 34.0

F1 (%)
QDA 34.3 41.7 40.1 25.4 33.7 27.0

LGBM 39.7 47.1 44.4 41.4 42.5 32.9
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Crop (Beet) Weed (Thistle)

(a) RGB rendering (b) Ground truth

83.8% 89.1% 92.8% 92.6%

(c) radiance (F1 = 83.5%, Accuracy = 87.3%) (d) rw (F1 = 91.3%, Accuracy = 92.7%)

85.0% 89.1% 77.4% 91.2%

(e) dwd (F1 = 84.3%, Accuracy = 87.7%) (f) wa (F1 = 80.3%, Accuracy = 86.4%)

99.3% 20.6% 87.8% 67.7%

(g) ms (F1 = 50.5%, Accuracy = 47.6%) (h) wn (F1 = 76.0%, Accuracy = 74.6%)

Figure 6. Crop/weed detection. Beet is displayed as green and weed as red. The per-class accuracy
score is displayed near each colored circle (class label) for each considered feature.
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Beet Thistle Goose-foot

(a) RGB rendering (b) Ground truth

92.7% 86.2% 2.4% 87.2% 60.5% 27.6%

(c) radiance (F1 = 35.1%, Accuracy = 35.5%) (d) rw (F1 = 42.9%, Accuracy = 43.0%)

86.2% 52.3% 5.6% 90.1% 58.6% 19.9%

(e) dwd (F1 = 29.6%, Accuracy = 26.9%) (f) wa (F1 = 39.9%, Accuracy = 37.9%)

97.3% 10.4% 13.0% 95.1% 49.3% 14.5%

(g) ms (F1 = 19.8%, Accuracy = 20.2%) (h) wn (F1 = 34.6%, Accuracy = 32.3%)

Figure 7. Beet/thistle/goosefoot identification. Beet is displayed as teal, thistle as blue, and goosefoot
as cyan. The per-class accuracy score is displayed near each colored circle (class label) for each
considered feature.

Let us now compare the classification performances of the reflectance features. The
best overall classification results are obtained by our proposed rw method that performs
well with both classifiers and reaches the highest average F1 and accuracy scores with
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LGBM for weed detection (85.4% and 86.1%, respectively). The wa method provides good
classification results, better than those that were obtained by dwd, although the latter
accounts for illumination variation during the frame acquisitions. The computation of
illumination scaling factors to compensate for illumination variation may explain this poor
performance, as well as the loss of spectral information (saturated reflectance values) in the
near infra-red domain that is caused by illumination normalization (see Equation (A4)).

6.5. Experimental Conclusion

The experiments with this outdoor image database allow us to compare the perfor-
mances of different reflectance features according to the estimation quality and pixel classi-
fication. The evaluation results are summarized by separately studying weed detection and
identification. Tables 4 and 5 show the rank Rank�,∗ obtained by each reflectance estimation
method ∗ according to each evaluation criterion � used in Tables 1 and 3. The method with
the lowest total rank is considered to be the best one, since it satisfies several criteria.

Table 4. The ranking of reflectance estimation methods for crop/weed detection. Bold shows best
result and italics second best one.

Evaluation Criterion
Method

rw wa ms dwd wn

MAE∗ (%) 3 4 5 1 2
∆θ∗ (rad) 1 1 5 3 3

QDA 3 4 1 2 5
Accuracy∗ LGBM 1 2 4 3 5

QDA 3 4 1 2 5Crop/weed detection
F1∗ LGBM 1 2 4 3 5

∑6
�=1 Rank�,∗ 12 17 20 14 25

Table 5. The ranking of reflectance estimation methods for crop/weed identification. Bold shows
best result and italics second best one.

Evaluation Criterion
Method

rw wa ms dwd wn

MAE∗ (%) 3 4 5 1 2
∆θ∗ (rad) 1 1 5 3 3

QDA 2 3 5 4 1
Accuracy∗ LGBM 2 1 3 4 5

QDA 1 2 5 3 4
Beet/thistle/goosefoot

identification
F1∗ LGBM 1 2 4 3 5

∑6
�=1 Rank�,∗ 10 13 27 18 20

The total ranks of ms and wn methods are the highest ones, because they provide
the worst results for either estimation quality (ms) or classification performance (wn). On
the one hand, the dwd method that uses two reference devices to cope with illumination
variation provides the second best total rank for weed detection (see Table 4). On the
other hand, the wa method that uses one reference device, but assumes that illumination
is constant, gives the second best total rank for weed identification (see Table 5). Our rw
method, which row-wise analyzes one single reference device in order to take account of
illumination variation, reaches the best total ranks for both weed detection and identifica-
tion problems. These experiments suggest that rw-based reflectance features are relevant
for weed identification under variable illumination conditions. Their performance should
also be confirmed with other crop species, such as bean and wheat.
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7. Conclusions

This paper first proposes an original image formation model of linescan multispectral
cameras, like the Snapscan. It shows how illumination variation during the multispectral
image acquisition by this device impacts the measured radiance that is provided by a
Lambertian surface element. Our model is versatile and it can be adapted to model the
outdoor image acquisition of several multispectral cameras, such as the HySpex VNIR-
1800 [26] or the V-EOS Bragg-grating camera used in [16]. From this model, we propose a
reflectance estimation method that copes with illumination variation. Because such varying
conditions may affect the reflectance estimation quality, we estimate illumination at the
frame level using a row-wise (rw) approach. We experimentally show that the rw method
is more robust against illumination variation than the state-of-the-art methods. We also
show that rw-based features are more discriminant to target outdoor supervised weed
detection and identification, and they provide the best classification results. The accuracy
of weed recognition systems and their robustness against illumination can be improved
using reflectance features. This allows for precision spraying techniques to be considered
in order to get rid of weeds using fewer quantities of chemicals. This study enables to make
a step towards sustainable agriculture. As future work, segmentation will be extended
to other plant species (such as wheat and bean) and growth stages. Spectral feature
selection and texture features extraction will also be studied to improve the crop/weed
identification performance.
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Appendix A. Implementation of the Double White-Diffuser Method (dwd)

The double white diffuser (dwd) method [16] estimates reflectance thanks to three
successive steps, that are adapted to our image contents as follows:

• Following Equation (14) but neglecting integration times and diffuse reflection factor,
a coarse reflectance estimation is first computed as:

R̃b
p =

Ib
p

Ib
p[WD]

. (A1)

Like in Section 3.1, this step aims to compensate the vignetting effect by a pixel-wise
division of values Ib

p[WD] associated to the full-field white diffuser and Ib
p associated

to the scene. Note that a full-field white diffuser image I(B)[WD] is acquired before
each image acquisition.

• Because the illumination associated to I(B)[WD] is different from that of the scene
image I(B), R̃ is rescaled row-wise at each pixel p as:

R̃′bp = R̃b
p · αb

yp , (A2)

where the illumination scaling factor αb
yp is computed at the row yp of p as:

αb
yp =

Ib
WD,yp [WD]

Ib
WD,yp

. (A3)
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Each term in this equation is the average value over the row of p within the white
diffuser subsetWD in channel Ib of either the full-field white diffuser image or the
scene image.

• Finally, the values of R̃′ are normalized channel-wise to provide the dwd reflectance
estimation as:

R̂b
dwd,p = R̃′bp ·

ρb
WP

βb
WP

, (A4)

where βb
WP is the average value over the white patch subsetWP in channel R̃′b, and

ρb
WD is the diffuse reflection factor of the white patch for the spectral band centered at

λb measured by a spectroradiometer in laboratory.

The B-channel reflectance image R̂(B)
dwd undergoes spectral correction and negative

value removal (see Equations (15) and (16)) to provide the final K-channel reflectance

image R̂(K)
dwd.
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