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Abstract: EEG signals are widely used to estimate brain circuits associated with specific tasks and 
cognitive processes. The testing of connectivity estimators is still an open issue because of the lack 
of a ground-truth in real data. Existing solutions such as the generation of simulated data based on 
a manually imposed connectivity pattern or mass oscillators can model only a few real cases with 
limited number of signals and spectral properties that do not reflect those of real brain activity. 
Furthermore, the generation of time series reproducing non-ideal and non-stationary ground-truth 
models is still missing. In this work, we present the SEED-G toolbox for the generation of pseudo-
EEG data with imposed connectivity patterns, overcoming the existing limitations and enabling 
control of several parameters for data simulation according to the user’s needs. We first described 
the toolbox including guidelines for its correct use and then we tested its performances showing 
how, in a wide range of conditions, datasets composed by up to 60 time series were successfully 
generated in less than 5 s and with spectral features similar to real data. Then, SEED-G is employed 
for studying the effect of inter-trial variability Partial Directed Coherence (PDC) estimates, confirm-
ing its robustness. 

Keywords: simulated neuro-electrical data; EEG; ground-truth networks; brain connectivity; mul-
tivariate autoregressive models; partial directed coherence 
 

1. Introduction 
In the last decade, the interest in brain networks has grown in the world of neurosci-

ence [1–5]. Connectivity estimators are powerful tools to determine which brain areas are 
mainly involved in the execution of motor and cognitive tasks, and how they communi-
cate to generate the complex brain networks underlying specific cerebral functions. Sev-
eral connectivity estimators with different features have been developed to assess the ex-
istence, the intensity and the direction of the statistical connections linking two or more 
time series. Some of them are highly versatile as they can be applied to signals acquired 
through different techniques such as functional magnetic resonance imaging (fMRI), elec-
troencephalography (EEG) and magnetoencephalography (MEG) [6,7]. The ensemble of 
connectivity estimators is a manifold scenario where the selection of the appropriate al-
gorithm on the basis of the type and quality of the data and of the research objectives is 
not trivial. Several studies previously compared the performances of existing algorithms 
under different experimental conditions with the aim to optimize this choice [8–13]. Ad-
ditionally, new algorithms and adaptations of existing ones should always be validated 
and compared to previous methods in order to define guidelines for their best use. In both 
cases, the quality assessment of the connectivity estimates requires time series with a 
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known underlying connectivity pattern (ground-truth network), which can be used as a 
test bench. 

Only a few physiological patterns, uncovered by widely replicated findings and an-
atomical evidence can be used for the validation of connectivity methods on real data. Mill 
et al. employed an associative memory task to elicit and isolate connectivity from visual 
to auditory areas and in the opposite direction to validate functional connectivity in MEG 
and fMRI. In this example, the ground-truth was hypothesized on the basis of known an-
atomical interconnectivity in animals [14], similarly to what was done in [15]. Although 
this approach allowed for testing of different connectivity estimators in a real context, it 
comes with several limitations such as the lack of information about the intensity of the 
information flow, which does not allow for assessing the accuracy in the magnitude esti-
mate, and restrictions in terms of model structure and dimension. 

Another reliable solution for the quality assessment of connectivity estimates and 
validation is to simulate datasets with a known connectivity pattern (ground-truth). 
Benchmark datasets arise from two main steps, the ground-truth connectivity pattern de-
sign, and the signal generation. This process still represents a weak point in the testing of 
connectivity methods as only a limited set of realistic conditions has been modeled. One 
critical aspect of the data generation lies in the definition of several parameters of the 
ground-truth network, such as the number of nodes (simulated electrodes/brain regions), 
network density (number of connections) and network global properties that can be cho-
sen. Furthermore, the construction of the signal should preserve the spectral properties of 
the real data. 

The generation of stationary and time-varying ground-truth networks has been pre-
viously proposed and successfully applied to compare different methods, but always with 
specific limitations. One proposed solution used time series generated from imposed lin-
ear toy models whose equations are designed so that the first signal behaves as an oscil-
lator driving the other structures [16,17]. Another attempt constructed signals from a mul-
tivariate autoregressive (MVAR) model used as generator filter where white noise is given 
as input and the model coefficients are manually imposed by the experimenter [18–20]. 
Neither of these approaches allow for the generation of realistic signals because their spec-
tral properties do not replicate the ones observed on real neuroelectrical time series. In 
order to generate more realistic time series, a cascade approach has been proposed where 
a real EEG signal is selected as the main source and all of the other signals are iteratively 
obtained from it according to a ground-truth connectivity pattern [2,5,12,20,21]. The main 
limitation of the cascade method is that it cannot be employed to generate datasets with a 
high number of signals since it leads to an incontrollable increase of the signals’ ampli-
tude. Wang et al. compared several connectivity methods applied to EEG time series: a 
convolution-based neural mass model along with another three models to take into ac-
count the fact that various algorithms for functional connectivity are differently sensitive 
to non-linearities in the data [11,22]. The generative models in question are linear systems, 
non-linear systems with linear coupling, and non-linear systems with non-linear coupling, 
while the considered connectivity models are all possible topologies for only five nodes 
and five edges. More information about the optimal use of different estimators in different 
conditions could be gained including bigger and more flexible models. 

Some free packages for connectivity estimation that have been released include func-
tions for the generation of simulated data for testing purposes. The Multivariate Granger 
Causality (MVGC) toolbox developed by Barnett and Seth simulated multi-trial data from 
normally distributed residuals for given VAR parameters [23,24]. More recently, the 
toolbox by Haufe and Ewald proposed the generation of pseudo-EEG (and MEG) data 
with an imposed directed interaction in which the time courses of two distinct sources at 
cortical level are modeled using bivariate linear autoregressive models [25]. Although 
those tools played an important role in the investigation of specific aspects of brain con-
nectivity analysis pipelines such as source reconstruction algorithms and connectivity ma-
trices validation [8], they still present limitations. The MVGC toolbox permits the 
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generation of datasets with a higher number of signals compared to those previously 
listed; however, the generated time series do not replicate the typical EEG spectral prop-
erties. On the other hand, the toolbox proposed by Haufe and Ewald can simulate pseudo-
EEG data including EEG-like spectral properties and spurious effects created by volume 
conduction, but only between one target and one driver. The main goal of their study was 
to provide a benchmark limited to a minimal realistic case of brain interaction that should 
be extended to model more complex cases, which is one of the aims of the present manu-
script. 

Another interesting aspect to model in the connectivity ground-truth is the non-sta-
tionarity of the functional links between brain regions. In order to test the increasingly 
popular dynamic connectivity algorithms, ground-truth connectivity models must be ca-
pable of representing non-stationarity. Previous studies either employed a small model 
(less than five nodes) with some time-dependent connections modeled as a step function 
[13,20] or, in one specific case [21], a more complex eight-node time-varying model was 
built to simulate the reorienting system of the human brain theorized in [26]. 

In general, what is currently lacking in the available toolboxes/approaches to simu-
late pseudo-EEG signals is the ability to generate datasets (i) with a given dimension, able 
to match high-density EEG configurations, (ii) with the spectral properties of the real sig-
nals, (iii) organized as a long single-trial or as a multi-trial dataset, and (iv) including non-
idealities, like artifacts (e.g., eye-blinks) and realistic conditions in which the pattern is 
non-stationary or inconsistent across the trials. 

The main aims of our study were (i) to release a new, free, and easy-to-use toolbox 
called SEED-G (Simulated EEG Data Generator), (ii) to show its capability to overcome 
these limitations and facilitate the quality assessment of connectivity methods in several 
scenarios, and (iii) to test its performances, providing guidelines for potential users and 
future studies. In fact, SEED-G allows for generating realistic simulated datasets with the 
additional functionality of tuning the properties of the time series as well as the features 
of the connectivity model. The enhanced control over several parameters allows SEED-G 
to provide simulated time series molded to the user’s needs and flexible enough to model 
more than one standard experimental condition. The features that can be adjusted include 
the length of the time series (number of samples), the number of trials composing the da-
taset, the signal to noise ratio (SNR), inclusion or not of non-brain artifacts (ocular blink), 
as will be detailed in the following paragraphs. Moreover, this toolbox permits the con-
figuration of several parameters of the imposed connectivity pattern, including the brain 
network dimension (number of nodes), the network density, the temporal dynamic (sta-
tionary or time-varying) and the presence or not of non-idealities (inter-trials variability) 
in order to obtain a ground-truth in many different and not yet investigated experimental 
conditions. 

The manuscript is structured as follows: we begin with a detailed description of the 
SEED-G functionality, followed by an evaluation of the toolbox performances in terms of 
computational time and quality of the generated time series. The second part of the paper 
is devoted to portraying an example of possible application of SEED-G, namely the testing 
of connectivity estimators under non-ideal conditions. 

To this purpose, we used SEED-G toolbox to generate simulated datasets fitting con-
nectivity patterns that vary across trials, with the aim to assess how inter-trial variability 
affects accuracy and consistency of the well-known MVAR-based estimator, Partial Di-
rected Coherence (PDC) [16]. The non-idealities across trials were modeled in two differ-
ent ways, where the connectivity links were altered in value or number, respectively. Pre-
liminary data were published in [10], but the results were limited to 10-node models. We 
propose here a more extensive evaluation of this phenomenon exploiting several more 
experimental conditions simulated using the SEED-G toolbox. 

SEED-G toolbox was developed in MATLAB environment and is publicly available 
at https://github.com/aanzolin/SEED-G-toolbox (accessed on 12 April 2021). 
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2. Toolbox Description 
In the proposed toolbox, the generation of pseudo-EEG data that reproduce well-

known ground-truth networks is performed using multivariate autoregressive (MVAR) 
models as generator filters to provide a benchmark for functional connectivity estimates. 
SEED-G toolbox functionalities include: 
1. The generation of a predefined ground-truth connectivity model with: 

• a selected size (number of signals to be generated); 
• a selected density; 
• parameters randomly assigned within a given range; 
• stationary or time-resolved connectivity values. 

2. The generation of pseudo-EEG time series with: 
• spectral similarity to reference EEG scalp- or source-level data; 
• given length in terms of number of samples; 
• number of trials; 
• predefined SNR; 
• inter-trial variability; 
• presence of ocular artifacts. 
These functionalities and their testing will be described in more detail in the next 

paragraphs, while Appendix A contains information about the corresponding MATLAB 
functions, dependencies and demos. As an overview, Figure 1 synthesizes the simulated 
EEG data generation process, including the definition of the ground-truth and the gener-
ation of the time series. 

 
Figure 1. SEED-G generator framework. Block diagram describing the main steps at the basis of 
the data generator. 
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2.1. Simulated Data Generation 
Ground-truth model generation. If not provided by the user, the toolbox first gener-

ates a ground-truth connectivity model which is then used as matrix of coefficients in the 
MVAR model. Alternatively, the user can provide the model as input. Ground-truth con-
nectivity model consists of a weighted, directed 3D matrix of dimensions equal to ܰ݌ݔܰݔ 
where ܰ is equal to the number of nodes and ݌ is equal to the MVAR model order. The 
matrix is automatically created by the software by imposing the non-null connections 
(whose number can be chosen by the user) equal to a value randomly selected within a 
specific range (chosen by the user). This value is imposed only at one lag among the pos-
sible ݌ lags, randomly selected. The null connections are instead characterized by null 
coefficients at each lag. 

In order to obtain simulated signals that reproduce the spectral properties of brain 
data, the user could include real sources in the model (scalp, cortex, or reconstructed data) 
as AR components on the main diagonal of the ground-truth model. The data simulated 
for this study used real sources extracted from real signals acquired during resting state 
in a healthy subject with sampling rate equal to 200 Hz. In this first phase, the parameters 
to be set are: the number of signals to be generated, the amount of non-null connections 
imposed in the ground-truth network, and the number and type (scalp/cortex) of real 
sources included in the model. The final number of EEG sources included in the model 
depends on the structure of the generated ground-truth network. When nodes in the net-
work are not directly nor indirectly linked to one of the EEG sources (isolated nodes), the 
corresponding signals are replaced with real EEG sources. Thus, the number of sources 
included in the model is equal to the number of sources selected by the user plus the 
number of isolated nodes. 

Time series generation. After the ground-truth network generation, a MVAR-based 
generator filter creates the dataset of time series. The MVAR model uses uncorrelated, 
zero mean innovation noise simulated through a normally distributed pseudorandom 
generator. The covariance of the innovation process is set equal to the identity matrix. To 
obtain signals as realistic as possible, the user can decide to sum to the time series output 
of the MVAR model, i) an additive noise according to a predefined SNR value and ii) a 
vertical ocular component simulating the blink effect (see paragraph below). The user can 
set the following parameters: number of data samples for each realization, number of re-
alizations to be generated and SNR values. Noise-free signals could be generated by set-
ting SNR to infinity value. For each generated time series, a threshold criterion is applied 
to check amplitude of generated time series. If the amplitude of a simulated signal exceeds 
in absolute values the threshold (automatically set to 80μV), the trial is rejected, and its 
generation repeated. 

2.2. Realistic Features Modeling 
Inter-trial variability. In the case of multi-trial dataset, the inter-trial variability typ-

ical of real data can be modeled in the ground-truth. The SEED-G toolbox models two 
kinds of non-idealities across trials: (i) variability of the intensity of existing connections 
hypothesizing that connections values are not consistent across repetitions and (ii) varia-
bility in network density in order to account for the presence of spurious connections in 
some trials. The amplitude of these non-idealities can be regulated by choosing the per-
centage of altered trials, the number of connections to be modified in weight, the entity 
(percentage with respect to original weight) and the direction (increase or decrease with 
respect to the original weight) of the variation, and the number of spurious links added 
to the original model in specific trials. 

Ocular component. Real EEG data are often contaminated by ocular artifacts, espe-
cially when recorded from frontal positions. These kinds of artifacts could affect the per-
formances of connectivity estimators under examination and should be included in the 
time series used as a benchmark. SEED-G can simulate the blink component by adding a 
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real ocular component to the generated time series with a specific amplitude depending 
on the position of the electrodes. More specifically, the weight was extracted from a mask 
obtained correlating an electro-ocular signal (EOG) with the EEG acquired from each sen-
sor of a 60-channel standard net (Figure 2). 

Time-varying networks. SEED-G toolbox permits the generation of stationary or 
time-varying connectivity ground-truths. The generation process is the same, but in the 
dynamic case, a different connectivity model is imposed for each time point. It is possible 
to choose between two kinds of temporal transitions according to either a step or a ramp 
profile. In the step transition, the same ground-truth model is retained for a predefined 
number of samples, after which some of the connections instantly change their weight 
while the others keep the original value. This new pattern holds until the end of the ob-
servation window. In the ramp profile, the same transition happens gradually instead of 
instantaneously. Given a selected transition window, the connections’ weights vary line-
arly within it. The variables set by the user are the percentage of connections varying 
across time, the type of transition, the instant in which a transition starts, the instant in 
which a transition ends (only if the ramp profile is selected), and the magnitude of the 
connectivity weight variations expressed as percentage with respect to the pre-transition 
value. 

Generation of signals at the source level. Depending on the type of real sources used 
for the signal generation, SEED-G can simulate both scalp and cortical data. In the latter 
case, by default, the toolbox uses source data, reconstructed using the software sLORETA 
[27] from a real EEG signal recorded from a healthy subject (64 channels and sampling 
rate equal to 200Hz). Real ECoG data can also be used as sources by the user, if available. 
Additionally, generating data with an imposed pattern at source level and projecting them 
at scalp level allows to take into account the effect of the brain volume conduction on scalp 
signals. The forward model included in the toolbox is the New York Head available on 
the ICBM-NY platform, which includes 231 sensors on the scalp and 75,000 nodes on the 
cortical surface [28]. 

 
Figure 2. Pseudo-EEG data with ocular artifacts. Time series simulated using SEED-G toolbox (pseudo-EEG signals) and 
real ocular blinks (eye-blink) were summed up to obtain a realistic dataset (pseudo-EEG data with blink). The eye-blink 
component was weighted by a correlation coefficient whose value depends on the position of the simulated sensor (Pear-
son’s correlation between real EEG dataset acquired with a standard 60-channel montage, and an EOG channel). Frontal 
electrodes are maximally affected by the presence of the blinks; indeed, the correlation coefficient is equal to 1 for the 
electrode FPz (red portion of the mask). The same coefficient is equal to 0.5 for the sensor FCz, reflecting the fact that more 
central sensors show attenuated ocular components. 
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3. Evaluation of SEED-G Toolbox Performances 
In this section, we proposed a simulation study with the twofold aim of demonstrat-

ing capability and versatility of the toolbox SEED-G and providing guidelines for its op-
timal use in different conditions. For this purpose, we simulated datasets with different 
features, described in more detail in the following sections, and we reported the distribu-
tion of meaningful performance parameters quantifying the time necessary to successfully 
complete the generation of a dataset, the number of failed attempts (especially for models 
with high number of nodes), and the spectral quality of the generated time series. 

3.1. Methods 
We generated simulated datasets by systematically imposing different values of fac-

tors like model dimension, network density and number of real sources, and defined for 
each of them specific performance parameters. Each isolated node was associated to a real 
source (resting EEG signal from a healthy subject with sampling rate equal to 200 Hz) and 
each connection was considered invariant across samples and trials. To increase the relia-
bility of the results, the entire procedure of data generation and performance evaluation 
was repeated 300 times. 

3.1.1. Pseudo-EEG Time Series Generation 
In order to reproduce realistic EEG datasets, we imposed parameters spanning a 

range typical of real experiments: 
• “Model size” is the number of time series composing the dataset. Levels: (5, 10, 19, 

32, 60) nodes, simulating a range between few electrodes and the most commonly 
used extended 10–20 scalp EEG montage. 

• “Network density” is the percentage of non-null coefficients. Levels: (5%, 10%, 20%, 
30%) of the possible connections. 

• “Real sources” are the percentage of real sources included as sources in the model 
with respect to all generated signals. Levels: (20%, 30%, 50%) of the number of the 
generated time series. 

3.1.2. Performance Parameters 
Extra Required Iterations (ERIt). Given that every time a simulated signal exceeds 80 

μV of amplitude it gets discarded, and an extra iteration is required, ERIt is defined as the 
number of rejected simulated datasets, normalized by the maximum number of iterations 
allowed. ERIt is equal to 0% if the dataset is generated without extra iterations and it is 
equal to 100% when the dataset was generated using the maximum number of iterations 
(which is 1000 in this simulation study) and quantifies how easily a dataset was generated 
for a specific combination of parameters. 

Computational Time: time in seconds required for the generation of a complete dataset 
using an Intel Core i5 3.2GHz CPU, 16GB RAM. 

EEG-like Signals (EEGl_S%): percentage of simulated signals showing EEG-like spec-
tral properties. The spectral similarity between pseudo- and real EEG signals was quanti-
fied by performing a Pearson’s correlation between the Power Spectral Density (PSD) of 
each simulated data and the PSD of one of the real sources. PSD was estimated using the 
Welch’s method with Hann window of 1 s length. The generated time series were consid-
ered as an EEG-like signal if such correlation is higher than 0.6. The percentage of signals 
of realistic data was computed as: 

%ܵ_݈ܩܧܧ = ݊௑  − ݊஺ோܰ − ݊஺ோ ∗ 100 (1) 

where ݊௑  is the number of EEG-like signals, ݊஺ோ  is the number of the MVAR real 
sources (with an AR component different from zero), and N is total number of generated 
signals. 
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Descriptive Analysis: the distributions of the performance parameters computed for 
each of the 300 iterations were reported in boxplots for each simulated condition (combi-
nation of “Model size”, “Network density” and “Real sources”). 

3.2. Results 
In this section, we report the performance achieved by the SEED-G data generator 

across 300 iterations in terms of extra required iterations (if needed for the generation 
process), computational time, and spread of the spectral properties from the real source. 

Figure 3a reports the results obtained when the number of real sources included in 
the model was set equal to 30% of the total number of generated signals. As expected, we 
found that the computational time and the ERIt increased with the model size and the 
network density. However, the toolbox could generate simulated EEG dataset with up to 
60 nodes without extra iterations and in less than 5 s when the density of the network is 
5% or 10%. In case of 30%-dense connectivity patterns, it was possible to generate datasets 
composed by 32 linked time series with 25% of extra iterations required on average (see 
Figure S1) in less than 10 s. The most complicated case to simulate was the one with 60 
pseudo-EEG signals connected by a statistical network whose density was greater or equal 
than 20%. Such dataset was not generated even after using all the 1000 attempts. Similar 
results were obtained by changing the percentage of real sources in the model to 20% and 
50% of the total number of time series included in the generated dataset, demonstrating 
that the number of real sources did not influence the number of extra iterations and the 
computational time required for the generation process. The results obtained for 20% and 
50% of Real sources were reported in the Supplementary Materials, along with the graphs 
relative to the extra required iterations. 

We also reported the percentage of EEG-like signals when the network density is 
equal to 10% in order to show the results for all the levels of the factor Model size (Figure 
3b). More than 80% of the simulated signals showed real EEG spectral properties, regard-
less of the other factors, including the number of real AR components included in the 
model. As expected, an even higher percentage of EEG-like signals was generated when 
either more connections or more real sources were considered. 
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Figure 3. SEED-G performances in terms of computational time and percentage of realistic data 
generated: (a) Mean and standard deviation of the computational time computed over 300 itera-
tions were shown as functions of the number of time series (Model size) and the number of exist-
ing connections (Network density). The number of real sources included is equal to 30%. Except 
for some 60-node models, all the simulated datasets composed by 100 trials were generated in less 
than 10 s. (*) encodes the fact that no dataset with that specific combination of features could be 
generated with 1000 attempts; (b) Mean and standard deviation of the percentage of EEG-like sig-
nals (EEGl-s) computed over 300 iterations were reported as functions of Model size and of the 
number of real sources included in the connectivity model (Real sources). The density of the net-
work is equal to 10%. On average, more than 80% of the generated data reported EEG-like spectral 
properties. 

4. SEED-G Toolbox Application: Evaluation of the Inter-Trial Variability Effect on 
PDC Estimates 

Figure 4 reports a block diagram describing the principal steps of the simulation 
framework built for studying the effect of inter-trial variability on PDC consistency and 
accuracy [16,17]. In this context, SEED-G was employed for simulating pseudo-EEG da-
tasets fitting ground-truth networks non-consistent over trials. The inter-trial variability 
was imposed separately in two different ways: 
• by increasing/decreasing the value of some existing connections in the ground-truth 

network (Study I); 
• by modifying the ground-truth network density by adding some spurious connec-

tions to the existing ones (Study II). 
The parameters imposed for the data generation and the evaluated performances are 

described in detail for each study in the following paragraphs. 
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Figure 4. Simulation study for the PDC robustness assessment. Block diagram describing the 
simulation framework built for quantifying the effect of the inter-trial variability on connectivity 
estimates’ performances. 

4.1. Methods 
4.1.1. Study I: The Effect of Unstable Connectivity Values 

Several pseudo-EEG datasets were generated for the analysis using the SEED-G 
toolbox after setting the following parameters: 
• Model size: 5, 10, 20 nodes; 
• Network density: 20% of the possible connections; 
• Connections’ intensity: randomly selected in the range [−0.5:0.5]; 
• Percentage of modified trials: 1, 10, 30, 50% of the total number of the generated trials; 
• Percentage of modified links across-trials: 10, 20, 50% of existing connections; 
• Amplitude of the variation: 20, 50, 70% of the original value of the connection; 
• Type of variation: positive (increase), negative (decrease). 

Connectivity values were estimated on the simulated data using the PDC and as-
sessed against null-case by means of the asymptotic statistic approach with a significance 
level α equal to 0.05 corrected by False Discovery Rate (FDR) to reduce family-wise error 
rate due to multiple comparisons [29–31]. 

The quality of the results was evaluated in terms of Relative Error, defined as the sum 
of all the relative prediction errors obtained for each connection in the pattern (where ௖ܰ 
is the total number of connections). The magnitude of relative prediction error for the 
specific connection ݅ is obtained as the Frobenius norm of the difference between the es-
timate averaged across frequencies (ܲܥܦ௜) and the imposed connection value (݈݁݀݋ܯ௜) 
normalized for the imposed value: 

ݎ݋ݎݎܧ ݁ݒ݅ݐ݈ܴܽ݁ = ෍ ቤܲܥܦ௜ − |௜݈݁݀݋ܯ||௜݈݁݀݋ܯ| ቤே௖
௜ୀଵ  (2) 

Finally, in order to differentiate the effect of the alterations in the connections’ value 
on the estimation in different experimental conditions, we performed a four-way ANOVA 
with the relative error as dependent variable, Tukey’s post hoc for testing differences be-
tween sublevels of ANOVA’s factors and Bonferroni–Holm correction for multiple ANO-
VAs. The main within factors were the percentage of modified connections (MOD_CON), 
the entity of the variation (VAR), the direction of the variation (VAR_DIR), and the per-
centage of modified trials (TRIALS). In order to increase the robustness of the statistical 
analysis, the entire procedure was iterated 100 times, with a different ground-truth at each 
repetition of the simulation process. The statistical analysis was performed using Statistica 
8.0 software for Windows (StatSoft, Inc.). 

4.1.2. Study II: The Effect of Spurious Connections 
Similar to Study I, pseudo-EEG datasets were generated for the analysis using the 

toolbox under different settings: 
• Model size: 5, 10, 20 nodes; 
• Network density: 20% of the possible connections; 
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• Connections’ intensity: randomly selected in the range [−0.5:0.5]; 
• Percentage of modified trials: 1, 10, 30, 50% of the total number of trials generated; 
• Percentage of added spurious links: 10, 20, 30% of all existing connections. 

Consistent with the previous analysis, PDC was employed to estimate the connectiv-
ity values between each pair of generated signals and the asymptotic statistic approach 
for their validation (α equal to 0.05, FDR corrected) [29–31]. 

The quality of the functional connectivity performances was then assessed by com-
puting the False Positive Rate (FPR) and the False Negative Rate (FNR). FPR is the per-
centage of false positives obtained by comparing the estimated networks with the im-
posed ground-truth in terms of null and non-null connections. Estimated patterns were 
averaged across the entire frequency range 1–45Hz, binarized according to the application 
of null-case statistical threshold and then compared with ground-truth. False positives 
were defined as the connections that resulted as significant from the estimation/validation 
process while their value in the model was set to zero. The amount of these links was then 
normalized on the number of all the possible false positives ( ௡ܰ௨௟௟) in order to obtain the 
FPR as: 

ܴܲܨ =  1௡ܰ௨௟௟ ෍ ା[݊]௡∈ே೙ೠ೗೗ܭ  (3) 

where ௡ܰ௨௟௟ is the total number of null connections and ܭା[݊] is 1 if PDC evaluated on 
null arcs’ value is above threshold of significance and 0 otherwise. 

The FNR instead, is the percentage of false negatives obtained by comparing the es-
timated binary networks with the imposed ground-truth. FNR takes into account the con-
nections that resulted as non-significant in the PDC estimation while their value was dif-
ferent from zero in the ground-truth. The amount of these links was then normalized on 
the number of all the possible false negatives, thus on all the existing links ( ௡ܰ௢௡ି௡௨௟௟). 

ܴܰܨ =  1௡ܰ௢௡ି௡௨௟௟ ෍ ௡∈ே೙೚೙ష೙ೠ೗೗[݊]ିܭ  (4) 

where ௡ܰ௢௡ି௡௨௟௟ is the total number of existing connections and ିܭ[݊] is 1 when the PDC 
value of non-null arcs is under statistical threshold and 0 otherwise. We also compared 
the effect of spurious connections on PDC estimates in different experimental conditions 
performing a three-way ANOVA (Tukey’s post hoc for pair-wise comparisons and Bon-
ferroni–Holm for multiple ANOVA correction). The main within factors were the percent-
age of added connections (SPURIOUS) and the percentage of modified trials (TRIALS). 
The model size (MOD_SIZE) was the between factor. FPR and FNR were the dependent 
variables. In order to increase the robustness of the statistical analysis, the entire proce-
dure was iterated 100 times, with a different ground-truth at each repetition of the simu-
lation process. The statistical analysis was performed using Statistica 8.0 software for Win-
dows (StatSoft, Inc.). 

4.2. Results 
4.2.1. Study I: The Effect of Unstable Connectivity Values 

The output of the four-way ANOVA performed using the relative error as dependent 
variable were reported in Table 1 and showed a significant effect of all the considered 
factors (VAR_DIR, VAR, MOD_CON, TRIALS) and their interactions. The same analysis 
was repeated for different sizes of the connectivity model (5, 10 and 20 generated time 
series) leading to similar conclusion. For this reason, we decided to present the trend of 
the relative error computed only for 10-node models (Figure 5) and to provide codes and 
data to replicate them for the other experimental conditions. We found that the estimation 
error associated with the PDC computation was significantly higher when the number of 
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modified trials (TRIALS) increases as well as the amount of modified connections 
(MOD_CON) in both positive (Figure 5a) and negative (Figure 5b) amplitude variations. 
The estimation error was lower than 10% unless the simulated connectivity variability 
was imposed in half of the generated trials or increased/decreased of 70% of the real value. 
It is notable that, even in the worst case, the relative error was lower than 25%. 

Table 1. Results of the four-way ANOVA (F-value) performed on the Relative Error evaluated 
after estimating PDC values on 5-, 10- and 20-node models. 

 5 Nodes 10 Nodes 20 Nodes 
VAR_DIR 98 162 15 

VAR 995 2992 7275 
MOD_CON 1237 4290 10176 

TRIALS 1415 2860 6190 
VAR × VAR_DIR 5 33 904 

MOD_CON × VAR_DIR 2.91(NS) 22 558 
MOD_CON × VAR 340 1806 5205 

TRIALS × VAR_DIR 37 87 45 
TRIALS × VAR 756 1676 4061 

TRIALS × MOD_CON 690 1994 6458 
MOD_CON × VAR × VAR_DIR 13 167 1361 

TRIALS × VAR × VAR_DIR 8 28 539 
TRIALS × MOD_CON × VAR_DIR 4 24 376 

MOD_CON × VAR × TRIALS 132 405 1345 
MOD_CON × VAR × TRIALS × VAR_DIR 4 39 322 

NS Factor of the ANOVA non-significant. When nothing is specified, p < 0.001. 
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Figure 5. PDC percentage estimate error with respect to the imposed connectivity model. Re-
sults of the four-way ANOVA performed using Relative Error as dependent variable. The investi-
gated factors are: the number of connections with variable weight (MOD_CON), the amplitude of 
the weight variation quantified as percentage of the initial value (VAR), the percentage of modi-
fied trials (TRIALS), and the type of variation (number of connections on which to apply a value 
variation (VAR_DIR) which can be either a reduction (panel a) or an increase (panel b). The bars 
represent the 95% confidence interval. 

4.2.2. Study II: The Effect of Spurious Connections 
The results of the three-way ANOVA performed to compare FPR and FNR in differ-

ent experimental conditions showed a significant effect of all the considered factors (SPU-
RIOUS, TRIALS, MOD_SIZE) and their interaction (see Table 2). As expected, both FPR 
and FNR increased with increasing model size and number of modified trials. When con-
sidering, at most, 10 nodes, the FPR (Figure 6a) was lower than 10% and the FNR (Figure 
6b) lower than 1% regardless of the other two factors. In case of bigger models (20 nodes), 
both FPR and FNR showed a significant increase, and the effect of the factors SPURIOUS 
and TRIALS was certainly more distinct. 
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Table 2. Results of the three-way ANOVA (F-value) performed on the performance parameters 
FPR and FNR, evaluated after estimating and validating PDC matrices. 

FPR * FNR * 
MOD_SIZE 740.7 251.1 
SPURIOUS 237.3 118.7 

TRIALS 77.3 189.4 
SPURIOUS × MOD_SIZE 186.8 88.0 

TRIALS × MOD_SIZE 39.6 149.3 
SPURIOUS × TRIALS 4.2 50.7 

SPURIOUS × TRIALS × MOD_SIZE 6.8 33.6 
(*) All the factors of the ANOVA and their interactions are significant (p < 0.001). 

 
Figure 6. False positive and false negative in PDC estimates. Results of the three-way ANOVA 
performed to compare FPR (panel a) and FNR (panel b) in different experimental conditions de-
fined by the number of existing spurious connections (SPURIOUS), the percentage of modified 
trials (TRIALS), and the dimension of the model (MOD_SIZE). The bars represent the 95% confi-
dence interval. 

5. Discussion 
In the context of the increasing importance of connectivity studies for both basic sci-

ence and clinical applications, we developed an open-source toolbox called SEED-G for 
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the validation and better understanding of new and existing estimators. Our aim was to 
show its capability to overcome the limitations of existing tools and facilitate the quality 
assessment of connectivity methods in several scenarios not addressed by previous meth-
ods. 

The toolbox is indeed capable of generating “personalized” simulated pseudo-EEG 
datasets with imposed connectivity patterns as a benchmark for testing connectivity meth-
ods under different conditions. The strength of SEED-G resides in the flexibility of choice 
in both the connectivity patterns and the properties of the generated signals, to be selected 
according to the estimator and the scenarios to be tested. In order to perform a reliable 
testing procedure, whose conclusions can be effectively extended to real applications, we 
included within the SEED-G toolbox the possibility to simulate signals with EEG spectral 
properties, as well as some non-idealities, such as non-consistent connectivity patterns 
across the trials (simulating the repetitions of an experiment) and the presence of meas-
urement noise or ocular artifacts. Additionally, the SNR can be modulated to identify 
which estimators are more robust to noise than others. 

To the best of our knowledge, no other existing tools or dataset provide the capability 
to generate connectivity models and time series with such properties. In fact, ground-truth 
models of specific tasks, based on anatomical evidence in animals [14,15], are intrinsically 
non-flexible, while simulators of benchmark datasets previously available were able to 
generate either small models, with a few nodes [2,5,12,20,21,25], or data with spectral 
properties that do not replicate the ones of real neuroelectrical time series [16,20–24], and 
did not include non-idealities like artifacts and inter-trial variability. 

Brain connectivity networks are also known to change over time under specific ex-
perimental conditions, and time-varying connectivity estimators are needed to follow 
those meaningful fluctuations [32]. The SEED-G toolbox allows for the generation of 
pseudo-EEG data fitting time-varying connectivity patterns and, consequently, for testing 
if dynamic estimators can catch these variations with sufficient accuracy. We believe that 
designing ad hoc simulation studies, as enabled by our toolbox, will help to identify weak 
points of several time-varying methods, and will have a positive impact on their optimi-
zation. 

Still an open issue in the context of brain connectivity analyses is the effect of specific 
steps of the EEG pre-processing on the estimates [33,34]. Several algorithms employed for 
non-brain signal detection and isolation might introduce artifacts in the connectivity net-
works estimated between brain regions (or scalp electrodes). We suggest that SEED-G 
toolbox might contribute to identifying the key steps to avoid while quantifying the ex-
tension of those artifacts in increasingly non-ideal conditions. A meaningful example in 
this direction is the study of algorithms for the ocular component removal, like the Inde-
pendent Component Analysis (ICA) and their effects, if any, on the connectivity network 
estimates. In this paper, we showed how the proposed toolbox generates realistic pseudo-
EEG data with blinks whose magnitude depends on the spatial location of the simulated 
electrode over the scalp, and their frequency of occurrence can be chosen by the user to 
simulate different kinds of experimental subjects. More artifacts typical of the EEG acqui-
sitions (and a combination of them) will be modeled in future releases of the toolbox, 
opening the way to investigate the goodness of different artifact rejection approaches and 
their impact on the subsequent connectivity estimates. 

Even the investigation of the volume conduction effect on MVAR-based estimators, 
widely debated in the last years [35–37], requires simulated dataset fitting known connec-
tivity models. We suggest that the generation of large (up to 60 nodes) and more complex 
networks will help understanding advantages and disadvantages of different head mod-
els and to test linear-inverse algorithms in combination with connectivity measures as al-
ready been done with simpler models [8,25]. In this regard, SEED-G can be used either to 
generate pseudo-EEG signals which will be projected on cortical and subcortical areas or, 
more interestingly, to generate the data and the underlying network at source level and 
propagate them to the scalp in order to model the volume conduction in the sensors’ 
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space. As a side note, we suggest either using real electrocorticographic (ECoG) signals to 
extract the AR components of the model or real EEG data after source reconstruction when 
simulating signals at source level. 

The SEED-G toolbox certainly presents some limitations, given that particularly large 
and dense networks (32/60 nodes with 30% of the possible connections) still cannot be 
generated as shown from the analysis of the toolbox performances. This limitation is likely 
a consequence of the fact that the diagonal elements of the MVAR matrices are assigned 
to individual AR values while the off-diagonal elements are randomly set, leading to un-
stable MVAR models. One of the future additions will be a test for MVAR stability which 
might also help in developing further functionalities with the aim to generate more com-
putationally intensive networks. 

As for the choice of a generation approach based on MVAR models, we selected it 
for its flexibility and its capability to reproduce the spectral properties of bioelectrical sig-
nals. With respect to other approaches, like those based on neural oscillators, MVAR mod-
els allowed for increased number of generated time series to match real data dimension, 
without considerable stability problems, and enabled the control of all the factors we 
wanted to study and manipulate in the generation process. On the other hand, its main 
drawback is the hypothesis of linear relationships between time series. Future releases of 
the toolbox may include the possibility to impose a non-linear relationship between sim-
ulated brain signals. 

Other improvements could include: (i) the simulation of further non-brain artifacts 
other than blinks (e.g., saccade and muscular components), (ii) the refinement of the signal 
generation at source level including in the process features that depend on their position 
in the cortex, (iii) expanding the toolbox for simulating other interesting phenomena typ-
ical of the EEG data, such as even related potentials (ERP), opening the way to the valida-
tion and optimization of other algorithms. 

As an application, we employed the proposed toolbox to investigate the effect of the 
inter-trial variability on the accuracy of the PDC estimator under realistic experimental 
conditions never simulated before. High variability across different trials is common in 
EEG, due to methodological issues (degradation of the signal quality over time) as well as 
to the participant’s state of mind or conditions (some subjects more than others can expe-
rience fatigue, loss of concentration, and oscillations in the task performance) [10,38,39]. 
Multivariate connectivity estimators, when applied to a multi-trial dataset, do not provide 
a connectivity pattern for each realization but an average pattern including all the aspects 
in common to all trials. In fact, it is well known that the estimation of a high number of 
parameters, as in MVAR-based approaches, require a high amount of data, a condition 
not satisfied at single-trial level. The lack of testing datasets reproducing inter-trial varia-
bility of the underlying pattern prevented the evaluation of the effects of this phenomenon 
in the accuracy of MVAR-based estimators. 

Similar studies have already been proposed on small models (less than 10 nodes) [10], 
but only by employing this new toolbox were we able to simulate datasets reproducing 
standard EEG montages with higher numbers of electrodes in a matter of seconds (e.g., 
32, 60 signals). The proposed simulation studies demonstrated that the combination of 
PDC and asymptotic statistic for its validation is robust and reliable even in the presence 
of some non-idealities which are typical of the real datasets, especially when recorded 
during specific motor tasks or from patients’ populations. At the same time, the two stud-
ies proposed here contributed to define more specific boundaries of acceptable quality of 
the data, in terms of consistency across the trials, for the application of those methods. If 
more than 50% of the trials is artifactual or shows a low signal to noise ratio, it is important 
to consider a significant loss of accuracy, as the actual brain network might be hidden by 
spurious links. The contribution of this application is twofold: on one hand, it returned a 
measure of the robustness of PDC to non-ideality in the data that can be easily encoun-
tered in many applications, and on the other, it showed how SEED-G toolbox can allow 
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and support the evaluation of connectivity estimators under challenging experimental 
conditions, not yet rigorously tested. 

6. Conclusions 
SEED-G toolbox was developed with the aim to provide a useful instrument ad-

dressed to researchers in the field of brain connectivity. It allows for testing stationary and 
time-varying estimators in controlled and customizable, non-ideal conditions: low num-
ber of available samples and trials, high inter-trial variability, low signal to noise ratio. 
The application proposed in this study uncovered information about the optimal terms of 
use of the PDC and the errors to consider before making inferences for different levels of 
inconsistency across trials. Numerous other experimental conditions and connectivity 
methods could be studied using this open-source toolbox. Future works could investigate 
factors that play an important role in the accuracy of the connectivity estimates (e.g., op-
timal model order, algorithm for VAR model estimation, preprocessing procedures, linear 
inverse estimation), or even compare different algorithms under specific non-ideal exper-
imental conditions. Therefore, we hope and believe that it will be helpful for researchers 
who want to test and develop new connectivity algorithms, and for making advancement 
in this fascinating research field. 
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www.mdpi.com/1424-8220/21/11/3632/s1, including Figure S1: SEED-G performances in terms of 
extra required iterations, Figure S2: SEED-G extra required iterations and computational time when 
20% of AR real components is included in the model, Figure S3: SEED-G extra required iterations 
and computational time when 30% of AR real components is included in the model. 
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Appendix A 
SEED-G toolbox was developed in MATLAB environment (tested on version R2017a 

and R2020b) and released on the GitHub page https://github.com/aanzolin/SEED-G-
toolbox (accessed date 12 April 2021). It is organized in the following subfolders: 
• main: it is the core of the toolbox and contains all the functions for the generation of 

EEG data according to a predefined ground-truth network. 
• dependencies: containing parts of other toolboxes required to successfully run 

SEED-G functions. The links to the full packages can be found in the documentation 
on the GitHub page. The additional packages are Brain Connectivity Toolbox (BCT) 
[40], FieldTrip [41], Multivariate Granger Causality Toolbox (MVGC) [24], and 
AsympPDC Package (PDC_AsympSt) [42,43]. Additionally, the implemented 
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forward model is solved according to the New York Head (NYH) model, whose pa-
rameters are contained in the structure available on the ICBM-NY platform [28]. 

• real data: containing real EEG data acquired from one healthy subject during resting 
state at scalp level (‘EEG_real_sources.mat’) and its reconstructed version in source 
domain (‘sLOR_cortical_sources.mat’). These signals can be employed to extract the 
AR components to be included in the model to generate data with the same spectral 
properties of the real ones.  

• demo: containing examples of MATLAB scripts to be used to learn the different func-
tionalities of the toolbox. For example, the code ‘run_generation.m’ allows to specify 
the directory containing the real sources and each specific input of the function ‘sim-
ulatedData_generation.m’. 

• auxiliary functions: containing either original MATLAB functions or modified ver-
sion of free available functions. 
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