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Abstract: Recent developments in sensing technology have made wearable computing smaller and
cheaper. While many wearable technologies aim to quantify motion, there are few which aim to
qualify motion. (2) To develop a wearable system to quantify motion quality during alpine skiing,
IMUs were affixed to the ski boots of nineteen expert alpine skiers while they completed a set protocol
of skiing styles, included carving and drifting in long, medium, and short radii. The IMU data were
processed according to the previously published skiing activity recognition chain algorithms for turn
segmentation, enrichment, and turn style classification Principal component models were learned
on the time series variables edge angle, symmetry, radial force, and speed to identify the sources of
variability in a subset of reference skiers. The remaining data were scored by comparing the PC score
distributions of variables to the reference dataset. (3) The algorithm was able to differentiate between
an expert and beginner skier, but not between an expert and a ski instructor, or a ski instructor and a
beginner. (4) The scoring algorithm is a novel concept to quantify motion quality but is limited by
the accuracy and relevance of the input data.

Keywords: IMU; principal component analysis; wearable; scoring; carving

1. Introduction

Recent developments in sensor technology have made sensing units cheaper and easier
to implement. These developments have made the application of “wearable technology”
or smart sporting equipment appealing to not only scientists and elite athletes, but also
recreational athletes. Such users are interested in more than the quantity of a movement
performed (e.g., steps, ski turns, or kilometers per run); they are also interested in the
quality of motion, or how well they performed the activity [1]. Together, the recent
developments and new users of wearable technology have led to a number of recent
publications concerning the measurement of motion quality during skiing, especially
during in-field experiments [1–4].

A popular sensor choice in the field-based measurements are inertial measurement
units (IMUs). These sensors combine accelerometers, gyroscopes, and optionally, magne-
tometers to record three-dimensional acceleration, angular velocity, and magnetic field
signals. IMUs have been used to measure center of mass kinematics [5], skier posture [6],
trunk orientation [7], vibration transmission [8], knee joint angles [9], edge angle [10], as
well as the estimation of skier kinetics [11]. Despite the variety of approaches to quantify
skiing performance, these studies focused exclusively on competitive alpine skiing [12].
Although the results of these studies provide motion quality parameters to scientists and
coaches regarding athlete performance or injury risk, the methods used are not “plug-and-
play” systems. In general, the methods utilized in the studies above require extensive
sensor calibration, bulky measurement equipment, or offline post-processing [13]. While
these processes can be quite simple, they can also be quite complex and can significantly
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influence data quality [14]. Indeed, this limitation was a key finding in one of the earliest
publications regarding wearable systems to measure motion quality during skiing [15].
This study used an extensive sensor setup (tri-axial accelerometer, tri-axial gyroscope,
force-sensing resistors, radar, and infrared distance sensors) to estimate a wide variety of
parameters related to competitive skiing simulations. The main intent of this system was
to provide data to augment feedback normally given by a human coach. The authors of
this paper highlighted that although the measurement system was quite comprehensive, it
was prohibitively obtrusive for regular everyday use, and future systems should focus on
providing an interface that is easy and intuitive to operate and interpret.

More recently, there have been further developments in the area of motion quality
assessment in alpine skiing. Yamagiwa and colleagues developed a simple system based
on a single IMU mounted on the trunk of a skier to assess skiing quality based on turning
tempo (turn frequency) [16]. The algorithm assessed only the variability of tempo during
a run in order to differentiate between high- and low-skill skiers. However, this study
only presented the development of the algorithm; it did not report any group statistics
and included a limited number of participants. Kos and Umek [17,18] proposed a more
complex system, integrating bending and load transducers directly into a ski in addition to
an IMU placed on the torso of skiers. Although this system was quite comprehensive and
provided real-time feedback to users, the hardware requirements (data-logger, backpack,
cables) and calibration procedures (static and dynamic requirements) rendered it infeasible
for realistic everyday frictionless use.

Recent work addressing the literature gap regarding low-friction systems has de-
veloped a wearable-system based on IMUs mounted on the cuffs of both ski boots and
a smartphone hub for data recording, storage, and online data processing within a cus-
tom application [3]. This provides the platform for the automated detection of turns [4],
data processing and extraction of skiing specific metrics [19], and turn classification into
carving, drifting, or non-parallel turning styles [2]. Together, these steps fit within the
activity recognition chain (ARC, segmentation, enrichment, classification) [20]. Brunauer
and colleagues [21] have proposed an extension of the ARC, going beyond answering the
question of “What did X do?”, to “How well has X performed?” and “What should X do to
improve?” In order for this proposed extension to function, it requires an objective quantifi-
cation of which parameters define motion quality (i.e., edge angle, radial force, CoM speed,
turning radius). One approach to answer these types of questions is principal component
analysis (PCA). PCA is a common tool in statistics and machine learning used to reduce
the dimensionality of large time series datasets, where many variables contain redundancy
with respect to the total variability of the dataset [22]. In the context of human movement
analysis, PCAs have been utilized to identify unique gait patterns during walking [23], to
discriminate between patients with and without knee osteoarthritis [24], and to evaluate
motion quality during functional movements and classify athletes as novice or elite [25].
PCAs have also been implemented in other smart sports equipment settings—for example,
to detect errors during balance board tasks [26]. In the context of skiing, PCAs have been
used to identify the main motions or principal movements related to skiing technique
during slalom racing [27]. While PCAs would normally be applied to an entire dataset, in
the context of wearables and smart coaching, an alternative approach would be to apply a
PCA model to individual time series variables in order to identify the specific components
of individual parameters which contribute to overall variability. In this way, a wearable
system could be developed which is more sensitive to individual parameter shapes, rather
than traditional metrics such as mean, standard deviation, maximum, or minimum.

In order to develop a robust model of skiing movement quality, we develop a principal
component analysis (PCA)-based model of motion quality during alpine skiing using a
simple sensor system, and we evaluate the performance of the algorithm during in-field
skiing conditions compared to expert raters.
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2. Materials and Methods
2.1. Participants

Nineteen advanced or expert skiers (8 male/11 female, age 34.6 ± 7.8 years, height
1.73 ± 0.1 m, weight 72.7 ± 11.0 kg) were recruited to participate in this study. All partici-
pants were either ski instructors or current or former competitive alpine skiers, including
four former FIS Alpine World Cup athletes. Additionally, three separate participants, one
beginner, one ski instructor, and one expert skier, were recruited to complete a separate
algorithm validation. Participants were informed of the testing procedures in detail, in-
cluding possible benefits and risks of the investigation, prior to signing the consent form as
approved by the local ethics committee (EK-GZ: 11/2018). This experiment was conducted
in accordance with the Declaration of Helsinki.

2.2. Overall Design

In order to construct a “systematic” dataset comprising a variety of skiing styles,
participants completed seven skiing runs, performing at least ten consecutive turns during
each run. Participants performed carving and drifting style turns. In both styles, turns were
performed in long, medium, and short radii. Long-radius turns were defined as at least
three snow-cat groomed widths (>12 m), medium-radius turns were defined as roughly
two snow-cat groomed widths (~8 m), and short-radius turns were defined as less than two
snow-cat groomed widths (<8 m). The seventh test run was a “maximum performance” run
performed at the participants self-selected turn radius and style. Additionally, participants
performed one snowplow steering and one pure snowplow run; however, data from these
runs were not included in the analysis. All tests were performed at three Austrian ski
resorts between January and March 2019. In order to ensure consistent slope conditions, all
tests were performed before 11 am. All tests were completed on freshly groomed blue or
red pistes with limited fresh snowfall (<6 cm).

2.3. Data Acquisition

All tests were performed on commercially available recreational race skis. Long-
and medium-radius turns, as well as the “maximum performance” runs, were performed
on a “giant slalom” model (Atomic Redster G9 171/177/183 cm length, 18.6 m radius).
Short-radius and non-parallel turns were performed on “slalom” skis (Atomic Redster S9,
155/165 cm length, 12.7 m radius). Prior to testing sessions, participants completed at least
one run to familiarize themselves with the test skis.

The wearable system consisted of two IMUs (configuration: 2.5 × 3 × 0.83 mm ± 16 g
and ±1000 dps full-scale resolution, board by Movesense [28]) mounted on the upper
posterior cuff of each ski boot using a custom housing and strap. The Y axis of the IMU was
aligned with the vertical axis of the boot pointing superiorly, the X axis with the lateral axis
pointing to the right, and the Z axis with the roll axis pointing posteriorly (Figure 1). Both
the accelerometer and gyroscope sampled at 833 Hz. The raw signals were filtered by an
analog anti-aliasing low-pass filter, and again after A/D conversion by a digital low-pass
filter (filter cutoff: 416.5 Hz—accelerometer; 245 Hz—gyroscope) The filtered signals were
transmitted via Bluetooth at 54 Hz to a smartphone running a custom application, where
they were stored for further processing. Additionally, global navigation satellite system
(GNSS) signals were recorded at 1 Hz by the same custom application on the mobile phone.
A central requirement of the wearable system is its “plug-and-play” character; therefore,
after factory calibration, no further IMU calibrations were performed.
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Figure 1. Measurement system and axis orientation. The X axis (red) points to the right, the Y axis 
(green) points vertically, and the Z axis (blue) points posteriorly. 

2.4. Pre-Processing 
All collected data were processed according to the process outlined by the ARC pro-

posed by Brunauer and colleagues [21]. Each run was segmented into turns using the al-
gorithm described by Martinez et al. [3,4]. Briefly, this algorithm detects peaks in the roll 
axis gyroscope signal to segment turns based on the pendulum model of skiing. The first 
and last detected turn from each run, as well as turns with an average speed one median 
absolute deviation below the median speed for that run, were excluded from the dataset 
in order to exclude turns within each sequence where the skier was either accelerating or 
decelerating (i.e., the beginning and end of a run). Pre-processed data from each turn were 
enriched with the metrics, speed, radial force, edge angle, and edge angle symmetry (left–
right turn differences) according to the algorithms proposed by Snyder and colleagues 
[19] and speed based on the mobile phone GNSS. Finally, each turn in the segmented, 
enriched dataset was classified as either carving, drifting, or non-parallel style according 
to the classification algorithm described by Neuwirth and colleagues [2]. Although this 
algorithm was able to distinguish among styles with high accuracy (~93%), not all turns 
within one style are similar, specifically with regard to turn size. Therefore, in order to 
add a further layer of specificity to the scoring algorithm, each classified turn was further 
classified according to the assigned turn size (small, medium, and large). Although the 
turn style for each run was specified, the classified turn styles assigned by the classifica-
tion algorithm were not always identical to the style intended. Table 1 shows the number 
of turns from each participant classified in each turning style/radius, as well as the “in-
tended” turn styles included. Due to synchronization errors, specific runs from 10 partic-
ipants were excluded. These participants were all included in the test dataset, preventing 
their “lack” of data from influencing the model results. 

The processed dataset was split participant-wise into reference (42%) and test (58%) 
datasets. The reference dataset was used to learn a PCA model and develop a scoring 
system. The test dataset was then used as “new data” to test the performance of the algo-
rithm. The participants placed into the reference dataset were selected based on their ob-
jectively high skiing level. These five “gold-standard” skiers included one male and one 
female professional instructor and three retired male World Cup athletes (retired after 
2006). These skiers had a combined 49 World Cup Victories, 13 World Championship 
medals, 4 Olympic Medals, and 9 World Cup Overall or discipline crystal globes. 

Figure 1. Measurement system and axis orientation. The X axis (red) points to the right, the Y axis
(green) points vertically, and the Z axis (blue) points posteriorly.

2.4. Pre-Processing

All collected data were processed according to the process outlined by the ARC
proposed by Brunauer and colleagues [21]. Each run was segmented into turns using the
algorithm described by Martinez et al. [3,4]. Briefly, this algorithm detects peaks in the roll
axis gyroscope signal to segment turns based on the pendulum model of skiing. The first
and last detected turn from each run, as well as turns with an average speed one median
absolute deviation below the median speed for that run, were excluded from the dataset
in order to exclude turns within each sequence where the skier was either accelerating or
decelerating (i.e., the beginning and end of a run). Pre-processed data from each turn were
enriched with the metrics, speed, radial force, edge angle, and edge angle symmetry (left–
right turn differences) according to the algorithms proposed by Snyder and colleagues [19]
and speed based on the mobile phone GNSS. Finally, each turn in the segmented, enriched
dataset was classified as either carving, drifting, or non-parallel style according to the
classification algorithm described by Neuwirth and colleagues [2]. Although this algorithm
was able to distinguish among styles with high accuracy (~93%), not all turns within one
style are similar, specifically with regard to turn size. Therefore, in order to add a further
layer of specificity to the scoring algorithm, each classified turn was further classified
according to the assigned turn size (small, medium, and large). Although the turn style for
each run was specified, the classified turn styles assigned by the classification algorithm
were not always identical to the style intended. Table 1 shows the number of turns from
each participant classified in each turning style/radius, as well as the “intended” turn
styles included. Due to synchronization errors, specific runs from 10 participants were
excluded. These participants were all included in the test dataset, preventing their “lack”
of data from influencing the model results.

The processed dataset was split participant-wise into reference (42%) and test (58%)
datasets. The reference dataset was used to learn a PCA model and develop a scoring
system. The test dataset was then used as “new data” to test the performance of the
algorithm. The participants placed into the reference dataset were selected based on their
objectively high skiing level. These five “gold-standard” skiers included one male and one
female professional instructor and three retired male World Cup athletes (retired after 2006).
These skiers had a combined 49 World Cup Victories, 13 World Championship medals,
4 Olympic Medals, and 9 World Cup Overall or discipline crystal globes.



Sensors 2021, 21, 3779 5 of 13

Table 1. Turns classified per participant as carving or drifting in long, medium, and short radii. Although participants were
instructed to complete turns of specific styles, some turns were classified as different styles or radii. Experience levels: WC
corresponds to retired world cup ski racers, while FIS corresponds to retired FIS level ski racers.

# Experience Level Group
Carving Drifting Completed

RunsLong Medium Short Long Medium Short

1 WC Ref 10 42 29 9 25 1 CL, CM, CS,
DL, DM, DS, Max

3 WC Test 3 4 0 ~ ~ ~ CL
4 Instructor Test ~ ~ ~ ~ ~ 34 DS
5 Instructor Test ~ ~ ~ ~ ~ 37 DS
6 FIS Test ~ ~ ~ ~ 18 10 DS
7 Instructor Test ~ ~ ~ ~ 1 23 DS
8 Instructor Test ~ ~ 12 ~ ~ 22 CS, DS
9 Instructor Test ~ ~ 5 ~ 2 18 DS
11 Instructor Test ~ ~ ~ ~ 2 15 DS
12 Instructor Test 1 10 7 ~ ~ 17 CM, DS, Max

14 Instructor Test 15 16 2 8 11 2 CL, CM, CS,
DL, DM, DS, Max

15 FIS Test 4 42 22 5 17 47 CL, CM, CS,
DL, DM, DS, Max

16 Instructor Test ~ 33 4 7 43 35 CL, CM, CS,
DL, DM, DS, Max

17 Instructor Ref 2 73 12 14 24 3 CL, CM, CS,
DL, DM, DS, Max

19 Instructor Ref 8 18 30 6 12 5 CL, CM, CS, DM, DS
20 Instructor Test 5 54 25 12 22 45 CL, CM, CS, DL, DM, DS, Max
21 FIS Test 13 21 14 6 16 20 CL, CM, CS, DL, DM, DS, Max
23 WC Ref 10 59 59 20 6 27 CL, CM, CS, DL, DM, DS, Max
24 WC Ref 11 43 ~ 21 9 ~ CL, CM, DL, DM, Max

Total 82 415 221 108 208 361 84

2.5. Scoring Alogirthm

A PCA model was applied to the reference dataset to learn the signal characteristics
(principal components) of the reference skiers. The principal components scores (the linear
representations of each sample in the principal component space) of the first three principal
components were retained and used as a reference distribution to assess the similarity
between the reference and test datasets (scoring).

A centered PCA model was learned separately on each input variable (edge angle,
radial force, speed, symmetry) for each skiing style in the reference dataset. Therefore, each
variable is represented by an n × 101 dimensional matrix, Pref, where n is the number of
samples (turns) and 101 is the number of features—in this case, the signal normalized to
100% turn duration. The PCA yields two results, a matrix of eigenvectors and a matrix of
eigenvalues. The eigenvectors represent the direction of the largest sources of variability in
Pref and are ordered by the magnitude of variability that they explain. These are termed

principal component loading vectors
→
PCre f . The eigenvalues of each eigenvector are the

representations of the original dataset in the principal component space and are termed PC
scores, PCSre f , and they represent the amount of variability contributed by each sample to

each PC loading vector. In this way,
→
PCre f can be thought of as a transformation matrix

from the PC space and the original data space. The mean vector response of each variable

and
→
PCre f were retained as the required data to transform new data to the PC space, where

the transformed data can be scored.
While the eigenvectors

→
PCre f are used to transform new data into the PC space, the

eigenvalues PCSre f are scalars which describe the contribution of each PC to the overall
variability of the dataset. Therefore, assuming that the skiers in the reference dataset
represent the “gold standard” of skiing performance, within one PC of one variable (ex. PC
1 of edge angle), the distribution of PCSre f describes the optimal weighting of that PC for



Sensors 2021, 21, 3779 6 of 13

that variable, where scores close to the middle of the distribution are desirable, and those
at each tail are less desirable.

An absolute Z-score for each PC of each variable was calculated and transformed into
discrete scoring bins, where Z < 0.75 = 4, Z > 0.75 and Z < 1.5 = 3, Z > 1.5 and Z < 3 = 2, Z >
3 = 1. These Z-scores were normalized by the variance explained by each PC and summed
within variables so that PC that contributed most to the variability of the reference dataset
carried the most weight in the score. The final score for each turn was calculated as the
sum of normalized Z-scores across variables, expressed as a percentage of the maximum
score, where higher scores represent higher similarity to the reference dataset. In order to
form a single continuous scale for all turns, those turns classified as carving were scaled
from 7 to 10, and those classified as drifted turns from 3to 6. Not addressed in this study
were the turns classified as snowplow and snowplow steering [2]. These classes were not
scored by this algorithm but assigned scores of 1 (snowplow) and 2 (snowplow steering) in
order to complete the 1–10 scale. None of the turns included in this study were classified
as snowplow.

The final scoring model consists of a set of vectors representing the mean response of

each variable, a set of loading vector means (
→
PCre f ) and loading vector standard deviations

for each PC of each variable, in each turn size (small, medium, large) of each turning style
(carving and drifting).

The test dataset was processed according to the same pre-processing steps as the
reference dataset (segmentation, enrichment, and classification). Rather than learning a
new PCA model in the incoming dataset, each variable of each metric was scaled by the
mean response of the reference dataset and transformed to the PC space using the matrix
→
PCre f . The test dataset was then scored according to the scoring algorithm described above.

Finally, three skiers completed a shortened protocol consisting of three runs in set
radii (long, short, and self-selected) and self-selected turning style, using the instrumented
ski boot, while being observed by three professional ski instructors. The instructors rated
the skiing quality using two items, the overall quality (“On a scale of 1–4, how is the overall
skiing quality? 1 being not able to ski, 4 being excellent”), the skiing dynamics (“On a scale
of 1–4, how dynamic is the skiing? 1 being static, 4 being very dynamic”), and the skiing
turn style (“What is the skiing style: carving, drifted, or mixed?”). The scores were scaled
using the assigned style (3–6, drifting, 5–8 mixed, 7–10 carving) in order to match the scale
of score provided by the wearable system. Data from the instrumented boot were processed
according to the algorithm above, and the mean score from each run was compared to the
scores assigned by the expert raters using Pearson correlations. Correlations less than 0.3
were interpreted as small, between 0.3 and 0.6 as medium, and greater than or equal to
0.6 as large [29]. Finally, the scores from all turns from each skier were compared using
a Kruskal–Wallis test to determine if the algorithm was able to assign different scores to
skiers of different skill levels.

3. Results
3.1. Explained Variability

The first three PCs of each variable in each turning condition explained at least 85% of
the variability of the reference dataset for all variables in all skiing styles (Figure 2). The
first three PCs of speed explained 99.1 ± 1.6%, 0.9 ± 1.6%, and 0.03 ± 0.1% of the total
variability across all skiing styles. Similarly, the first three PCs of edge angle explained
95.9 ± 2.9%, 2.7 ± 1.4%, and 1.3 ± 1.5% of the total variability across all skiing styles. For
radial force, the first three PCs explained 75.5± 9.9%, 4.4± 5.2%, and 6.6± 3.0% of the total
variability. Finally, for symmetry, the first three PCs explained 60.4 ± 10.3%, 26.0 ± 9.1%,
and 9.0 ± 3.6% of the total variability.
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(b) carving medium radius, (c) carving short radius, (d) drifting long radius, (e) drifting medium radius, and (f) drifting 
short radius. 

3.2. PC Response and Score Response 
A sample response of each variable in the PC space is shown in Figure 3 for carving 

short radius. For example, the third row (Figure 3g–i) shows the responses of the first 
three PCs of radial force. Higher PC 1 scores for radial force indicate lower radial force, 
while lower scores indicate higher radial force. For PC 2, high scores indicate peak radial 
forces occurring later in turn duration, while lower PC 2 scores indicate peak radial forces 
earlier in the turn. Finally, in Figure 3i, higher PC 3 scores indicate single peaks in radial 
force, with longer transition phases where radial forces are low, while lower PC 3 scores 
indicate double peaks in radial force. 

Figure 2. Cumulative explained variability of the first six principal components from the reference
dataset for edge angle (solid line), edging symmetry (dashed line), radial force (dotted line), and
speed (dot–dash line), in (a) carving long radius, (b) carving medium radius, (c) carving short radius,
(d) drifting long radius, (e) drifting medium radius, and (f) drifting short radius.

3.2. PC Response and Score Response

A sample response of each variable in the PC space is shown in Figure 3 for carving
short radius. For example, the third row (Figure 3g–i) shows the responses of the first three
PCs of radial force. Higher PC 1 scores for radial force indicate lower radial force, while
lower scores indicate higher radial force. For PC 2, high scores indicate peak radial forces
occurring later in turn duration, while lower PC 2 scores indicate peak radial forces earlier
in the turn. Finally, in Figure 3i, higher PC 3 scores indicate single peaks in radial force,
with longer transition phases where radial forces are low, while lower PC 3 scores indicate
double peaks in radial force.

3.3. Test Score Distribution

The scores assigned by the wearable system to the training dataset are shown in
Figure 4. In all styles except carving medium, the scores were moderately skewed towards
higher scores (carving long: −0.58, carving medium: 0.01, carving short −0.36, drifting
long: −0.82, drifting medium: −0.52, drifting short: −0.38).
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3.4. Validation Test

A large correlation was observed between the expert assigned dynamic score and
the median score of all turns assigned by the wearable system within each run (r = 0.71,
p = 0.048), but not between the overall quality score and the score assigned by the wearable
system (r = 0.59, p = 0.120). Additionally, differences were observed between the algorithm-
assigned scores for the beginner and expert skiers (p = 0.02), but not between the ski
instructor and the expert skier (p = 0.23) and the beginner and the ski instructor (p = 0.44).

4. Discussion

The goal of the study was to develop a wearable sensor system-based scoring algo-
rithm to assess motion quality during skiing. The system proposed in the current study is
both well suited for use in a mobile application and is able to discriminate between high-
and low-skill skiers, but only when the skiing style is sufficiently different (i.e., carving vs.
drifting). Additionally, this scoring system embraces the previous steps proposed by the
ARC (segmentation/enrichment/classification) and assesses motion quality relative to the
performed technique and turn size [21].

A critical aspect of a scoring system is that it provides outputs which are prepared to
feed further motion quality algorithms, such as the extended ARC [21]. For example, an
algorithm which only provides a single numeric score is appropriate for comparing athletes
or students but does not provide sufficient information to address further questions, such
as “What should X do?”. As the inputs of the algorithm proposed by this paper are
easily interpretable, context-relevant parameters (e.g., edge angle, radial force, speed, and
symmetry), the sub-scores calculated for each feature could be used to translate the scores
for each PC into concrete coaching steps.

Although a PCA is typically used to address the main sources of variability in a
dataset and reduce the number of input variables, in this case, PCAs are applied to each
signal separately in order to identify the main variability sources within each signal
independently, specifically so that the results could be translated into context-relevant
coaching instructions. For example, consider a skier whose lowest sub-score comes from
the radial force variable. Their PC 1 score was lower than the target. A low PC 1 score for
radial force indicates that they ski with higher radial force than the target so they should
aim for a lower radial force turn. Their PC 2 score was higher than the target, which, for
radial force, indicates that the radial force peak was later in the turn. Therefore, they should
aim to have their peak radial force earlier in the turn. Finally, for PC 3, their score was
similar to the target, so the duration of the turn with higher radial force was similar to
the reference.

Additionally, the scoring algorithm incorporates signals related to multiple aspects of
alpine skiing and is able to assess the motion quality across all of the aspects independently
of each other. For example, although skier A achieved a good score for PC 1 of edge angle,
they received a low PC 2 score: both of these aspects are related to skiing performance;
however, the magnitude of edge angle is more important for the timing of the peak edge
angle, as, during carving skiing, the edge angle is directly related to the turn radius [30].
This is also reflected in the PCA results, as the variance explained by PC 1 (related to
signal magnitude) in all skiing styles and all variables explained 82 ± 17% of the total
variance, while PC 2 and PC 3 (generally related to signal timing and duration) explained
14 ± 15% and 3 ± 4% of the total variance of the dataset, respectively. The algorithm also
considers this fact, scaling the contribution of each PC to the total score for each variable
by the variance explained for each PC. For example, if a skier were to score a perfect 4 in
each PC of radial force, their scores would be 2.78, 0.88, and 0.34, as PC 1–3 explain 70%,
22%, and 5%, respectively, of the total variance in the radial force signal. This prevents
poor scores in PCs, which contribute very little to the overall variability from exacting an
outsized influence on the overall score—for example, speed, where PC 1 explains ~99%
of the variability across all styles. In the case of speed, the 1 Hz GPS signal is linearly
interpolated to the 54 Hz IMU sample frequency by the application. Therefore, only the
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magnitude of the signal and not the shape of the signal is meaningful. In this case, the PCA
is also “smart” enough to treat this parameter in the same way that a maximum value only
would be scored.

The primary consideration for a scoring algorithm is its ability to distinguish between
high- and low-skill skiers. In general, it can be observed that higher scores are associated
with higher edge angles, higher symmetry, higher radial force, and higher speed, which
generally matches the assumptions of higher performance observed in competitive envi-
ronments [12]. The simplest proof of concept would be to use the algorithm to compare
two skiers, one retired WC athlete and one beginner skier. The beginner skier was able to
complete drifting turns with a low motion quality, but not carving turns. Given that the
two skiers in this test completed the same test protocol, the mean score from the two skiers
should represent their overall skiing quality. The average score for skier A, the retired WC
athlete, across all collected turns was ~8.4, reflecting their high motion quality even in
“lower-skill” drifted turns. The average score for skier B, the beginner, was 5.9. Although
this skier was instructed to perform carving turns, according to the algorithm, this skier
was unable to perform carving turns, and thus a majority of their turns were classified as
drifting and thus scored below 7.

The results of the in-field validation show that the scoring algorithm was correlated
with scores representing skiing dynamics, but not with the overall skiing quality. Therefore,
it appears that the algorithm scores movement quality more based on the dynamics of
the movement than the subjective motion quality as assessed by expert raters. This is a
logical outcome, since the dynamics were the parameters directly measured by the IMU
system (acceleration and angular velocities). Although the algorithm was able to correctly
rank the skills of the three test skiers (beginner < instructor < expert), and the scores
assigned accurately distinguished between the beginner and expert skier, Figure 5 shows
that, outside of edge angle and speed, the scores were generally quite similar across all
variables. Due to these similarities, the scores assigned by this algorithm are likely only
discriminant enough to differentiate between skiers when the skiing style is sufficiently
different (higher vs. lower dynamics).
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The observation that the algorithm scores skiers based on their skiing dynamics
highlights the importance of the choice of skiers included in the reference dataset. The
scores assigned by the algorithm to the test dataset were generally skewed towards higher
scores, which would be expected since the skiers in this dataset were all either instructors
or former competitive alpine skiers. Although the reference group in this study contained
only elite alpine skiers (retired WC athletes), the algorithm only assesses how similar the
variability new data was to the set of reference skiers for each individual skiing style.
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Therefore, it is possible to receive a negative score when PC scores are either above or
below the reference skiers’ values. For example, a skier with extremely high edge angles
might receive the same score as a skier with a lower edge angle because they are both
equally different from the reference dataset but in opposite directions, even though the case
of the extremely high edge angle indicates objectively better skiing quality. Additionally,
it is possible that the variability contained in this dataset (containing only expert skiers)
might not represent the variability that might be contained by a dataset that includes
more intermediate or novice skiers. On the contrary, such a dataset might not generate
meaningful targets, as the variability of such a dataset would represent the variability
between skill groups rather than the variability of a reference group. This highlights the
importance of the selection of an appropriate reference group, which should match the
quality of skiing to be evaluated by the algorithm.

In this context, a distinct advantage of this algorithm is its flexibility in adapting to a
new reference. A user could simply record a new selected group of reference skiers, and
the algorithm could learn a new reference model based on this new dataset, provided that
it contained an appropriate volume of turns in all desired skiing styles. This could also be
done on an individual level to provide a baseline for competitive skiers to detect subtle
changes in skiing technique possibly related to fatigue and increased injury risk during
longer training sessions [31].

A limitation of an approach such as the extended ARC is the issue of dependency.
The accuracy of each step in the extended ARC is dependent on the accuracy of the
previous step. For example, the accuracy of the ski style classification is dependent on
the accuracy of the feature extraction step, which is dependent on the accuracy of the
segmentation step. Despite this limitation, all of the steps in the extended ARC proposed
above have been previously validated. Martinez and colleagues performed in-lab [3] and
in-field [4] validations of the turn detection and segmentation algorithm, and the accuracy
and precision of the estimated features edge angle and radial force have been shown to be
−0.77 ± 1.00◦ and 1.50 ± 1.33◦, respectively, and the classification algorithm proposed by
Neuwirth and colleagues was able to distinguish between drifting and carving turns with
an accuracy of 95%. This indicates that the error contributed from previous processing steps
likely imposes a minimal influence on the accuracy of the scoring system. Additionally, the
algorithm was designed based on input data processed via the same input algorithms, and,
thus, the error contributed by the system itself is inherently included in the model of skiing
motion quality.

5. Conclusions

The scoring algorithm presented in this study is a first step towards developing
a wearable system to evaluate skiing motion quality that could be implemented in a
stand-alone application for regular use by both recreational and competitive alpine skiers.
The proposed system is a novel approach to quantifying motion quality and was able
to differentiate between high- and low-skill skier abilities. Additionally, the system is
easy to use, flexible, and could be easily adapted to accommodate reference skiers of
varying abilities. Future work should focus on validating the algorithm in a wider range
of skiing conditions, such as powder or moguls, using a more accurate reference scoring
and incorporating further features (e.g., pressure distribution, ski bending, or mechanical
energy dissipation) into the algorithm in order to provide a more robust and comprehensive
view of motion quality during alpine skiing [12].
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